github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/runtime/asm_amd64.s (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #include "go_asm.h" 6 #include "go_tls.h" 7 #include "funcdata.h" 8 #include "textflag.h" 9 #include "cgo/abi_amd64.h" 10 11 // _rt0_amd64 is common startup code for most amd64 systems when using 12 // internal linking. This is the entry point for the program from the 13 // kernel for an ordinary -buildmode=exe program. The stack holds the 14 // number of arguments and the C-style argv. 15 TEXT _rt0_amd64(SB),NOSPLIT,$-8 16 MOVQ 0(SP), DI // argc 17 LEAQ 8(SP), SI // argv 18 JMP runtime·rt0_go(SB) 19 20 // main is common startup code for most amd64 systems when using 21 // external linking. The C startup code will call the symbol "main" 22 // passing argc and argv in the usual C ABI registers DI and SI. 23 TEXT main(SB),NOSPLIT,$-8 24 JMP runtime·rt0_go(SB) 25 26 // _rt0_amd64_lib is common startup code for most amd64 systems when 27 // using -buildmode=c-archive or -buildmode=c-shared. The linker will 28 // arrange to invoke this function as a global constructor (for 29 // c-archive) or when the shared library is loaded (for c-shared). 30 // We expect argc and argv to be passed in the usual C ABI registers 31 // DI and SI. 32 TEXT _rt0_amd64_lib(SB),NOSPLIT,$0 33 // Transition from C ABI to Go ABI. 34 PUSH_REGS_HOST_TO_ABI0() 35 36 MOVQ DI, _rt0_amd64_lib_argc<>(SB) 37 MOVQ SI, _rt0_amd64_lib_argv<>(SB) 38 39 // Synchronous initialization. 40 CALL runtime·libpreinit(SB) 41 42 // Create a new thread to finish Go runtime initialization. 43 MOVQ _cgo_sys_thread_create(SB), AX 44 TESTQ AX, AX 45 JZ nocgo 46 47 // We're calling back to C. 48 // Align stack per ELF ABI requirements. 49 MOVQ SP, BX // Callee-save in C ABI 50 ANDQ $~15, SP 51 MOVQ $_rt0_amd64_lib_go(SB), DI 52 MOVQ $0, SI 53 CALL AX 54 MOVQ BX, SP 55 JMP restore 56 57 nocgo: 58 ADJSP $16 59 MOVQ $0x800000, 0(SP) // stacksize 60 MOVQ $_rt0_amd64_lib_go(SB), AX 61 MOVQ AX, 8(SP) // fn 62 CALL runtime·newosproc0(SB) 63 ADJSP $-16 64 65 restore: 66 POP_REGS_HOST_TO_ABI0() 67 RET 68 69 // _rt0_amd64_lib_go initializes the Go runtime. 70 // This is started in a separate thread by _rt0_amd64_lib. 71 TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 72 MOVQ _rt0_amd64_lib_argc<>(SB), DI 73 MOVQ _rt0_amd64_lib_argv<>(SB), SI 74 JMP runtime·rt0_go(SB) 75 76 DATA _rt0_amd64_lib_argc<>(SB)/8, $0 77 GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 78 DATA _rt0_amd64_lib_argv<>(SB)/8, $0 79 GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 80 81 #ifdef GOAMD64_v2 82 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n" 83 #endif 84 85 #ifdef GOAMD64_v3 86 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n" 87 #endif 88 89 #ifdef GOAMD64_v4 90 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n" 91 #endif 92 93 GLOBL bad_cpu_msg<>(SB), RODATA, $84 94 95 // Define a list of AMD64 microarchitecture level features 96 // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels 97 98 // SSE3 SSSE3 CMPXCHNG16 SSE4.1 SSE4.2 POPCNT 99 #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13 | 1 << 19 | 1 << 20 | 1 << 23) 100 // LAHF/SAHF 101 #define V2_EXT_FEATURES_CX (1 << 0) 102 // FMA MOVBE OSXSAVE AVX F16C 103 #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29) 104 // ABM (FOR LZNCT) 105 #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5) 106 // BMI1 AVX2 BMI2 107 #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8) 108 // XMM YMM 109 #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2) 110 111 #define V4_FEATURES_CX V3_FEATURES_CX 112 113 #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX 114 // AVX512F AVX512DQ AVX512CD AVX512BW AVX512VL 115 #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31) 116 // OPMASK ZMM 117 #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7)) 118 119 #ifdef GOAMD64_v2 120 #define NEED_MAX_CPUID 0x80000001 121 #define NEED_FEATURES_CX V2_FEATURES_CX 122 #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX 123 #endif 124 125 #ifdef GOAMD64_v3 126 #define NEED_MAX_CPUID 0x80000001 127 #define NEED_FEATURES_CX V3_FEATURES_CX 128 #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX 129 #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX 130 #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX 131 #endif 132 133 #ifdef GOAMD64_v4 134 #define NEED_MAX_CPUID 0x80000001 135 #define NEED_FEATURES_CX V4_FEATURES_CX 136 #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX 137 #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX 138 139 // Darwin requires a different approach to check AVX512 support, see CL 285572. 140 #ifdef GOOS_darwin 141 #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX 142 // These values are from: 143 // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h 144 #define commpage64_base_address 0x00007fffffe00000 145 #define commpage64_cpu_capabilities64 (commpage64_base_address+0x010) 146 #define commpage64_version (commpage64_base_address+0x01E) 147 #define hasAVX512F 0x0000004000000000 148 #define hasAVX512CD 0x0000008000000000 149 #define hasAVX512DQ 0x0000010000000000 150 #define hasAVX512BW 0x0000020000000000 151 #define hasAVX512VL 0x0000100000000000 152 #define NEED_DARWIN_SUPPORT (hasAVX512F | hasAVX512DQ | hasAVX512CD | hasAVX512BW | hasAVX512VL) 153 #else 154 #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX 155 #endif 156 157 #endif 158 159 TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 160 // copy arguments forward on an even stack 161 MOVQ DI, AX // argc 162 MOVQ SI, BX // argv 163 SUBQ $(5*8), SP // 3args 2auto 164 ANDQ $~15, SP 165 MOVQ AX, 24(SP) 166 MOVQ BX, 32(SP) 167 168 // create istack out of the given (operating system) stack. 169 // _cgo_init may update stackguard. 170 MOVQ $runtime·g0(SB), DI 171 LEAQ (-64*1024+104)(SP), BX 172 MOVQ BX, g_stackguard0(DI) 173 MOVQ BX, g_stackguard1(DI) 174 MOVQ BX, (g_stack+stack_lo)(DI) 175 MOVQ SP, (g_stack+stack_hi)(DI) 176 177 // find out information about the processor we're on 178 MOVL $0, AX 179 CPUID 180 CMPL AX, $0 181 JE nocpuinfo 182 183 CMPL BX, $0x756E6547 // "Genu" 184 JNE notintel 185 CMPL DX, $0x49656E69 // "ineI" 186 JNE notintel 187 CMPL CX, $0x6C65746E // "ntel" 188 JNE notintel 189 MOVB $1, runtime·isIntel(SB) 190 191 notintel: 192 // Load EAX=1 cpuid flags 193 MOVL $1, AX 194 CPUID 195 MOVL AX, runtime·processorVersionInfo(SB) 196 197 nocpuinfo: 198 // if there is an _cgo_init, call it. 199 MOVQ _cgo_init(SB), AX 200 TESTQ AX, AX 201 JZ needtls 202 // arg 1: g0, already in DI 203 MOVQ $setg_gcc<>(SB), SI // arg 2: setg_gcc 204 #ifdef GOOS_android 205 MOVQ $runtime·tls_g(SB), DX // arg 3: &tls_g 206 // arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF). 207 // Compensate for tls_g (+16). 208 MOVQ -16(TLS), CX 209 #else 210 MOVQ $0, DX // arg 3, 4: not used when using platform's TLS 211 MOVQ $0, CX 212 #endif 213 #ifdef GOOS_windows 214 // Adjust for the Win64 calling convention. 215 MOVQ CX, R9 // arg 4 216 MOVQ DX, R8 // arg 3 217 MOVQ SI, DX // arg 2 218 MOVQ DI, CX // arg 1 219 #endif 220 CALL AX 221 222 // update stackguard after _cgo_init 223 MOVQ $runtime·g0(SB), CX 224 MOVQ (g_stack+stack_lo)(CX), AX 225 ADDQ $const__StackGuard, AX 226 MOVQ AX, g_stackguard0(CX) 227 MOVQ AX, g_stackguard1(CX) 228 229 #ifndef GOOS_windows 230 JMP ok 231 #endif 232 needtls: 233 #ifdef GOOS_plan9 234 // skip TLS setup on Plan 9 235 JMP ok 236 #endif 237 #ifdef GOOS_solaris 238 // skip TLS setup on Solaris 239 JMP ok 240 #endif 241 #ifdef GOOS_illumos 242 // skip TLS setup on illumos 243 JMP ok 244 #endif 245 #ifdef GOOS_darwin 246 // skip TLS setup on Darwin 247 JMP ok 248 #endif 249 #ifdef GOOS_openbsd 250 // skip TLS setup on OpenBSD 251 JMP ok 252 #endif 253 254 LEAQ runtime·m0+m_tls(SB), DI 255 CALL runtime·settls(SB) 256 257 // store through it, to make sure it works 258 get_tls(BX) 259 MOVQ $0x123, g(BX) 260 MOVQ runtime·m0+m_tls(SB), AX 261 CMPQ AX, $0x123 262 JEQ 2(PC) 263 CALL runtime·abort(SB) 264 ok: 265 // set the per-goroutine and per-mach "registers" 266 get_tls(BX) 267 LEAQ runtime·g0(SB), CX 268 MOVQ CX, g(BX) 269 LEAQ runtime·m0(SB), AX 270 271 // save m->g0 = g0 272 MOVQ CX, m_g0(AX) 273 // save m0 to g0->m 274 MOVQ AX, g_m(CX) 275 276 CLD // convention is D is always left cleared 277 278 // Check GOAMD64 reqirements 279 // We need to do this after setting up TLS, so that 280 // we can report an error if there is a failure. See issue 49586. 281 #ifdef NEED_FEATURES_CX 282 MOVL $0, AX 283 CPUID 284 CMPL AX, $0 285 JE bad_cpu 286 MOVL $1, AX 287 CPUID 288 ANDL $NEED_FEATURES_CX, CX 289 CMPL CX, $NEED_FEATURES_CX 290 JNE bad_cpu 291 #endif 292 293 #ifdef NEED_MAX_CPUID 294 MOVL $0x80000000, AX 295 CPUID 296 CMPL AX, $NEED_MAX_CPUID 297 JL bad_cpu 298 #endif 299 300 #ifdef NEED_EXT_FEATURES_BX 301 MOVL $7, AX 302 MOVL $0, CX 303 CPUID 304 ANDL $NEED_EXT_FEATURES_BX, BX 305 CMPL BX, $NEED_EXT_FEATURES_BX 306 JNE bad_cpu 307 #endif 308 309 #ifdef NEED_EXT_FEATURES_CX 310 MOVL $0x80000001, AX 311 CPUID 312 ANDL $NEED_EXT_FEATURES_CX, CX 313 CMPL CX, $NEED_EXT_FEATURES_CX 314 JNE bad_cpu 315 #endif 316 317 #ifdef NEED_OS_SUPPORT_AX 318 XORL CX, CX 319 XGETBV 320 ANDL $NEED_OS_SUPPORT_AX, AX 321 CMPL AX, $NEED_OS_SUPPORT_AX 322 JNE bad_cpu 323 #endif 324 325 #ifdef NEED_DARWIN_SUPPORT 326 MOVQ $commpage64_version, BX 327 CMPW (BX), $13 // cpu_capabilities64 undefined in versions < 13 328 JL bad_cpu 329 MOVQ $commpage64_cpu_capabilities64, BX 330 MOVQ (BX), BX 331 MOVQ $NEED_DARWIN_SUPPORT, CX 332 ANDQ CX, BX 333 CMPQ BX, CX 334 JNE bad_cpu 335 #endif 336 337 CALL runtime·check(SB) 338 339 MOVL 24(SP), AX // copy argc 340 MOVL AX, 0(SP) 341 MOVQ 32(SP), AX // copy argv 342 MOVQ AX, 8(SP) 343 CALL runtime·args(SB) 344 CALL runtime·osinit(SB) 345 CALL runtime·schedinit(SB) 346 347 // create a new goroutine to start program 348 MOVQ $runtime·mainPC(SB), AX // entry 349 PUSHQ AX 350 CALL runtime·newproc(SB) 351 POPQ AX 352 353 // start this M 354 CALL runtime·mstart(SB) 355 356 CALL runtime·abort(SB) // mstart should never return 357 RET 358 359 bad_cpu: // show that the program requires a certain microarchitecture level. 360 MOVQ $2, 0(SP) 361 MOVQ $bad_cpu_msg<>(SB), AX 362 MOVQ AX, 8(SP) 363 MOVQ $84, 16(SP) 364 CALL runtime·write(SB) 365 MOVQ $1, 0(SP) 366 CALL runtime·exit(SB) 367 CALL runtime·abort(SB) 368 RET 369 370 // Prevent dead-code elimination of debugCallV2, which is 371 // intended to be called by debuggers. 372 MOVQ $runtime·debugCallV2<ABIInternal>(SB), AX 373 RET 374 375 // mainPC is a function value for runtime.main, to be passed to newproc. 376 // The reference to runtime.main is made via ABIInternal, since the 377 // actual function (not the ABI0 wrapper) is needed by newproc. 378 DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB) 379 GLOBL runtime·mainPC(SB),RODATA,$8 380 381 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 382 BYTE $0xcc 383 RET 384 385 TEXT runtime·asminit(SB),NOSPLIT,$0-0 386 // No per-thread init. 387 RET 388 389 TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 390 CALL runtime·mstart0(SB) 391 RET // not reached 392 393 /* 394 * go-routine 395 */ 396 397 // func gogo(buf *gobuf) 398 // restore state from Gobuf; longjmp 399 TEXT runtime·gogo(SB), NOSPLIT, $0-8 400 MOVQ buf+0(FP), BX // gobuf 401 MOVQ gobuf_g(BX), DX 402 MOVQ 0(DX), CX // make sure g != nil 403 JMP gogo<>(SB) 404 405 TEXT gogo<>(SB), NOSPLIT, $0 406 get_tls(CX) 407 MOVQ DX, g(CX) 408 MOVQ DX, R14 // set the g register 409 MOVQ gobuf_sp(BX), SP // restore SP 410 MOVQ gobuf_ret(BX), AX 411 MOVQ gobuf_ctxt(BX), DX 412 MOVQ gobuf_bp(BX), BP 413 MOVQ $0, gobuf_sp(BX) // clear to help garbage collector 414 MOVQ $0, gobuf_ret(BX) 415 MOVQ $0, gobuf_ctxt(BX) 416 MOVQ $0, gobuf_bp(BX) 417 MOVQ gobuf_pc(BX), BX 418 JMP BX 419 420 // func mcall(fn func(*g)) 421 // Switch to m->g0's stack, call fn(g). 422 // Fn must never return. It should gogo(&g->sched) 423 // to keep running g. 424 TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8 425 MOVQ AX, DX // DX = fn 426 427 // save state in g->sched 428 MOVQ 0(SP), BX // caller's PC 429 MOVQ BX, (g_sched+gobuf_pc)(R14) 430 LEAQ fn+0(FP), BX // caller's SP 431 MOVQ BX, (g_sched+gobuf_sp)(R14) 432 MOVQ BP, (g_sched+gobuf_bp)(R14) 433 434 // switch to m->g0 & its stack, call fn 435 MOVQ g_m(R14), BX 436 MOVQ m_g0(BX), SI // SI = g.m.g0 437 CMPQ SI, R14 // if g == m->g0 call badmcall 438 JNE goodm 439 JMP runtime·badmcall(SB) 440 goodm: 441 MOVQ R14, AX // AX (and arg 0) = g 442 MOVQ SI, R14 // g = g.m.g0 443 get_tls(CX) // Set G in TLS 444 MOVQ R14, g(CX) 445 MOVQ (g_sched+gobuf_sp)(R14), SP // sp = g0.sched.sp 446 PUSHQ AX // open up space for fn's arg spill slot 447 MOVQ 0(DX), R12 448 CALL R12 // fn(g) 449 POPQ AX 450 JMP runtime·badmcall2(SB) 451 RET 452 453 // systemstack_switch is a dummy routine that systemstack leaves at the bottom 454 // of the G stack. We need to distinguish the routine that 455 // lives at the bottom of the G stack from the one that lives 456 // at the top of the system stack because the one at the top of 457 // the system stack terminates the stack walk (see topofstack()). 458 TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 459 RET 460 461 // func systemstack(fn func()) 462 TEXT runtime·systemstack(SB), NOSPLIT, $0-8 463 MOVQ fn+0(FP), DI // DI = fn 464 get_tls(CX) 465 MOVQ g(CX), AX // AX = g 466 MOVQ g_m(AX), BX // BX = m 467 468 CMPQ AX, m_gsignal(BX) 469 JEQ noswitch 470 471 MOVQ m_g0(BX), DX // DX = g0 472 CMPQ AX, DX 473 JEQ noswitch 474 475 CMPQ AX, m_curg(BX) 476 JNE bad 477 478 // switch stacks 479 // save our state in g->sched. Pretend to 480 // be systemstack_switch if the G stack is scanned. 481 CALL gosave_systemstack_switch<>(SB) 482 483 // switch to g0 484 MOVQ DX, g(CX) 485 MOVQ DX, R14 // set the g register 486 MOVQ (g_sched+gobuf_sp)(DX), BX 487 MOVQ BX, SP 488 489 // call target function 490 MOVQ DI, DX 491 MOVQ 0(DI), DI 492 CALL DI 493 494 // switch back to g 495 get_tls(CX) 496 MOVQ g(CX), AX 497 MOVQ g_m(AX), BX 498 MOVQ m_curg(BX), AX 499 MOVQ AX, g(CX) 500 MOVQ (g_sched+gobuf_sp)(AX), SP 501 MOVQ $0, (g_sched+gobuf_sp)(AX) 502 RET 503 504 noswitch: 505 // already on m stack; tail call the function 506 // Using a tail call here cleans up tracebacks since we won't stop 507 // at an intermediate systemstack. 508 MOVQ DI, DX 509 MOVQ 0(DI), DI 510 JMP DI 511 512 bad: 513 // Bad: g is not gsignal, not g0, not curg. What is it? 514 MOVQ $runtime·badsystemstack(SB), AX 515 CALL AX 516 INT $3 517 518 519 /* 520 * support for morestack 521 */ 522 523 // Called during function prolog when more stack is needed. 524 // 525 // The traceback routines see morestack on a g0 as being 526 // the top of a stack (for example, morestack calling newstack 527 // calling the scheduler calling newm calling gc), so we must 528 // record an argument size. For that purpose, it has no arguments. 529 TEXT runtime·morestack(SB),NOSPLIT,$0-0 530 // Cannot grow scheduler stack (m->g0). 531 get_tls(CX) 532 MOVQ g(CX), BX 533 MOVQ g_m(BX), BX 534 MOVQ m_g0(BX), SI 535 CMPQ g(CX), SI 536 JNE 3(PC) 537 CALL runtime·badmorestackg0(SB) 538 CALL runtime·abort(SB) 539 540 // Cannot grow signal stack (m->gsignal). 541 MOVQ m_gsignal(BX), SI 542 CMPQ g(CX), SI 543 JNE 3(PC) 544 CALL runtime·badmorestackgsignal(SB) 545 CALL runtime·abort(SB) 546 547 // Called from f. 548 // Set m->morebuf to f's caller. 549 NOP SP // tell vet SP changed - stop checking offsets 550 MOVQ 8(SP), AX // f's caller's PC 551 MOVQ AX, (m_morebuf+gobuf_pc)(BX) 552 LEAQ 16(SP), AX // f's caller's SP 553 MOVQ AX, (m_morebuf+gobuf_sp)(BX) 554 get_tls(CX) 555 MOVQ g(CX), SI 556 MOVQ SI, (m_morebuf+gobuf_g)(BX) 557 558 // Set g->sched to context in f. 559 MOVQ 0(SP), AX // f's PC 560 MOVQ AX, (g_sched+gobuf_pc)(SI) 561 LEAQ 8(SP), AX // f's SP 562 MOVQ AX, (g_sched+gobuf_sp)(SI) 563 MOVQ BP, (g_sched+gobuf_bp)(SI) 564 MOVQ DX, (g_sched+gobuf_ctxt)(SI) 565 566 // Call newstack on m->g0's stack. 567 MOVQ m_g0(BX), BX 568 MOVQ BX, g(CX) 569 MOVQ (g_sched+gobuf_sp)(BX), SP 570 CALL runtime·newstack(SB) 571 CALL runtime·abort(SB) // crash if newstack returns 572 RET 573 574 // morestack but not preserving ctxt. 575 TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 576 MOVL $0, DX 577 JMP runtime·morestack(SB) 578 579 // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12. 580 TEXT ·spillArgs(SB),NOSPLIT,$0-0 581 MOVQ AX, 0(R12) 582 MOVQ BX, 8(R12) 583 MOVQ CX, 16(R12) 584 MOVQ DI, 24(R12) 585 MOVQ SI, 32(R12) 586 MOVQ R8, 40(R12) 587 MOVQ R9, 48(R12) 588 MOVQ R10, 56(R12) 589 MOVQ R11, 64(R12) 590 MOVQ X0, 72(R12) 591 MOVQ X1, 80(R12) 592 MOVQ X2, 88(R12) 593 MOVQ X3, 96(R12) 594 MOVQ X4, 104(R12) 595 MOVQ X5, 112(R12) 596 MOVQ X6, 120(R12) 597 MOVQ X7, 128(R12) 598 MOVQ X8, 136(R12) 599 MOVQ X9, 144(R12) 600 MOVQ X10, 152(R12) 601 MOVQ X11, 160(R12) 602 MOVQ X12, 168(R12) 603 MOVQ X13, 176(R12) 604 MOVQ X14, 184(R12) 605 RET 606 607 // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12. 608 TEXT ·unspillArgs(SB),NOSPLIT,$0-0 609 MOVQ 0(R12), AX 610 MOVQ 8(R12), BX 611 MOVQ 16(R12), CX 612 MOVQ 24(R12), DI 613 MOVQ 32(R12), SI 614 MOVQ 40(R12), R8 615 MOVQ 48(R12), R9 616 MOVQ 56(R12), R10 617 MOVQ 64(R12), R11 618 MOVQ 72(R12), X0 619 MOVQ 80(R12), X1 620 MOVQ 88(R12), X2 621 MOVQ 96(R12), X3 622 MOVQ 104(R12), X4 623 MOVQ 112(R12), X5 624 MOVQ 120(R12), X6 625 MOVQ 128(R12), X7 626 MOVQ 136(R12), X8 627 MOVQ 144(R12), X9 628 MOVQ 152(R12), X10 629 MOVQ 160(R12), X11 630 MOVQ 168(R12), X12 631 MOVQ 176(R12), X13 632 MOVQ 184(R12), X14 633 RET 634 635 // reflectcall: call a function with the given argument list 636 // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). 637 // we don't have variable-sized frames, so we use a small number 638 // of constant-sized-frame functions to encode a few bits of size in the pc. 639 // Caution: ugly multiline assembly macros in your future! 640 641 #define DISPATCH(NAME,MAXSIZE) \ 642 CMPQ CX, $MAXSIZE; \ 643 JA 3(PC); \ 644 MOVQ $NAME(SB), AX; \ 645 JMP AX 646 // Note: can't just "JMP NAME(SB)" - bad inlining results. 647 648 TEXT ·reflectcall(SB), NOSPLIT, $0-48 649 MOVLQZX frameSize+32(FP), CX 650 DISPATCH(runtime·call16, 16) 651 DISPATCH(runtime·call32, 32) 652 DISPATCH(runtime·call64, 64) 653 DISPATCH(runtime·call128, 128) 654 DISPATCH(runtime·call256, 256) 655 DISPATCH(runtime·call512, 512) 656 DISPATCH(runtime·call1024, 1024) 657 DISPATCH(runtime·call2048, 2048) 658 DISPATCH(runtime·call4096, 4096) 659 DISPATCH(runtime·call8192, 8192) 660 DISPATCH(runtime·call16384, 16384) 661 DISPATCH(runtime·call32768, 32768) 662 DISPATCH(runtime·call65536, 65536) 663 DISPATCH(runtime·call131072, 131072) 664 DISPATCH(runtime·call262144, 262144) 665 DISPATCH(runtime·call524288, 524288) 666 DISPATCH(runtime·call1048576, 1048576) 667 DISPATCH(runtime·call2097152, 2097152) 668 DISPATCH(runtime·call4194304, 4194304) 669 DISPATCH(runtime·call8388608, 8388608) 670 DISPATCH(runtime·call16777216, 16777216) 671 DISPATCH(runtime·call33554432, 33554432) 672 DISPATCH(runtime·call67108864, 67108864) 673 DISPATCH(runtime·call134217728, 134217728) 674 DISPATCH(runtime·call268435456, 268435456) 675 DISPATCH(runtime·call536870912, 536870912) 676 DISPATCH(runtime·call1073741824, 1073741824) 677 MOVQ $runtime·badreflectcall(SB), AX 678 JMP AX 679 680 #define CALLFN(NAME,MAXSIZE) \ 681 TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ 682 NO_LOCAL_POINTERS; \ 683 /* copy arguments to stack */ \ 684 MOVQ stackArgs+16(FP), SI; \ 685 MOVLQZX stackArgsSize+24(FP), CX; \ 686 MOVQ SP, DI; \ 687 REP;MOVSB; \ 688 /* set up argument registers */ \ 689 MOVQ regArgs+40(FP), R12; \ 690 CALL ·unspillArgs(SB); \ 691 /* call function */ \ 692 MOVQ f+8(FP), DX; \ 693 PCDATA $PCDATA_StackMapIndex, $0; \ 694 MOVQ (DX), R12; \ 695 CALL R12; \ 696 /* copy register return values back */ \ 697 MOVQ regArgs+40(FP), R12; \ 698 CALL ·spillArgs(SB); \ 699 MOVLQZX stackArgsSize+24(FP), CX; \ 700 MOVLQZX stackRetOffset+28(FP), BX; \ 701 MOVQ stackArgs+16(FP), DI; \ 702 MOVQ stackArgsType+0(FP), DX; \ 703 MOVQ SP, SI; \ 704 ADDQ BX, DI; \ 705 ADDQ BX, SI; \ 706 SUBQ BX, CX; \ 707 CALL callRet<>(SB); \ 708 RET 709 710 // callRet copies return values back at the end of call*. This is a 711 // separate function so it can allocate stack space for the arguments 712 // to reflectcallmove. It does not follow the Go ABI; it expects its 713 // arguments in registers. 714 TEXT callRet<>(SB), NOSPLIT, $40-0 715 NO_LOCAL_POINTERS 716 MOVQ DX, 0(SP) 717 MOVQ DI, 8(SP) 718 MOVQ SI, 16(SP) 719 MOVQ CX, 24(SP) 720 MOVQ R12, 32(SP) 721 CALL runtime·reflectcallmove(SB) 722 RET 723 724 CALLFN(·call16, 16) 725 CALLFN(·call32, 32) 726 CALLFN(·call64, 64) 727 CALLFN(·call128, 128) 728 CALLFN(·call256, 256) 729 CALLFN(·call512, 512) 730 CALLFN(·call1024, 1024) 731 CALLFN(·call2048, 2048) 732 CALLFN(·call4096, 4096) 733 CALLFN(·call8192, 8192) 734 CALLFN(·call16384, 16384) 735 CALLFN(·call32768, 32768) 736 CALLFN(·call65536, 65536) 737 CALLFN(·call131072, 131072) 738 CALLFN(·call262144, 262144) 739 CALLFN(·call524288, 524288) 740 CALLFN(·call1048576, 1048576) 741 CALLFN(·call2097152, 2097152) 742 CALLFN(·call4194304, 4194304) 743 CALLFN(·call8388608, 8388608) 744 CALLFN(·call16777216, 16777216) 745 CALLFN(·call33554432, 33554432) 746 CALLFN(·call67108864, 67108864) 747 CALLFN(·call134217728, 134217728) 748 CALLFN(·call268435456, 268435456) 749 CALLFN(·call536870912, 536870912) 750 CALLFN(·call1073741824, 1073741824) 751 752 TEXT runtime·procyield(SB),NOSPLIT,$0-0 753 MOVL cycles+0(FP), AX 754 again: 755 PAUSE 756 SUBL $1, AX 757 JNZ again 758 RET 759 760 761 TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 762 // Stores are already ordered on x86, so this is just a 763 // compile barrier. 764 RET 765 766 // Save state of caller into g->sched, 767 // but using fake PC from systemstack_switch. 768 // Must only be called from functions with no locals ($0) 769 // or else unwinding from systemstack_switch is incorrect. 770 // Smashes R9. 771 TEXT gosave_systemstack_switch<>(SB),NOSPLIT,$0 772 MOVQ $runtime·systemstack_switch(SB), R9 773 MOVQ R9, (g_sched+gobuf_pc)(R14) 774 LEAQ 8(SP), R9 775 MOVQ R9, (g_sched+gobuf_sp)(R14) 776 MOVQ $0, (g_sched+gobuf_ret)(R14) 777 MOVQ BP, (g_sched+gobuf_bp)(R14) 778 // Assert ctxt is zero. See func save. 779 MOVQ (g_sched+gobuf_ctxt)(R14), R9 780 TESTQ R9, R9 781 JZ 2(PC) 782 CALL runtime·abort(SB) 783 RET 784 785 // func asmcgocall_no_g(fn, arg unsafe.Pointer) 786 // Call fn(arg) aligned appropriately for the gcc ABI. 787 // Called on a system stack, and there may be no g yet (during needm). 788 TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16 789 MOVQ fn+0(FP), AX 790 MOVQ arg+8(FP), BX 791 MOVQ SP, DX 792 SUBQ $32, SP 793 ANDQ $~15, SP // alignment 794 MOVQ DX, 8(SP) 795 MOVQ BX, DI // DI = first argument in AMD64 ABI 796 MOVQ BX, CX // CX = first argument in Win64 797 CALL AX 798 MOVQ 8(SP), DX 799 MOVQ DX, SP 800 RET 801 802 // func asmcgocall(fn, arg unsafe.Pointer) int32 803 // Call fn(arg) on the scheduler stack, 804 // aligned appropriately for the gcc ABI. 805 // See cgocall.go for more details. 806 TEXT ·asmcgocall(SB),NOSPLIT,$0-20 807 MOVQ fn+0(FP), AX 808 MOVQ arg+8(FP), BX 809 810 MOVQ SP, DX 811 812 // Figure out if we need to switch to m->g0 stack. 813 // We get called to create new OS threads too, and those 814 // come in on the m->g0 stack already. Or we might already 815 // be on the m->gsignal stack. 816 get_tls(CX) 817 MOVQ g(CX), DI 818 CMPQ DI, $0 819 JEQ nosave 820 MOVQ g_m(DI), R8 821 MOVQ m_gsignal(R8), SI 822 CMPQ DI, SI 823 JEQ nosave 824 MOVQ m_g0(R8), SI 825 CMPQ DI, SI 826 JEQ nosave 827 828 // Switch to system stack. 829 CALL gosave_systemstack_switch<>(SB) 830 MOVQ SI, g(CX) 831 MOVQ (g_sched+gobuf_sp)(SI), SP 832 833 // Now on a scheduling stack (a pthread-created stack). 834 // Make sure we have enough room for 4 stack-backed fast-call 835 // registers as per windows amd64 calling convention. 836 SUBQ $64, SP 837 ANDQ $~15, SP // alignment for gcc ABI 838 MOVQ DI, 48(SP) // save g 839 MOVQ (g_stack+stack_hi)(DI), DI 840 SUBQ DX, DI 841 MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) 842 MOVQ BX, DI // DI = first argument in AMD64 ABI 843 MOVQ BX, CX // CX = first argument in Win64 844 CALL AX 845 846 // Restore registers, g, stack pointer. 847 get_tls(CX) 848 MOVQ 48(SP), DI 849 MOVQ (g_stack+stack_hi)(DI), SI 850 SUBQ 40(SP), SI 851 MOVQ DI, g(CX) 852 MOVQ SI, SP 853 854 MOVL AX, ret+16(FP) 855 RET 856 857 nosave: 858 // Running on a system stack, perhaps even without a g. 859 // Having no g can happen during thread creation or thread teardown 860 // (see needm/dropm on Solaris, for example). 861 // This code is like the above sequence but without saving/restoring g 862 // and without worrying about the stack moving out from under us 863 // (because we're on a system stack, not a goroutine stack). 864 // The above code could be used directly if already on a system stack, 865 // but then the only path through this code would be a rare case on Solaris. 866 // Using this code for all "already on system stack" calls exercises it more, 867 // which should help keep it correct. 868 SUBQ $64, SP 869 ANDQ $~15, SP 870 MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging 871 MOVQ DX, 40(SP) // save original stack pointer 872 MOVQ BX, DI // DI = first argument in AMD64 ABI 873 MOVQ BX, CX // CX = first argument in Win64 874 CALL AX 875 MOVQ 40(SP), SI // restore original stack pointer 876 MOVQ SI, SP 877 MOVL AX, ret+16(FP) 878 RET 879 880 #ifdef GOOS_windows 881 // Dummy TLS that's used on Windows so that we don't crash trying 882 // to restore the G register in needm. needm and its callees are 883 // very careful never to actually use the G, the TLS just can't be 884 // unset since we're in Go code. 885 GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize 886 #endif 887 888 // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) 889 // See cgocall.go for more details. 890 TEXT ·cgocallback(SB),NOSPLIT,$24-24 891 NO_LOCAL_POINTERS 892 893 // If g is nil, Go did not create the current thread. 894 // Call needm to obtain one m for temporary use. 895 // In this case, we're running on the thread stack, so there's 896 // lots of space, but the linker doesn't know. Hide the call from 897 // the linker analysis by using an indirect call through AX. 898 get_tls(CX) 899 #ifdef GOOS_windows 900 MOVL $0, BX 901 CMPQ CX, $0 902 JEQ 2(PC) 903 #endif 904 MOVQ g(CX), BX 905 CMPQ BX, $0 906 JEQ needm 907 MOVQ g_m(BX), BX 908 MOVQ BX, savedm-8(SP) // saved copy of oldm 909 JMP havem 910 needm: 911 #ifdef GOOS_windows 912 // Set up a dummy TLS value. needm is careful not to use it, 913 // but it needs to be there to prevent autogenerated code from 914 // crashing when it loads from it. 915 // We don't need to clear it or anything later because needm 916 // will set up TLS properly. 917 MOVQ $zeroTLS<>(SB), DI 918 CALL runtime·settls(SB) 919 #endif 920 // On some platforms (Windows) we cannot call needm through 921 // an ABI wrapper because there's no TLS set up, and the ABI 922 // wrapper will try to restore the G register (R14) from TLS. 923 // Clear X15 because Go expects it and we're not calling 924 // through a wrapper, but otherwise avoid setting the G 925 // register in the wrapper and call needm directly. It 926 // takes no arguments and doesn't return any values so 927 // there's no need to handle that. Clear R14 so that there's 928 // a bad value in there, in case needm tries to use it. 929 XORPS X15, X15 930 XORQ R14, R14 931 MOVQ $runtime·needm<ABIInternal>(SB), AX 932 CALL AX 933 MOVQ $0, savedm-8(SP) // dropm on return 934 get_tls(CX) 935 MOVQ g(CX), BX 936 MOVQ g_m(BX), BX 937 938 // Set m->sched.sp = SP, so that if a panic happens 939 // during the function we are about to execute, it will 940 // have a valid SP to run on the g0 stack. 941 // The next few lines (after the havem label) 942 // will save this SP onto the stack and then write 943 // the same SP back to m->sched.sp. That seems redundant, 944 // but if an unrecovered panic happens, unwindm will 945 // restore the g->sched.sp from the stack location 946 // and then systemstack will try to use it. If we don't set it here, 947 // that restored SP will be uninitialized (typically 0) and 948 // will not be usable. 949 MOVQ m_g0(BX), SI 950 MOVQ SP, (g_sched+gobuf_sp)(SI) 951 952 havem: 953 // Now there's a valid m, and we're running on its m->g0. 954 // Save current m->g0->sched.sp on stack and then set it to SP. 955 // Save current sp in m->g0->sched.sp in preparation for 956 // switch back to m->curg stack. 957 // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). 958 MOVQ m_g0(BX), SI 959 MOVQ (g_sched+gobuf_sp)(SI), AX 960 MOVQ AX, 0(SP) 961 MOVQ SP, (g_sched+gobuf_sp)(SI) 962 963 // Switch to m->curg stack and call runtime.cgocallbackg. 964 // Because we are taking over the execution of m->curg 965 // but *not* resuming what had been running, we need to 966 // save that information (m->curg->sched) so we can restore it. 967 // We can restore m->curg->sched.sp easily, because calling 968 // runtime.cgocallbackg leaves SP unchanged upon return. 969 // To save m->curg->sched.pc, we push it onto the curg stack and 970 // open a frame the same size as cgocallback's g0 frame. 971 // Once we switch to the curg stack, the pushed PC will appear 972 // to be the return PC of cgocallback, so that the traceback 973 // will seamlessly trace back into the earlier calls. 974 MOVQ m_curg(BX), SI 975 MOVQ SI, g(CX) 976 MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI 977 MOVQ (g_sched+gobuf_pc)(SI), BX 978 MOVQ BX, -8(DI) // "push" return PC on the g stack 979 // Gather our arguments into registers. 980 MOVQ fn+0(FP), BX 981 MOVQ frame+8(FP), CX 982 MOVQ ctxt+16(FP), DX 983 // Compute the size of the frame, including return PC and, if 984 // GOEXPERIMENT=framepointer, the saved base pointer 985 LEAQ fn+0(FP), AX 986 SUBQ SP, AX // AX is our actual frame size 987 SUBQ AX, DI // Allocate the same frame size on the g stack 988 MOVQ DI, SP 989 990 MOVQ BX, 0(SP) 991 MOVQ CX, 8(SP) 992 MOVQ DX, 16(SP) 993 MOVQ $runtime·cgocallbackg(SB), AX 994 CALL AX // indirect call to bypass nosplit check. We're on a different stack now. 995 996 // Compute the size of the frame again. FP and SP have 997 // completely different values here than they did above, 998 // but only their difference matters. 999 LEAQ fn+0(FP), AX 1000 SUBQ SP, AX 1001 1002 // Restore g->sched (== m->curg->sched) from saved values. 1003 get_tls(CX) 1004 MOVQ g(CX), SI 1005 MOVQ SP, DI 1006 ADDQ AX, DI 1007 MOVQ -8(DI), BX 1008 MOVQ BX, (g_sched+gobuf_pc)(SI) 1009 MOVQ DI, (g_sched+gobuf_sp)(SI) 1010 1011 // Switch back to m->g0's stack and restore m->g0->sched.sp. 1012 // (Unlike m->curg, the g0 goroutine never uses sched.pc, 1013 // so we do not have to restore it.) 1014 MOVQ g(CX), BX 1015 MOVQ g_m(BX), BX 1016 MOVQ m_g0(BX), SI 1017 MOVQ SI, g(CX) 1018 MOVQ (g_sched+gobuf_sp)(SI), SP 1019 MOVQ 0(SP), AX 1020 MOVQ AX, (g_sched+gobuf_sp)(SI) 1021 1022 // If the m on entry was nil, we called needm above to borrow an m 1023 // for the duration of the call. Since the call is over, return it with dropm. 1024 MOVQ savedm-8(SP), BX 1025 CMPQ BX, $0 1026 JNE done 1027 MOVQ $runtime·dropm(SB), AX 1028 CALL AX 1029 #ifdef GOOS_windows 1030 // We need to clear the TLS pointer in case the next 1031 // thread that comes into Go tries to reuse that space 1032 // but uses the same M. 1033 XORQ DI, DI 1034 CALL runtime·settls(SB) 1035 #endif 1036 done: 1037 1038 // Done! 1039 RET 1040 1041 // func setg(gg *g) 1042 // set g. for use by needm. 1043 TEXT runtime·setg(SB), NOSPLIT, $0-8 1044 MOVQ gg+0(FP), BX 1045 get_tls(CX) 1046 MOVQ BX, g(CX) 1047 RET 1048 1049 // void setg_gcc(G*); set g called from gcc. 1050 TEXT setg_gcc<>(SB),NOSPLIT,$0 1051 get_tls(AX) 1052 MOVQ DI, g(AX) 1053 MOVQ DI, R14 // set the g register 1054 RET 1055 1056 TEXT runtime·abort(SB),NOSPLIT,$0-0 1057 INT $3 1058 loop: 1059 JMP loop 1060 1061 // check that SP is in range [g->stack.lo, g->stack.hi) 1062 TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 1063 get_tls(CX) 1064 MOVQ g(CX), AX 1065 CMPQ (g_stack+stack_hi)(AX), SP 1066 JHI 2(PC) 1067 CALL runtime·abort(SB) 1068 CMPQ SP, (g_stack+stack_lo)(AX) 1069 JHI 2(PC) 1070 CALL runtime·abort(SB) 1071 RET 1072 1073 // func cputicks() int64 1074 TEXT runtime·cputicks(SB),NOSPLIT,$0-0 1075 CMPB internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1 1076 JNE fences 1077 // Instruction stream serializing RDTSCP is supported. 1078 // RDTSCP is supported by Intel Nehalem (2008) and 1079 // AMD K8 Rev. F (2006) and newer. 1080 RDTSCP 1081 done: 1082 SHLQ $32, DX 1083 ADDQ DX, AX 1084 MOVQ AX, ret+0(FP) 1085 RET 1086 fences: 1087 // MFENCE is instruction stream serializing and flushes the 1088 // store buffers on AMD. The serialization semantics of LFENCE on AMD 1089 // are dependent on MSR C001_1029 and CPU generation. 1090 // LFENCE on Intel does wait for all previous instructions to have executed. 1091 // Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all 1092 // previous instructions executed and all previous loads and stores to globally visible. 1093 // Using MFENCE;LFENCE here aligns the serializing properties without 1094 // runtime detection of CPU manufacturer. 1095 MFENCE 1096 LFENCE 1097 RDTSC 1098 JMP done 1099 1100 // func memhash(p unsafe.Pointer, h, s uintptr) uintptr 1101 // hash function using AES hardware instructions 1102 TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32 1103 // AX = ptr to data 1104 // BX = seed 1105 // CX = size 1106 CMPB runtime·useAeshash(SB), $0 1107 JEQ noaes 1108 JMP aeshashbody<>(SB) 1109 noaes: 1110 JMP runtime·memhashFallback<ABIInternal>(SB) 1111 1112 // func strhash(p unsafe.Pointer, h uintptr) uintptr 1113 TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24 1114 // AX = ptr to string struct 1115 // BX = seed 1116 CMPB runtime·useAeshash(SB), $0 1117 JEQ noaes 1118 MOVQ 8(AX), CX // length of string 1119 MOVQ (AX), AX // string data 1120 JMP aeshashbody<>(SB) 1121 noaes: 1122 JMP runtime·strhashFallback<ABIInternal>(SB) 1123 1124 // AX: data 1125 // BX: hash seed 1126 // CX: length 1127 // At return: AX = return value 1128 TEXT aeshashbody<>(SB),NOSPLIT,$0-0 1129 // Fill an SSE register with our seeds. 1130 MOVQ BX, X0 // 64 bits of per-table hash seed 1131 PINSRW $4, CX, X0 // 16 bits of length 1132 PSHUFHW $0, X0, X0 // repeat length 4 times total 1133 MOVO X0, X1 // save unscrambled seed 1134 PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed 1135 AESENC X0, X0 // scramble seed 1136 1137 CMPQ CX, $16 1138 JB aes0to15 1139 JE aes16 1140 CMPQ CX, $32 1141 JBE aes17to32 1142 CMPQ CX, $64 1143 JBE aes33to64 1144 CMPQ CX, $128 1145 JBE aes65to128 1146 JMP aes129plus 1147 1148 aes0to15: 1149 TESTQ CX, CX 1150 JE aes0 1151 1152 ADDQ $16, AX 1153 TESTW $0xff0, AX 1154 JE endofpage 1155 1156 // 16 bytes loaded at this address won't cross 1157 // a page boundary, so we can load it directly. 1158 MOVOU -16(AX), X1 1159 ADDQ CX, CX 1160 MOVQ $masks<>(SB), AX 1161 PAND (AX)(CX*8), X1 1162 final1: 1163 PXOR X0, X1 // xor data with seed 1164 AESENC X1, X1 // scramble combo 3 times 1165 AESENC X1, X1 1166 AESENC X1, X1 1167 MOVQ X1, AX // return X1 1168 RET 1169 1170 endofpage: 1171 // address ends in 1111xxxx. Might be up against 1172 // a page boundary, so load ending at last byte. 1173 // Then shift bytes down using pshufb. 1174 MOVOU -32(AX)(CX*1), X1 1175 ADDQ CX, CX 1176 MOVQ $shifts<>(SB), AX 1177 PSHUFB (AX)(CX*8), X1 1178 JMP final1 1179 1180 aes0: 1181 // Return scrambled input seed 1182 AESENC X0, X0 1183 MOVQ X0, AX // return X0 1184 RET 1185 1186 aes16: 1187 MOVOU (AX), X1 1188 JMP final1 1189 1190 aes17to32: 1191 // make second starting seed 1192 PXOR runtime·aeskeysched+16(SB), X1 1193 AESENC X1, X1 1194 1195 // load data to be hashed 1196 MOVOU (AX), X2 1197 MOVOU -16(AX)(CX*1), X3 1198 1199 // xor with seed 1200 PXOR X0, X2 1201 PXOR X1, X3 1202 1203 // scramble 3 times 1204 AESENC X2, X2 1205 AESENC X3, X3 1206 AESENC X2, X2 1207 AESENC X3, X3 1208 AESENC X2, X2 1209 AESENC X3, X3 1210 1211 // combine results 1212 PXOR X3, X2 1213 MOVQ X2, AX // return X2 1214 RET 1215 1216 aes33to64: 1217 // make 3 more starting seeds 1218 MOVO X1, X2 1219 MOVO X1, X3 1220 PXOR runtime·aeskeysched+16(SB), X1 1221 PXOR runtime·aeskeysched+32(SB), X2 1222 PXOR runtime·aeskeysched+48(SB), X3 1223 AESENC X1, X1 1224 AESENC X2, X2 1225 AESENC X3, X3 1226 1227 MOVOU (AX), X4 1228 MOVOU 16(AX), X5 1229 MOVOU -32(AX)(CX*1), X6 1230 MOVOU -16(AX)(CX*1), X7 1231 1232 PXOR X0, X4 1233 PXOR X1, X5 1234 PXOR X2, X6 1235 PXOR X3, X7 1236 1237 AESENC X4, X4 1238 AESENC X5, X5 1239 AESENC X6, X6 1240 AESENC X7, X7 1241 1242 AESENC X4, X4 1243 AESENC X5, X5 1244 AESENC X6, X6 1245 AESENC X7, X7 1246 1247 AESENC X4, X4 1248 AESENC X5, X5 1249 AESENC X6, X6 1250 AESENC X7, X7 1251 1252 PXOR X6, X4 1253 PXOR X7, X5 1254 PXOR X5, X4 1255 MOVQ X4, AX // return X4 1256 RET 1257 1258 aes65to128: 1259 // make 7 more starting seeds 1260 MOVO X1, X2 1261 MOVO X1, X3 1262 MOVO X1, X4 1263 MOVO X1, X5 1264 MOVO X1, X6 1265 MOVO X1, X7 1266 PXOR runtime·aeskeysched+16(SB), X1 1267 PXOR runtime·aeskeysched+32(SB), X2 1268 PXOR runtime·aeskeysched+48(SB), X3 1269 PXOR runtime·aeskeysched+64(SB), X4 1270 PXOR runtime·aeskeysched+80(SB), X5 1271 PXOR runtime·aeskeysched+96(SB), X6 1272 PXOR runtime·aeskeysched+112(SB), X7 1273 AESENC X1, X1 1274 AESENC X2, X2 1275 AESENC X3, X3 1276 AESENC X4, X4 1277 AESENC X5, X5 1278 AESENC X6, X6 1279 AESENC X7, X7 1280 1281 // load data 1282 MOVOU (AX), X8 1283 MOVOU 16(AX), X9 1284 MOVOU 32(AX), X10 1285 MOVOU 48(AX), X11 1286 MOVOU -64(AX)(CX*1), X12 1287 MOVOU -48(AX)(CX*1), X13 1288 MOVOU -32(AX)(CX*1), X14 1289 MOVOU -16(AX)(CX*1), X15 1290 1291 // xor with seed 1292 PXOR X0, X8 1293 PXOR X1, X9 1294 PXOR X2, X10 1295 PXOR X3, X11 1296 PXOR X4, X12 1297 PXOR X5, X13 1298 PXOR X6, X14 1299 PXOR X7, X15 1300 1301 // scramble 3 times 1302 AESENC X8, X8 1303 AESENC X9, X9 1304 AESENC X10, X10 1305 AESENC X11, X11 1306 AESENC X12, X12 1307 AESENC X13, X13 1308 AESENC X14, X14 1309 AESENC X15, X15 1310 1311 AESENC X8, X8 1312 AESENC X9, X9 1313 AESENC X10, X10 1314 AESENC X11, X11 1315 AESENC X12, X12 1316 AESENC X13, X13 1317 AESENC X14, X14 1318 AESENC X15, X15 1319 1320 AESENC X8, X8 1321 AESENC X9, X9 1322 AESENC X10, X10 1323 AESENC X11, X11 1324 AESENC X12, X12 1325 AESENC X13, X13 1326 AESENC X14, X14 1327 AESENC X15, X15 1328 1329 // combine results 1330 PXOR X12, X8 1331 PXOR X13, X9 1332 PXOR X14, X10 1333 PXOR X15, X11 1334 PXOR X10, X8 1335 PXOR X11, X9 1336 PXOR X9, X8 1337 // X15 must be zero on return 1338 PXOR X15, X15 1339 MOVQ X8, AX // return X8 1340 RET 1341 1342 aes129plus: 1343 // make 7 more starting seeds 1344 MOVO X1, X2 1345 MOVO X1, X3 1346 MOVO X1, X4 1347 MOVO X1, X5 1348 MOVO X1, X6 1349 MOVO X1, X7 1350 PXOR runtime·aeskeysched+16(SB), X1 1351 PXOR runtime·aeskeysched+32(SB), X2 1352 PXOR runtime·aeskeysched+48(SB), X3 1353 PXOR runtime·aeskeysched+64(SB), X4 1354 PXOR runtime·aeskeysched+80(SB), X5 1355 PXOR runtime·aeskeysched+96(SB), X6 1356 PXOR runtime·aeskeysched+112(SB), X7 1357 AESENC X1, X1 1358 AESENC X2, X2 1359 AESENC X3, X3 1360 AESENC X4, X4 1361 AESENC X5, X5 1362 AESENC X6, X6 1363 AESENC X7, X7 1364 1365 // start with last (possibly overlapping) block 1366 MOVOU -128(AX)(CX*1), X8 1367 MOVOU -112(AX)(CX*1), X9 1368 MOVOU -96(AX)(CX*1), X10 1369 MOVOU -80(AX)(CX*1), X11 1370 MOVOU -64(AX)(CX*1), X12 1371 MOVOU -48(AX)(CX*1), X13 1372 MOVOU -32(AX)(CX*1), X14 1373 MOVOU -16(AX)(CX*1), X15 1374 1375 // xor in seed 1376 PXOR X0, X8 1377 PXOR X1, X9 1378 PXOR X2, X10 1379 PXOR X3, X11 1380 PXOR X4, X12 1381 PXOR X5, X13 1382 PXOR X6, X14 1383 PXOR X7, X15 1384 1385 // compute number of remaining 128-byte blocks 1386 DECQ CX 1387 SHRQ $7, CX 1388 1389 aesloop: 1390 // scramble state 1391 AESENC X8, X8 1392 AESENC X9, X9 1393 AESENC X10, X10 1394 AESENC X11, X11 1395 AESENC X12, X12 1396 AESENC X13, X13 1397 AESENC X14, X14 1398 AESENC X15, X15 1399 1400 // scramble state, xor in a block 1401 MOVOU (AX), X0 1402 MOVOU 16(AX), X1 1403 MOVOU 32(AX), X2 1404 MOVOU 48(AX), X3 1405 AESENC X0, X8 1406 AESENC X1, X9 1407 AESENC X2, X10 1408 AESENC X3, X11 1409 MOVOU 64(AX), X4 1410 MOVOU 80(AX), X5 1411 MOVOU 96(AX), X6 1412 MOVOU 112(AX), X7 1413 AESENC X4, X12 1414 AESENC X5, X13 1415 AESENC X6, X14 1416 AESENC X7, X15 1417 1418 ADDQ $128, AX 1419 DECQ CX 1420 JNE aesloop 1421 1422 // 3 more scrambles to finish 1423 AESENC X8, X8 1424 AESENC X9, X9 1425 AESENC X10, X10 1426 AESENC X11, X11 1427 AESENC X12, X12 1428 AESENC X13, X13 1429 AESENC X14, X14 1430 AESENC X15, X15 1431 AESENC X8, X8 1432 AESENC X9, X9 1433 AESENC X10, X10 1434 AESENC X11, X11 1435 AESENC X12, X12 1436 AESENC X13, X13 1437 AESENC X14, X14 1438 AESENC X15, X15 1439 AESENC X8, X8 1440 AESENC X9, X9 1441 AESENC X10, X10 1442 AESENC X11, X11 1443 AESENC X12, X12 1444 AESENC X13, X13 1445 AESENC X14, X14 1446 AESENC X15, X15 1447 1448 PXOR X12, X8 1449 PXOR X13, X9 1450 PXOR X14, X10 1451 PXOR X15, X11 1452 PXOR X10, X8 1453 PXOR X11, X9 1454 PXOR X9, X8 1455 // X15 must be zero on return 1456 PXOR X15, X15 1457 MOVQ X8, AX // return X8 1458 RET 1459 1460 // func memhash32(p unsafe.Pointer, h uintptr) uintptr 1461 // ABIInternal for performance. 1462 TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24 1463 // AX = ptr to data 1464 // BX = seed 1465 CMPB runtime·useAeshash(SB), $0 1466 JEQ noaes 1467 MOVQ BX, X0 // X0 = seed 1468 PINSRD $2, (AX), X0 // data 1469 AESENC runtime·aeskeysched+0(SB), X0 1470 AESENC runtime·aeskeysched+16(SB), X0 1471 AESENC runtime·aeskeysched+32(SB), X0 1472 MOVQ X0, AX // return X0 1473 RET 1474 noaes: 1475 JMP runtime·memhash32Fallback<ABIInternal>(SB) 1476 1477 // func memhash64(p unsafe.Pointer, h uintptr) uintptr 1478 // ABIInternal for performance. 1479 TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24 1480 // AX = ptr to data 1481 // BX = seed 1482 CMPB runtime·useAeshash(SB), $0 1483 JEQ noaes 1484 MOVQ BX, X0 // X0 = seed 1485 PINSRQ $1, (AX), X0 // data 1486 AESENC runtime·aeskeysched+0(SB), X0 1487 AESENC runtime·aeskeysched+16(SB), X0 1488 AESENC runtime·aeskeysched+32(SB), X0 1489 MOVQ X0, AX // return X0 1490 RET 1491 noaes: 1492 JMP runtime·memhash64Fallback<ABIInternal>(SB) 1493 1494 // simple mask to get rid of data in the high part of the register. 1495 DATA masks<>+0x00(SB)/8, $0x0000000000000000 1496 DATA masks<>+0x08(SB)/8, $0x0000000000000000 1497 DATA masks<>+0x10(SB)/8, $0x00000000000000ff 1498 DATA masks<>+0x18(SB)/8, $0x0000000000000000 1499 DATA masks<>+0x20(SB)/8, $0x000000000000ffff 1500 DATA masks<>+0x28(SB)/8, $0x0000000000000000 1501 DATA masks<>+0x30(SB)/8, $0x0000000000ffffff 1502 DATA masks<>+0x38(SB)/8, $0x0000000000000000 1503 DATA masks<>+0x40(SB)/8, $0x00000000ffffffff 1504 DATA masks<>+0x48(SB)/8, $0x0000000000000000 1505 DATA masks<>+0x50(SB)/8, $0x000000ffffffffff 1506 DATA masks<>+0x58(SB)/8, $0x0000000000000000 1507 DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff 1508 DATA masks<>+0x68(SB)/8, $0x0000000000000000 1509 DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff 1510 DATA masks<>+0x78(SB)/8, $0x0000000000000000 1511 DATA masks<>+0x80(SB)/8, $0xffffffffffffffff 1512 DATA masks<>+0x88(SB)/8, $0x0000000000000000 1513 DATA masks<>+0x90(SB)/8, $0xffffffffffffffff 1514 DATA masks<>+0x98(SB)/8, $0x00000000000000ff 1515 DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff 1516 DATA masks<>+0xa8(SB)/8, $0x000000000000ffff 1517 DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff 1518 DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff 1519 DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff 1520 DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff 1521 DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff 1522 DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff 1523 DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff 1524 DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff 1525 DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff 1526 DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff 1527 GLOBL masks<>(SB),RODATA,$256 1528 1529 // func checkASM() bool 1530 TEXT ·checkASM(SB),NOSPLIT,$0-1 1531 // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte 1532 MOVQ $masks<>(SB), AX 1533 MOVQ $shifts<>(SB), BX 1534 ORQ BX, AX 1535 TESTQ $15, AX 1536 SETEQ ret+0(FP) 1537 RET 1538 1539 // these are arguments to pshufb. They move data down from 1540 // the high bytes of the register to the low bytes of the register. 1541 // index is how many bytes to move. 1542 DATA shifts<>+0x00(SB)/8, $0x0000000000000000 1543 DATA shifts<>+0x08(SB)/8, $0x0000000000000000 1544 DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f 1545 DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff 1546 DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e 1547 DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff 1548 DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d 1549 DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff 1550 DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c 1551 DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff 1552 DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b 1553 DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff 1554 DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a 1555 DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff 1556 DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 1557 DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff 1558 DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 1559 DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff 1560 DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 1561 DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f 1562 DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 1563 DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e 1564 DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 1565 DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d 1566 DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 1567 DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c 1568 DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 1569 DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b 1570 DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 1571 DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a 1572 DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 1573 DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 1574 GLOBL shifts<>(SB),RODATA,$256 1575 1576 TEXT runtime·return0(SB), NOSPLIT, $0 1577 MOVL $0, AX 1578 RET 1579 1580 1581 // Called from cgo wrappers, this function returns g->m->curg.stack.hi. 1582 // Must obey the gcc calling convention. 1583 TEXT _cgo_topofstack(SB),NOSPLIT,$0 1584 get_tls(CX) 1585 MOVQ g(CX), AX 1586 MOVQ g_m(AX), AX 1587 MOVQ m_curg(AX), AX 1588 MOVQ (g_stack+stack_hi)(AX), AX 1589 RET 1590 1591 // The top-most function running on a goroutine 1592 // returns to goexit+PCQuantum. 1593 TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME,$0-0 1594 BYTE $0x90 // NOP 1595 CALL runtime·goexit1(SB) // does not return 1596 // traceback from goexit1 must hit code range of goexit 1597 BYTE $0x90 // NOP 1598 1599 // This is called from .init_array and follows the platform, not Go, ABI. 1600 TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 1601 PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save 1602 MOVQ runtime·lastmoduledatap(SB), AX 1603 MOVQ DI, moduledata_next(AX) 1604 MOVQ DI, runtime·lastmoduledatap(SB) 1605 POPQ R15 1606 RET 1607 1608 // Initialize special registers then jump to sigpanic. 1609 // This function is injected from the signal handler for panicking 1610 // signals. It is quite painful to set X15 in the signal context, 1611 // so we do it here. 1612 TEXT ·sigpanic0(SB),NOSPLIT,$0-0 1613 get_tls(R14) 1614 MOVQ g(R14), R14 1615 #ifndef GOOS_plan9 1616 XORPS X15, X15 1617 #endif 1618 JMP ·sigpanic<ABIInternal>(SB) 1619 1620 // gcWriteBarrier performs a heap pointer write and informs the GC. 1621 // 1622 // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: 1623 // - DI is the destination of the write 1624 // - AX is the value being written at DI 1625 // It clobbers FLAGS. It does not clobber any general-purpose registers, 1626 // but may clobber others (e.g., SSE registers). 1627 // Defined as ABIInternal since it does not use the stack-based Go ABI. 1628 TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$112 1629 // Save the registers clobbered by the fast path. This is slightly 1630 // faster than having the caller spill these. 1631 MOVQ R12, 96(SP) 1632 MOVQ R13, 104(SP) 1633 // TODO: Consider passing g.m.p in as an argument so they can be shared 1634 // across a sequence of write barriers. 1635 MOVQ g_m(R14), R13 1636 MOVQ m_p(R13), R13 1637 MOVQ (p_wbBuf+wbBuf_next)(R13), R12 1638 // Increment wbBuf.next position. 1639 LEAQ 16(R12), R12 1640 MOVQ R12, (p_wbBuf+wbBuf_next)(R13) 1641 CMPQ R12, (p_wbBuf+wbBuf_end)(R13) 1642 // Record the write. 1643 MOVQ AX, -16(R12) // Record value 1644 // Note: This turns bad pointer writes into bad 1645 // pointer reads, which could be confusing. We could avoid 1646 // reading from obviously bad pointers, which would 1647 // take care of the vast majority of these. We could 1648 // patch this up in the signal handler, or use XCHG to 1649 // combine the read and the write. 1650 MOVQ (DI), R13 1651 MOVQ R13, -8(R12) // Record *slot 1652 // Is the buffer full? (flags set in CMPQ above) 1653 JEQ flush 1654 ret: 1655 MOVQ 96(SP), R12 1656 MOVQ 104(SP), R13 1657 // Do the write. 1658 MOVQ AX, (DI) 1659 RET 1660 1661 flush: 1662 // Save all general purpose registers since these could be 1663 // clobbered by wbBufFlush and were not saved by the caller. 1664 // It is possible for wbBufFlush to clobber other registers 1665 // (e.g., SSE registers), but the compiler takes care of saving 1666 // those in the caller if necessary. This strikes a balance 1667 // with registers that are likely to be used. 1668 // 1669 // We don't have type information for these, but all code under 1670 // here is NOSPLIT, so nothing will observe these. 1671 // 1672 // TODO: We could strike a different balance; e.g., saving X0 1673 // and not saving GP registers that are less likely to be used. 1674 MOVQ DI, 0(SP) // Also first argument to wbBufFlush 1675 MOVQ AX, 8(SP) // Also second argument to wbBufFlush 1676 MOVQ BX, 16(SP) 1677 MOVQ CX, 24(SP) 1678 MOVQ DX, 32(SP) 1679 // DI already saved 1680 MOVQ SI, 40(SP) 1681 MOVQ BP, 48(SP) 1682 MOVQ R8, 56(SP) 1683 MOVQ R9, 64(SP) 1684 MOVQ R10, 72(SP) 1685 MOVQ R11, 80(SP) 1686 // R12 already saved 1687 // R13 already saved 1688 // R14 is g 1689 MOVQ R15, 88(SP) 1690 1691 // This takes arguments DI and AX 1692 CALL runtime·wbBufFlush(SB) 1693 1694 MOVQ 0(SP), DI 1695 MOVQ 8(SP), AX 1696 MOVQ 16(SP), BX 1697 MOVQ 24(SP), CX 1698 MOVQ 32(SP), DX 1699 MOVQ 40(SP), SI 1700 MOVQ 48(SP), BP 1701 MOVQ 56(SP), R8 1702 MOVQ 64(SP), R9 1703 MOVQ 72(SP), R10 1704 MOVQ 80(SP), R11 1705 MOVQ 88(SP), R15 1706 JMP ret 1707 1708 // gcWriteBarrierCX is gcWriteBarrier, but with args in DI and CX. 1709 // Defined as ABIInternal since it does not use the stable Go ABI. 1710 TEXT runtime·gcWriteBarrierCX<ABIInternal>(SB),NOSPLIT,$0 1711 XCHGQ CX, AX 1712 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1713 XCHGQ CX, AX 1714 RET 1715 1716 // gcWriteBarrierDX is gcWriteBarrier, but with args in DI and DX. 1717 // Defined as ABIInternal since it does not use the stable Go ABI. 1718 TEXT runtime·gcWriteBarrierDX<ABIInternal>(SB),NOSPLIT,$0 1719 XCHGQ DX, AX 1720 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1721 XCHGQ DX, AX 1722 RET 1723 1724 // gcWriteBarrierBX is gcWriteBarrier, but with args in DI and BX. 1725 // Defined as ABIInternal since it does not use the stable Go ABI. 1726 TEXT runtime·gcWriteBarrierBX<ABIInternal>(SB),NOSPLIT,$0 1727 XCHGQ BX, AX 1728 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1729 XCHGQ BX, AX 1730 RET 1731 1732 // gcWriteBarrierBP is gcWriteBarrier, but with args in DI and BP. 1733 // Defined as ABIInternal since it does not use the stable Go ABI. 1734 TEXT runtime·gcWriteBarrierBP<ABIInternal>(SB),NOSPLIT,$0 1735 XCHGQ BP, AX 1736 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1737 XCHGQ BP, AX 1738 RET 1739 1740 // gcWriteBarrierSI is gcWriteBarrier, but with args in DI and SI. 1741 // Defined as ABIInternal since it does not use the stable Go ABI. 1742 TEXT runtime·gcWriteBarrierSI<ABIInternal>(SB),NOSPLIT,$0 1743 XCHGQ SI, AX 1744 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1745 XCHGQ SI, AX 1746 RET 1747 1748 // gcWriteBarrierR8 is gcWriteBarrier, but with args in DI and R8. 1749 // Defined as ABIInternal since it does not use the stable Go ABI. 1750 TEXT runtime·gcWriteBarrierR8<ABIInternal>(SB),NOSPLIT,$0 1751 XCHGQ R8, AX 1752 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1753 XCHGQ R8, AX 1754 RET 1755 1756 // gcWriteBarrierR9 is gcWriteBarrier, but with args in DI and R9. 1757 // Defined as ABIInternal since it does not use the stable Go ABI. 1758 TEXT runtime·gcWriteBarrierR9<ABIInternal>(SB),NOSPLIT,$0 1759 XCHGQ R9, AX 1760 CALL runtime·gcWriteBarrier<ABIInternal>(SB) 1761 XCHGQ R9, AX 1762 RET 1763 1764 DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" 1765 GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below 1766 1767 // debugCallV2 is the entry point for debugger-injected function 1768 // calls on running goroutines. It informs the runtime that a 1769 // debug call has been injected and creates a call frame for the 1770 // debugger to fill in. 1771 // 1772 // To inject a function call, a debugger should: 1773 // 1. Check that the goroutine is in state _Grunning and that 1774 // there are at least 256 bytes free on the stack. 1775 // 2. Push the current PC on the stack (updating SP). 1776 // 3. Write the desired argument frame size at SP-16 (using the SP 1777 // after step 2). 1778 // 4. Save all machine registers (including flags and XMM registers) 1779 // so they can be restored later by the debugger. 1780 // 5. Set the PC to debugCallV2 and resume execution. 1781 // 1782 // If the goroutine is in state _Grunnable, then it's not generally 1783 // safe to inject a call because it may return out via other runtime 1784 // operations. Instead, the debugger should unwind the stack to find 1785 // the return to non-runtime code, add a temporary breakpoint there, 1786 // and inject the call once that breakpoint is hit. 1787 // 1788 // If the goroutine is in any other state, it's not safe to inject a call. 1789 // 1790 // This function communicates back to the debugger by setting R12 and 1791 // invoking INT3 to raise a breakpoint signal. See the comments in the 1792 // implementation for the protocol the debugger is expected to 1793 // follow. InjectDebugCall in the runtime tests demonstrates this protocol. 1794 // 1795 // The debugger must ensure that any pointers passed to the function 1796 // obey escape analysis requirements. Specifically, it must not pass 1797 // a stack pointer to an escaping argument. debugCallV2 cannot check 1798 // this invariant. 1799 // 1800 // This is ABIInternal because Go code injects its PC directly into new 1801 // goroutine stacks. 1802 TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0 1803 // Save all registers that may contain pointers so they can be 1804 // conservatively scanned. 1805 // 1806 // We can't do anything that might clobber any of these 1807 // registers before this. 1808 MOVQ R15, r15-(14*8+8)(SP) 1809 MOVQ R14, r14-(13*8+8)(SP) 1810 MOVQ R13, r13-(12*8+8)(SP) 1811 MOVQ R12, r12-(11*8+8)(SP) 1812 MOVQ R11, r11-(10*8+8)(SP) 1813 MOVQ R10, r10-(9*8+8)(SP) 1814 MOVQ R9, r9-(8*8+8)(SP) 1815 MOVQ R8, r8-(7*8+8)(SP) 1816 MOVQ DI, di-(6*8+8)(SP) 1817 MOVQ SI, si-(5*8+8)(SP) 1818 MOVQ BP, bp-(4*8+8)(SP) 1819 MOVQ BX, bx-(3*8+8)(SP) 1820 MOVQ DX, dx-(2*8+8)(SP) 1821 // Save the frame size before we clobber it. Either of the last 1822 // saves could clobber this depending on whether there's a saved BP. 1823 MOVQ frameSize-24(FP), DX // aka -16(RSP) before prologue 1824 MOVQ CX, cx-(1*8+8)(SP) 1825 MOVQ AX, ax-(0*8+8)(SP) 1826 1827 // Save the argument frame size. 1828 MOVQ DX, frameSize-128(SP) 1829 1830 // Perform a safe-point check. 1831 MOVQ retpc-8(FP), AX // Caller's PC 1832 MOVQ AX, 0(SP) 1833 CALL runtime·debugCallCheck(SB) 1834 MOVQ 8(SP), AX 1835 TESTQ AX, AX 1836 JZ good 1837 // The safety check failed. Put the reason string at the top 1838 // of the stack. 1839 MOVQ AX, 0(SP) 1840 MOVQ 16(SP), AX 1841 MOVQ AX, 8(SP) 1842 // Set R12 to 8 and invoke INT3. The debugger should get the 1843 // reason a call can't be injected from the top of the stack 1844 // and resume execution. 1845 MOVQ $8, R12 1846 BYTE $0xcc 1847 JMP restore 1848 1849 good: 1850 // Registers are saved and it's safe to make a call. 1851 // Open up a call frame, moving the stack if necessary. 1852 // 1853 // Once the frame is allocated, this will set R12 to 0 and 1854 // invoke INT3. The debugger should write the argument 1855 // frame for the call at SP, set up argument registers, push 1856 // the trapping PC on the stack, set the PC to the function to 1857 // call, set RDX to point to the closure (if a closure call), 1858 // and resume execution. 1859 // 1860 // If the function returns, this will set R12 to 1 and invoke 1861 // INT3. The debugger can then inspect any return value saved 1862 // on the stack at SP and in registers and resume execution again. 1863 // 1864 // If the function panics, this will set R12 to 2 and invoke INT3. 1865 // The interface{} value of the panic will be at SP. The debugger 1866 // can inspect the panic value and resume execution again. 1867 #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ 1868 CMPQ AX, $MAXSIZE; \ 1869 JA 5(PC); \ 1870 MOVQ $NAME(SB), AX; \ 1871 MOVQ AX, 0(SP); \ 1872 CALL runtime·debugCallWrap(SB); \ 1873 JMP restore 1874 1875 MOVQ frameSize-128(SP), AX 1876 DEBUG_CALL_DISPATCH(debugCall32<>, 32) 1877 DEBUG_CALL_DISPATCH(debugCall64<>, 64) 1878 DEBUG_CALL_DISPATCH(debugCall128<>, 128) 1879 DEBUG_CALL_DISPATCH(debugCall256<>, 256) 1880 DEBUG_CALL_DISPATCH(debugCall512<>, 512) 1881 DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) 1882 DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) 1883 DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) 1884 DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) 1885 DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) 1886 DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) 1887 DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) 1888 // The frame size is too large. Report the error. 1889 MOVQ $debugCallFrameTooLarge<>(SB), AX 1890 MOVQ AX, 0(SP) 1891 MOVQ $20, 8(SP) // length of debugCallFrameTooLarge string 1892 MOVQ $8, R12 1893 BYTE $0xcc 1894 JMP restore 1895 1896 restore: 1897 // Calls and failures resume here. 1898 // 1899 // Set R12 to 16 and invoke INT3. The debugger should restore 1900 // all registers except RIP and RSP and resume execution. 1901 MOVQ $16, R12 1902 BYTE $0xcc 1903 // We must not modify flags after this point. 1904 1905 // Restore pointer-containing registers, which may have been 1906 // modified from the debugger's copy by stack copying. 1907 MOVQ ax-(0*8+8)(SP), AX 1908 MOVQ cx-(1*8+8)(SP), CX 1909 MOVQ dx-(2*8+8)(SP), DX 1910 MOVQ bx-(3*8+8)(SP), BX 1911 MOVQ bp-(4*8+8)(SP), BP 1912 MOVQ si-(5*8+8)(SP), SI 1913 MOVQ di-(6*8+8)(SP), DI 1914 MOVQ r8-(7*8+8)(SP), R8 1915 MOVQ r9-(8*8+8)(SP), R9 1916 MOVQ r10-(9*8+8)(SP), R10 1917 MOVQ r11-(10*8+8)(SP), R11 1918 MOVQ r12-(11*8+8)(SP), R12 1919 MOVQ r13-(12*8+8)(SP), R13 1920 MOVQ r14-(13*8+8)(SP), R14 1921 MOVQ r15-(14*8+8)(SP), R15 1922 1923 RET 1924 1925 // runtime.debugCallCheck assumes that functions defined with the 1926 // DEBUG_CALL_FN macro are safe points to inject calls. 1927 #define DEBUG_CALL_FN(NAME,MAXSIZE) \ 1928 TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ 1929 NO_LOCAL_POINTERS; \ 1930 MOVQ $0, R12; \ 1931 BYTE $0xcc; \ 1932 MOVQ $1, R12; \ 1933 BYTE $0xcc; \ 1934 RET 1935 DEBUG_CALL_FN(debugCall32<>, 32) 1936 DEBUG_CALL_FN(debugCall64<>, 64) 1937 DEBUG_CALL_FN(debugCall128<>, 128) 1938 DEBUG_CALL_FN(debugCall256<>, 256) 1939 DEBUG_CALL_FN(debugCall512<>, 512) 1940 DEBUG_CALL_FN(debugCall1024<>, 1024) 1941 DEBUG_CALL_FN(debugCall2048<>, 2048) 1942 DEBUG_CALL_FN(debugCall4096<>, 4096) 1943 DEBUG_CALL_FN(debugCall8192<>, 8192) 1944 DEBUG_CALL_FN(debugCall16384<>, 16384) 1945 DEBUG_CALL_FN(debugCall32768<>, 32768) 1946 DEBUG_CALL_FN(debugCall65536<>, 65536) 1947 1948 // func debugCallPanicked(val interface{}) 1949 TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 1950 // Copy the panic value to the top of stack. 1951 MOVQ val_type+0(FP), AX 1952 MOVQ AX, 0(SP) 1953 MOVQ val_data+8(FP), AX 1954 MOVQ AX, 8(SP) 1955 MOVQ $2, R12 1956 BYTE $0xcc 1957 RET 1958 1959 // Note: these functions use a special calling convention to save generated code space. 1960 // Arguments are passed in registers, but the space for those arguments are allocated 1961 // in the caller's stack frame. These stubs write the args into that stack space and 1962 // then tail call to the corresponding runtime handler. 1963 // The tail call makes these stubs disappear in backtraces. 1964 // Defined as ABIInternal since they do not use the stack-based Go ABI. 1965 TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16 1966 MOVQ CX, BX 1967 JMP runtime·goPanicIndex<ABIInternal>(SB) 1968 TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16 1969 MOVQ CX, BX 1970 JMP runtime·goPanicIndexU<ABIInternal>(SB) 1971 TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16 1972 MOVQ CX, AX 1973 MOVQ DX, BX 1974 JMP runtime·goPanicSliceAlen<ABIInternal>(SB) 1975 TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16 1976 MOVQ CX, AX 1977 MOVQ DX, BX 1978 JMP runtime·goPanicSliceAlenU<ABIInternal>(SB) 1979 TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16 1980 MOVQ CX, AX 1981 MOVQ DX, BX 1982 JMP runtime·goPanicSliceAcap<ABIInternal>(SB) 1983 TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16 1984 MOVQ CX, AX 1985 MOVQ DX, BX 1986 JMP runtime·goPanicSliceAcapU<ABIInternal>(SB) 1987 TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16 1988 MOVQ CX, BX 1989 JMP runtime·goPanicSliceB<ABIInternal>(SB) 1990 TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16 1991 MOVQ CX, BX 1992 JMP runtime·goPanicSliceBU<ABIInternal>(SB) 1993 TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16 1994 MOVQ DX, AX 1995 JMP runtime·goPanicSlice3Alen<ABIInternal>(SB) 1996 TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16 1997 MOVQ DX, AX 1998 JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB) 1999 TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16 2000 MOVQ DX, AX 2001 JMP runtime·goPanicSlice3Acap<ABIInternal>(SB) 2002 TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16 2003 MOVQ DX, AX 2004 JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB) 2005 TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16 2006 MOVQ CX, AX 2007 MOVQ DX, BX 2008 JMP runtime·goPanicSlice3B<ABIInternal>(SB) 2009 TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16 2010 MOVQ CX, AX 2011 MOVQ DX, BX 2012 JMP runtime·goPanicSlice3BU<ABIInternal>(SB) 2013 TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16 2014 MOVQ CX, BX 2015 JMP runtime·goPanicSlice3C<ABIInternal>(SB) 2016 TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16 2017 MOVQ CX, BX 2018 JMP runtime·goPanicSlice3CU<ABIInternal>(SB) 2019 TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16 2020 MOVQ DX, AX 2021 JMP runtime·goPanicSliceConvert<ABIInternal>(SB) 2022 2023 #ifdef GOOS_android 2024 // Use the free TLS_SLOT_APP slot #2 on Android Q. 2025 // Earlier androids are set up in gcc_android.c. 2026 DATA runtime·tls_g+0(SB)/8, $16 2027 GLOBL runtime·tls_g+0(SB), NOPTR, $8 2028 #endif 2029 2030 // The compiler and assembler's -spectre=ret mode rewrites 2031 // all indirect CALL AX / JMP AX instructions to be 2032 // CALL retpolineAX / JMP retpolineAX. 2033 // See https://support.google.com/faqs/answer/7625886. 2034 #define RETPOLINE(reg) \ 2035 /* CALL setup */ BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0; \ 2036 /* nospec: */ \ 2037 /* PAUSE */ BYTE $0xF3; BYTE $0x90; \ 2038 /* JMP nospec */ BYTE $0xEB; BYTE $-(2+2); \ 2039 /* setup: */ \ 2040 /* MOVQ AX, 0(SP) */ BYTE $0x48|((reg&8)>>1); BYTE $0x89; \ 2041 BYTE $0x04|((reg&7)<<3); BYTE $0x24; \ 2042 /* RET */ BYTE $0xC3 2043 2044 TEXT runtime·retpolineAX(SB),NOSPLIT,$0; RETPOLINE(0) 2045 TEXT runtime·retpolineCX(SB),NOSPLIT,$0; RETPOLINE(1) 2046 TEXT runtime·retpolineDX(SB),NOSPLIT,$0; RETPOLINE(2) 2047 TEXT runtime·retpolineBX(SB),NOSPLIT,$0; RETPOLINE(3) 2048 /* SP is 4, can't happen / magic encodings */ 2049 TEXT runtime·retpolineBP(SB),NOSPLIT,$0; RETPOLINE(5) 2050 TEXT runtime·retpolineSI(SB),NOSPLIT,$0; RETPOLINE(6) 2051 TEXT runtime·retpolineDI(SB),NOSPLIT,$0; RETPOLINE(7) 2052 TEXT runtime·retpolineR8(SB),NOSPLIT,$0; RETPOLINE(8) 2053 TEXT runtime·retpolineR9(SB),NOSPLIT,$0; RETPOLINE(9) 2054 TEXT runtime·retpolineR10(SB),NOSPLIT,$0; RETPOLINE(10) 2055 TEXT runtime·retpolineR11(SB),NOSPLIT,$0; RETPOLINE(11) 2056 TEXT runtime·retpolineR12(SB),NOSPLIT,$0; RETPOLINE(12) 2057 TEXT runtime·retpolineR13(SB),NOSPLIT,$0; RETPOLINE(13) 2058 TEXT runtime·retpolineR14(SB),NOSPLIT,$0; RETPOLINE(14) 2059 TEXT runtime·retpolineR15(SB),NOSPLIT,$0; RETPOLINE(15)