github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // # Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // defer f.Close() // error handling omitted for example 32 // if err := pprof.StartCPUProfile(f); err != nil { 33 // log.Fatal("could not start CPU profile: ", err) 34 // } 35 // defer pprof.StopCPUProfile() 36 // } 37 // 38 // // ... rest of the program ... 39 // 40 // if *memprofile != "" { 41 // f, err := os.Create(*memprofile) 42 // if err != nil { 43 // log.Fatal("could not create memory profile: ", err) 44 // } 45 // defer f.Close() // error handling omitted for example 46 // runtime.GC() // get up-to-date statistics 47 // if err := pprof.WriteHeapProfile(f); err != nil { 48 // log.Fatal("could not write memory profile: ", err) 49 // } 50 // } 51 // } 52 // 53 // There is also a standard HTTP interface to profiling data. Adding 54 // the following line will install handlers under the /debug/pprof/ 55 // URL to download live profiles: 56 // 57 // import _ "net/http/pprof" 58 // 59 // See the net/http/pprof package for more details. 60 // 61 // Profiles can then be visualized with the pprof tool: 62 // 63 // go tool pprof cpu.prof 64 // 65 // There are many commands available from the pprof command line. 66 // Commonly used commands include "top", which prints a summary of the 67 // top program hot-spots, and "web", which opens an interactive graph 68 // of hot-spots and their call graphs. Use "help" for information on 69 // all pprof commands. 70 // 71 // For more information about pprof, see 72 // https://github.com/google/pprof/blob/master/doc/README.md. 73 package pprof 74 75 import ( 76 "bufio" 77 "fmt" 78 "internal/abi" 79 "io" 80 "runtime" 81 "sort" 82 "strings" 83 "sync" 84 "text/tabwriter" 85 "time" 86 "unsafe" 87 ) 88 89 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 90 // See https://golang.org/issue/13841 for details about known problems. 91 92 // A Profile is a collection of stack traces showing the call sequences 93 // that led to instances of a particular event, such as allocation. 94 // Packages can create and maintain their own profiles; the most common 95 // use is for tracking resources that must be explicitly closed, such as files 96 // or network connections. 97 // 98 // A Profile's methods can be called from multiple goroutines simultaneously. 99 // 100 // Each Profile has a unique name. A few profiles are predefined: 101 // 102 // goroutine - stack traces of all current goroutines 103 // heap - a sampling of memory allocations of live objects 104 // allocs - a sampling of all past memory allocations 105 // threadcreate - stack traces that led to the creation of new OS threads 106 // block - stack traces that led to blocking on synchronization primitives 107 // mutex - stack traces of holders of contended mutexes 108 // 109 // These predefined profiles maintain themselves and panic on an explicit 110 // Add or Remove method call. 111 // 112 // The heap profile reports statistics as of the most recently completed 113 // garbage collection; it elides more recent allocation to avoid skewing 114 // the profile away from live data and toward garbage. 115 // If there has been no garbage collection at all, the heap profile reports 116 // all known allocations. This exception helps mainly in programs running 117 // without garbage collection enabled, usually for debugging purposes. 118 // 119 // The heap profile tracks both the allocation sites for all live objects in 120 // the application memory and for all objects allocated since the program start. 121 // Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects 122 // flags select which to display, defaulting to -inuse_space (live objects, 123 // scaled by size). 124 // 125 // The allocs profile is the same as the heap profile but changes the default 126 // pprof display to -alloc_space, the total number of bytes allocated since 127 // the program began (including garbage-collected bytes). 128 // 129 // The CPU profile is not available as a Profile. It has a special API, 130 // the StartCPUProfile and StopCPUProfile functions, because it streams 131 // output to a writer during profiling. 132 type Profile struct { 133 name string 134 mu sync.Mutex 135 m map[any][]uintptr 136 count func() int 137 write func(io.Writer, int) error 138 } 139 140 // profiles records all registered profiles. 141 var profiles struct { 142 mu sync.Mutex 143 m map[string]*Profile 144 } 145 146 var goroutineProfile = &Profile{ 147 name: "goroutine", 148 count: countGoroutine, 149 write: writeGoroutine, 150 } 151 152 var threadcreateProfile = &Profile{ 153 name: "threadcreate", 154 count: countThreadCreate, 155 write: writeThreadCreate, 156 } 157 158 var heapProfile = &Profile{ 159 name: "heap", 160 count: countHeap, 161 write: writeHeap, 162 } 163 164 var allocsProfile = &Profile{ 165 name: "allocs", 166 count: countHeap, // identical to heap profile 167 write: writeAlloc, 168 } 169 170 var blockProfile = &Profile{ 171 name: "block", 172 count: countBlock, 173 write: writeBlock, 174 } 175 176 var mutexProfile = &Profile{ 177 name: "mutex", 178 count: countMutex, 179 write: writeMutex, 180 } 181 182 func lockProfiles() { 183 profiles.mu.Lock() 184 if profiles.m == nil { 185 // Initial built-in profiles. 186 profiles.m = map[string]*Profile{ 187 "goroutine": goroutineProfile, 188 "threadcreate": threadcreateProfile, 189 "heap": heapProfile, 190 "allocs": allocsProfile, 191 "block": blockProfile, 192 "mutex": mutexProfile, 193 } 194 } 195 } 196 197 func unlockProfiles() { 198 profiles.mu.Unlock() 199 } 200 201 // NewProfile creates a new profile with the given name. 202 // If a profile with that name already exists, NewProfile panics. 203 // The convention is to use a 'import/path.' prefix to create 204 // separate name spaces for each package. 205 // For compatibility with various tools that read pprof data, 206 // profile names should not contain spaces. 207 func NewProfile(name string) *Profile { 208 lockProfiles() 209 defer unlockProfiles() 210 if name == "" { 211 panic("pprof: NewProfile with empty name") 212 } 213 if profiles.m[name] != nil { 214 panic("pprof: NewProfile name already in use: " + name) 215 } 216 p := &Profile{ 217 name: name, 218 m: map[any][]uintptr{}, 219 } 220 profiles.m[name] = p 221 return p 222 } 223 224 // Lookup returns the profile with the given name, or nil if no such profile exists. 225 func Lookup(name string) *Profile { 226 lockProfiles() 227 defer unlockProfiles() 228 return profiles.m[name] 229 } 230 231 // Profiles returns a slice of all the known profiles, sorted by name. 232 func Profiles() []*Profile { 233 lockProfiles() 234 defer unlockProfiles() 235 236 all := make([]*Profile, 0, len(profiles.m)) 237 for _, p := range profiles.m { 238 all = append(all, p) 239 } 240 241 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 242 return all 243 } 244 245 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 246 func (p *Profile) Name() string { 247 return p.name 248 } 249 250 // Count returns the number of execution stacks currently in the profile. 251 func (p *Profile) Count() int { 252 p.mu.Lock() 253 defer p.mu.Unlock() 254 if p.count != nil { 255 return p.count() 256 } 257 return len(p.m) 258 } 259 260 // Add adds the current execution stack to the profile, associated with value. 261 // Add stores value in an internal map, so value must be suitable for use as 262 // a map key and will not be garbage collected until the corresponding 263 // call to Remove. Add panics if the profile already contains a stack for value. 264 // 265 // The skip parameter has the same meaning as runtime.Caller's skip 266 // and controls where the stack trace begins. Passing skip=0 begins the 267 // trace in the function calling Add. For example, given this 268 // execution stack: 269 // 270 // Add 271 // called from rpc.NewClient 272 // called from mypkg.Run 273 // called from main.main 274 // 275 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 276 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 277 func (p *Profile) Add(value any, skip int) { 278 if p.name == "" { 279 panic("pprof: use of uninitialized Profile") 280 } 281 if p.write != nil { 282 panic("pprof: Add called on built-in Profile " + p.name) 283 } 284 285 stk := make([]uintptr, 32) 286 n := runtime.Callers(skip+1, stk[:]) 287 stk = stk[:n] 288 if len(stk) == 0 { 289 // The value for skip is too large, and there's no stack trace to record. 290 stk = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)} 291 } 292 293 p.mu.Lock() 294 defer p.mu.Unlock() 295 if p.m[value] != nil { 296 panic("pprof: Profile.Add of duplicate value") 297 } 298 p.m[value] = stk 299 } 300 301 // Remove removes the execution stack associated with value from the profile. 302 // It is a no-op if the value is not in the profile. 303 func (p *Profile) Remove(value any) { 304 p.mu.Lock() 305 defer p.mu.Unlock() 306 delete(p.m, value) 307 } 308 309 // WriteTo writes a pprof-formatted snapshot of the profile to w. 310 // If a write to w returns an error, WriteTo returns that error. 311 // Otherwise, WriteTo returns nil. 312 // 313 // The debug parameter enables additional output. 314 // Passing debug=0 writes the gzip-compressed protocol buffer described 315 // in https://github.com/google/pprof/tree/master/proto#overview. 316 // Passing debug=1 writes the legacy text format with comments 317 // translating addresses to function names and line numbers, so that a 318 // programmer can read the profile without tools. 319 // 320 // The predefined profiles may assign meaning to other debug values; 321 // for example, when printing the "goroutine" profile, debug=2 means to 322 // print the goroutine stacks in the same form that a Go program uses 323 // when dying due to an unrecovered panic. 324 func (p *Profile) WriteTo(w io.Writer, debug int) error { 325 if p.name == "" { 326 panic("pprof: use of zero Profile") 327 } 328 if p.write != nil { 329 return p.write(w, debug) 330 } 331 332 // Obtain consistent snapshot under lock; then process without lock. 333 p.mu.Lock() 334 all := make([][]uintptr, 0, len(p.m)) 335 for _, stk := range p.m { 336 all = append(all, stk) 337 } 338 p.mu.Unlock() 339 340 // Map order is non-deterministic; make output deterministic. 341 sort.Slice(all, func(i, j int) bool { 342 t, u := all[i], all[j] 343 for k := 0; k < len(t) && k < len(u); k++ { 344 if t[k] != u[k] { 345 return t[k] < u[k] 346 } 347 } 348 return len(t) < len(u) 349 }) 350 351 return printCountProfile(w, debug, p.name, stackProfile(all)) 352 } 353 354 type stackProfile [][]uintptr 355 356 func (x stackProfile) Len() int { return len(x) } 357 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 358 func (x stackProfile) Label(i int) *labelMap { return nil } 359 360 // A countProfile is a set of stack traces to be printed as counts 361 // grouped by stack trace. There are multiple implementations: 362 // all that matters is that we can find out how many traces there are 363 // and obtain each trace in turn. 364 type countProfile interface { 365 Len() int 366 Stack(i int) []uintptr 367 Label(i int) *labelMap 368 } 369 370 // printCountCycleProfile outputs block profile records (for block or mutex profiles) 371 // as the pprof-proto format output. Translations from cycle count to time duration 372 // are done because The proto expects count and time (nanoseconds) instead of count 373 // and the number of cycles for block, contention profiles. 374 // Possible 'scaler' functions are scaleBlockProfile and scaleMutexProfile. 375 func printCountCycleProfile(w io.Writer, countName, cycleName string, scaler func(int64, float64) (int64, float64), records []runtime.BlockProfileRecord) error { 376 // Output profile in protobuf form. 377 b := newProfileBuilder(w) 378 b.pbValueType(tagProfile_PeriodType, countName, "count") 379 b.pb.int64Opt(tagProfile_Period, 1) 380 b.pbValueType(tagProfile_SampleType, countName, "count") 381 b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") 382 383 cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 384 385 values := []int64{0, 0} 386 var locs []uint64 387 for _, r := range records { 388 count, nanosec := scaler(r.Count, float64(r.Cycles)/cpuGHz) 389 values[0] = count 390 values[1] = int64(nanosec) 391 // For count profiles, all stack addresses are 392 // return PCs, which is what appendLocsForStack expects. 393 locs = b.appendLocsForStack(locs[:0], r.Stack()) 394 b.pbSample(values, locs, nil) 395 } 396 b.build() 397 return nil 398 } 399 400 // printCountProfile prints a countProfile at the specified debug level. 401 // The profile will be in compressed proto format unless debug is nonzero. 402 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 403 // Build count of each stack. 404 var buf strings.Builder 405 key := func(stk []uintptr, lbls *labelMap) string { 406 buf.Reset() 407 fmt.Fprintf(&buf, "@") 408 for _, pc := range stk { 409 fmt.Fprintf(&buf, " %#x", pc) 410 } 411 if lbls != nil { 412 buf.WriteString("\n# labels: ") 413 buf.WriteString(lbls.String()) 414 } 415 return buf.String() 416 } 417 count := map[string]int{} 418 index := map[string]int{} 419 var keys []string 420 n := p.Len() 421 for i := 0; i < n; i++ { 422 k := key(p.Stack(i), p.Label(i)) 423 if count[k] == 0 { 424 index[k] = i 425 keys = append(keys, k) 426 } 427 count[k]++ 428 } 429 430 sort.Sort(&keysByCount{keys, count}) 431 432 if debug > 0 { 433 // Print debug profile in legacy format 434 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 435 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 436 for _, k := range keys { 437 fmt.Fprintf(tw, "%d %s\n", count[k], k) 438 printStackRecord(tw, p.Stack(index[k]), false) 439 } 440 return tw.Flush() 441 } 442 443 // Output profile in protobuf form. 444 b := newProfileBuilder(w) 445 b.pbValueType(tagProfile_PeriodType, name, "count") 446 b.pb.int64Opt(tagProfile_Period, 1) 447 b.pbValueType(tagProfile_SampleType, name, "count") 448 449 values := []int64{0} 450 var locs []uint64 451 for _, k := range keys { 452 values[0] = int64(count[k]) 453 // For count profiles, all stack addresses are 454 // return PCs, which is what appendLocsForStack expects. 455 locs = b.appendLocsForStack(locs[:0], p.Stack(index[k])) 456 idx := index[k] 457 var labels func() 458 if p.Label(idx) != nil { 459 labels = func() { 460 for k, v := range *p.Label(idx) { 461 b.pbLabel(tagSample_Label, k, v, 0) 462 } 463 } 464 } 465 b.pbSample(values, locs, labels) 466 } 467 b.build() 468 return nil 469 } 470 471 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 472 type keysByCount struct { 473 keys []string 474 count map[string]int 475 } 476 477 func (x *keysByCount) Len() int { return len(x.keys) } 478 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 479 func (x *keysByCount) Less(i, j int) bool { 480 ki, kj := x.keys[i], x.keys[j] 481 ci, cj := x.count[ki], x.count[kj] 482 if ci != cj { 483 return ci > cj 484 } 485 return ki < kj 486 } 487 488 // printStackRecord prints the function + source line information 489 // for a single stack trace. 490 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 491 show := allFrames 492 frames := runtime.CallersFrames(stk) 493 for { 494 frame, more := frames.Next() 495 name := frame.Function 496 if name == "" { 497 show = true 498 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 499 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 500 // Hide runtime.goexit and any runtime functions at the beginning. 501 // This is useful mainly for allocation traces. 502 show = true 503 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 504 } 505 if !more { 506 break 507 } 508 } 509 if !show { 510 // We didn't print anything; do it again, 511 // and this time include runtime functions. 512 printStackRecord(w, stk, true) 513 return 514 } 515 fmt.Fprintf(w, "\n") 516 } 517 518 // Interface to system profiles. 519 520 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 521 // It is preserved for backwards compatibility. 522 func WriteHeapProfile(w io.Writer) error { 523 return writeHeap(w, 0) 524 } 525 526 // countHeap returns the number of records in the heap profile. 527 func countHeap() int { 528 n, _ := runtime.MemProfile(nil, true) 529 return n 530 } 531 532 // writeHeap writes the current runtime heap profile to w. 533 func writeHeap(w io.Writer, debug int) error { 534 return writeHeapInternal(w, debug, "") 535 } 536 537 // writeAlloc writes the current runtime heap profile to w 538 // with the total allocation space as the default sample type. 539 func writeAlloc(w io.Writer, debug int) error { 540 return writeHeapInternal(w, debug, "alloc_space") 541 } 542 543 func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error { 544 var memStats *runtime.MemStats 545 if debug != 0 { 546 // Read mem stats first, so that our other allocations 547 // do not appear in the statistics. 548 memStats = new(runtime.MemStats) 549 runtime.ReadMemStats(memStats) 550 } 551 552 // Find out how many records there are (MemProfile(nil, true)), 553 // allocate that many records, and get the data. 554 // There's a race—more records might be added between 555 // the two calls—so allocate a few extra records for safety 556 // and also try again if we're very unlucky. 557 // The loop should only execute one iteration in the common case. 558 var p []runtime.MemProfileRecord 559 n, ok := runtime.MemProfile(nil, true) 560 for { 561 // Allocate room for a slightly bigger profile, 562 // in case a few more entries have been added 563 // since the call to MemProfile. 564 p = make([]runtime.MemProfileRecord, n+50) 565 n, ok = runtime.MemProfile(p, true) 566 if ok { 567 p = p[0:n] 568 break 569 } 570 // Profile grew; try again. 571 } 572 573 if debug == 0 { 574 return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType) 575 } 576 577 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 578 579 b := bufio.NewWriter(w) 580 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 581 w = tw 582 583 var total runtime.MemProfileRecord 584 for i := range p { 585 r := &p[i] 586 total.AllocBytes += r.AllocBytes 587 total.AllocObjects += r.AllocObjects 588 total.FreeBytes += r.FreeBytes 589 total.FreeObjects += r.FreeObjects 590 } 591 592 // Technically the rate is MemProfileRate not 2*MemProfileRate, 593 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 594 // so that's what pprof has come to expect. 595 rate := 2 * runtime.MemProfileRate 596 597 // pprof reads a profile with alloc == inuse as being a "2-column" profile 598 // (objects and bytes, not distinguishing alloc from inuse), 599 // but then such a profile can't be merged using pprof *.prof with 600 // other 4-column profiles where alloc != inuse. 601 // The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes. 602 // pprof doesn't use these header values anymore except for checking equality. 603 inUseBytes := total.InUseBytes() 604 allocBytes := total.AllocBytes 605 if inUseBytes == allocBytes { 606 allocBytes++ 607 } 608 609 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 610 total.InUseObjects(), inUseBytes, 611 total.AllocObjects, allocBytes, 612 rate) 613 614 for i := range p { 615 r := &p[i] 616 fmt.Fprintf(w, "%d: %d [%d: %d] @", 617 r.InUseObjects(), r.InUseBytes(), 618 r.AllocObjects, r.AllocBytes) 619 for _, pc := range r.Stack() { 620 fmt.Fprintf(w, " %#x", pc) 621 } 622 fmt.Fprintf(w, "\n") 623 printStackRecord(w, r.Stack(), false) 624 } 625 626 // Print memstats information too. 627 // Pprof will ignore, but useful for people 628 s := memStats 629 fmt.Fprintf(w, "\n# runtime.MemStats\n") 630 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 631 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 632 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 633 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 634 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 635 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 636 637 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 638 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 639 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 640 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 641 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 642 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 643 644 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 645 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 646 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 647 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 648 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 649 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 650 651 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 652 fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) 653 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 654 fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) 655 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 656 fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) 657 fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) 658 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 659 660 // Also flush out MaxRSS on supported platforms. 661 addMaxRSS(w) 662 663 tw.Flush() 664 return b.Flush() 665 } 666 667 // countThreadCreate returns the size of the current ThreadCreateProfile. 668 func countThreadCreate() int { 669 n, _ := runtime.ThreadCreateProfile(nil) 670 return n 671 } 672 673 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 674 func writeThreadCreate(w io.Writer, debug int) error { 675 // Until https://golang.org/issues/6104 is addressed, wrap 676 // ThreadCreateProfile because there's no point in tracking labels when we 677 // don't get any stack-traces. 678 return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) { 679 return runtime.ThreadCreateProfile(p) 680 }) 681 } 682 683 // countGoroutine returns the number of goroutines. 684 func countGoroutine() int { 685 return runtime.NumGoroutine() 686 } 687 688 // runtime_goroutineProfileWithLabels is defined in runtime/mprof.go 689 func runtime_goroutineProfileWithLabels(p []runtime.StackRecord, labels []unsafe.Pointer) (n int, ok bool) 690 691 // writeGoroutine writes the current runtime GoroutineProfile to w. 692 func writeGoroutine(w io.Writer, debug int) error { 693 if debug >= 2 { 694 return writeGoroutineStacks(w) 695 } 696 return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels) 697 } 698 699 func writeGoroutineStacks(w io.Writer) error { 700 // We don't know how big the buffer needs to be to collect 701 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 702 // Give up and use a truncated trace if 64 MB is not enough. 703 buf := make([]byte, 1<<20) 704 for i := 0; ; i++ { 705 n := runtime.Stack(buf, true) 706 if n < len(buf) { 707 buf = buf[:n] 708 break 709 } 710 if len(buf) >= 64<<20 { 711 // Filled 64 MB - stop there. 712 break 713 } 714 buf = make([]byte, 2*len(buf)) 715 } 716 _, err := w.Write(buf) 717 return err 718 } 719 720 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error { 721 // Find out how many records there are (fetch(nil)), 722 // allocate that many records, and get the data. 723 // There's a race—more records might be added between 724 // the two calls—so allocate a few extra records for safety 725 // and also try again if we're very unlucky. 726 // The loop should only execute one iteration in the common case. 727 var p []runtime.StackRecord 728 var labels []unsafe.Pointer 729 n, ok := fetch(nil, nil) 730 for { 731 // Allocate room for a slightly bigger profile, 732 // in case a few more entries have been added 733 // since the call to ThreadProfile. 734 p = make([]runtime.StackRecord, n+10) 735 labels = make([]unsafe.Pointer, n+10) 736 n, ok = fetch(p, labels) 737 if ok { 738 p = p[0:n] 739 break 740 } 741 // Profile grew; try again. 742 } 743 744 return printCountProfile(w, debug, name, &runtimeProfile{p, labels}) 745 } 746 747 type runtimeProfile struct { 748 stk []runtime.StackRecord 749 labels []unsafe.Pointer 750 } 751 752 func (p *runtimeProfile) Len() int { return len(p.stk) } 753 func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack() } 754 func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) } 755 756 var cpu struct { 757 sync.Mutex 758 profiling bool 759 done chan bool 760 } 761 762 // StartCPUProfile enables CPU profiling for the current process. 763 // While profiling, the profile will be buffered and written to w. 764 // StartCPUProfile returns an error if profiling is already enabled. 765 // 766 // On Unix-like systems, StartCPUProfile does not work by default for 767 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 768 // StartCPUProfile relies on the SIGPROF signal, but that signal will 769 // be delivered to the main program's SIGPROF signal handler (if any) 770 // not to the one used by Go. To make it work, call os/signal.Notify 771 // for syscall.SIGPROF, but note that doing so may break any profiling 772 // being done by the main program. 773 func StartCPUProfile(w io.Writer) error { 774 // The runtime routines allow a variable profiling rate, 775 // but in practice operating systems cannot trigger signals 776 // at more than about 500 Hz, and our processing of the 777 // signal is not cheap (mostly getting the stack trace). 778 // 100 Hz is a reasonable choice: it is frequent enough to 779 // produce useful data, rare enough not to bog down the 780 // system, and a nice round number to make it easy to 781 // convert sample counts to seconds. Instead of requiring 782 // each client to specify the frequency, we hard code it. 783 const hz = 100 784 785 cpu.Lock() 786 defer cpu.Unlock() 787 if cpu.done == nil { 788 cpu.done = make(chan bool) 789 } 790 // Double-check. 791 if cpu.profiling { 792 return fmt.Errorf("cpu profiling already in use") 793 } 794 cpu.profiling = true 795 runtime.SetCPUProfileRate(hz) 796 go profileWriter(w) 797 return nil 798 } 799 800 // readProfile, provided by the runtime, returns the next chunk of 801 // binary CPU profiling stack trace data, blocking until data is available. 802 // If profiling is turned off and all the profile data accumulated while it was 803 // on has been returned, readProfile returns eof=true. 804 // The caller must save the returned data and tags before calling readProfile again. 805 func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) 806 807 func profileWriter(w io.Writer) { 808 b := newProfileBuilder(w) 809 var err error 810 for { 811 time.Sleep(100 * time.Millisecond) 812 data, tags, eof := readProfile() 813 if e := b.addCPUData(data, tags); e != nil && err == nil { 814 err = e 815 } 816 if eof { 817 break 818 } 819 } 820 if err != nil { 821 // The runtime should never produce an invalid or truncated profile. 822 // It drops records that can't fit into its log buffers. 823 panic("runtime/pprof: converting profile: " + err.Error()) 824 } 825 b.build() 826 cpu.done <- true 827 } 828 829 // StopCPUProfile stops the current CPU profile, if any. 830 // StopCPUProfile only returns after all the writes for the 831 // profile have completed. 832 func StopCPUProfile() { 833 cpu.Lock() 834 defer cpu.Unlock() 835 836 if !cpu.profiling { 837 return 838 } 839 cpu.profiling = false 840 runtime.SetCPUProfileRate(0) 841 <-cpu.done 842 } 843 844 // countBlock returns the number of records in the blocking profile. 845 func countBlock() int { 846 n, _ := runtime.BlockProfile(nil) 847 return n 848 } 849 850 // countMutex returns the number of records in the mutex profile. 851 func countMutex() int { 852 n, _ := runtime.MutexProfile(nil) 853 return n 854 } 855 856 // writeBlock writes the current blocking profile to w. 857 func writeBlock(w io.Writer, debug int) error { 858 return writeProfileInternal(w, debug, "contention", runtime.BlockProfile, scaleBlockProfile) 859 } 860 861 func scaleBlockProfile(cnt int64, ns float64) (int64, float64) { 862 // Do nothing. 863 // The current way of block profile sampling makes it 864 // hard to compute the unsampled number. The legacy block 865 // profile parse doesn't attempt to scale or unsample. 866 return cnt, ns 867 } 868 869 // writeMutex writes the current mutex profile to w. 870 func writeMutex(w io.Writer, debug int) error { 871 return writeProfileInternal(w, debug, "mutex", runtime.MutexProfile, scaleMutexProfile) 872 } 873 874 // writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters 875 func writeProfileInternal(w io.Writer, debug int, name string, runtimeProfile func([]runtime.BlockProfileRecord) (int, bool), scaleProfile func(int64, float64) (int64, float64)) error { 876 var p []runtime.BlockProfileRecord 877 n, ok := runtimeProfile(nil) 878 for { 879 p = make([]runtime.BlockProfileRecord, n+50) 880 n, ok = runtimeProfile(p) 881 if ok { 882 p = p[:n] 883 break 884 } 885 } 886 887 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 888 889 if debug <= 0 { 890 return printCountCycleProfile(w, "contentions", "delay", scaleProfile, p) 891 } 892 893 b := bufio.NewWriter(w) 894 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 895 w = tw 896 897 fmt.Fprintf(w, "--- %v:\n", name) 898 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 899 if name == "mutex" { 900 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 901 } 902 for i := range p { 903 r := &p[i] 904 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 905 for _, pc := range r.Stack() { 906 fmt.Fprintf(w, " %#x", pc) 907 } 908 fmt.Fprint(w, "\n") 909 if debug > 0 { 910 printStackRecord(w, r.Stack(), true) 911 } 912 } 913 914 if tw != nil { 915 tw.Flush() 916 } 917 return b.Flush() 918 } 919 920 func scaleMutexProfile(cnt int64, ns float64) (int64, float64) { 921 period := runtime.SetMutexProfileFraction(-1) 922 return cnt * int64(period), ns * float64(period) 923 } 924 925 func runtime_cyclesPerSecond() int64