github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/runtime/pprof/pprof.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package pprof writes runtime profiling data in the format expected
     6  // by the pprof visualization tool.
     7  //
     8  // # Profiling a Go program
     9  //
    10  // The first step to profiling a Go program is to enable profiling.
    11  // Support for profiling benchmarks built with the standard testing
    12  // package is built into go test. For example, the following command
    13  // runs benchmarks in the current directory and writes the CPU and
    14  // memory profiles to cpu.prof and mem.prof:
    15  //
    16  //	go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
    17  //
    18  // To add equivalent profiling support to a standalone program, add
    19  // code like the following to your main function:
    20  //
    21  //	var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
    22  //	var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
    23  //
    24  //	func main() {
    25  //	    flag.Parse()
    26  //	    if *cpuprofile != "" {
    27  //	        f, err := os.Create(*cpuprofile)
    28  //	        if err != nil {
    29  //	            log.Fatal("could not create CPU profile: ", err)
    30  //	        }
    31  //	        defer f.Close() // error handling omitted for example
    32  //	        if err := pprof.StartCPUProfile(f); err != nil {
    33  //	            log.Fatal("could not start CPU profile: ", err)
    34  //	        }
    35  //	        defer pprof.StopCPUProfile()
    36  //	    }
    37  //
    38  //	    // ... rest of the program ...
    39  //
    40  //	    if *memprofile != "" {
    41  //	        f, err := os.Create(*memprofile)
    42  //	        if err != nil {
    43  //	            log.Fatal("could not create memory profile: ", err)
    44  //	        }
    45  //	        defer f.Close() // error handling omitted for example
    46  //	        runtime.GC() // get up-to-date statistics
    47  //	        if err := pprof.WriteHeapProfile(f); err != nil {
    48  //	            log.Fatal("could not write memory profile: ", err)
    49  //	        }
    50  //	    }
    51  //	}
    52  //
    53  // There is also a standard HTTP interface to profiling data. Adding
    54  // the following line will install handlers under the /debug/pprof/
    55  // URL to download live profiles:
    56  //
    57  //	import _ "net/http/pprof"
    58  //
    59  // See the net/http/pprof package for more details.
    60  //
    61  // Profiles can then be visualized with the pprof tool:
    62  //
    63  //	go tool pprof cpu.prof
    64  //
    65  // There are many commands available from the pprof command line.
    66  // Commonly used commands include "top", which prints a summary of the
    67  // top program hot-spots, and "web", which opens an interactive graph
    68  // of hot-spots and their call graphs. Use "help" for information on
    69  // all pprof commands.
    70  //
    71  // For more information about pprof, see
    72  // https://github.com/google/pprof/blob/master/doc/README.md.
    73  package pprof
    74  
    75  import (
    76  	"bufio"
    77  	"fmt"
    78  	"internal/abi"
    79  	"io"
    80  	"runtime"
    81  	"sort"
    82  	"strings"
    83  	"sync"
    84  	"text/tabwriter"
    85  	"time"
    86  	"unsafe"
    87  )
    88  
    89  // BUG(rsc): Profiles are only as good as the kernel support used to generate them.
    90  // See https://golang.org/issue/13841 for details about known problems.
    91  
    92  // A Profile is a collection of stack traces showing the call sequences
    93  // that led to instances of a particular event, such as allocation.
    94  // Packages can create and maintain their own profiles; the most common
    95  // use is for tracking resources that must be explicitly closed, such as files
    96  // or network connections.
    97  //
    98  // A Profile's methods can be called from multiple goroutines simultaneously.
    99  //
   100  // Each Profile has a unique name. A few profiles are predefined:
   101  //
   102  //	goroutine    - stack traces of all current goroutines
   103  //	heap         - a sampling of memory allocations of live objects
   104  //	allocs       - a sampling of all past memory allocations
   105  //	threadcreate - stack traces that led to the creation of new OS threads
   106  //	block        - stack traces that led to blocking on synchronization primitives
   107  //	mutex        - stack traces of holders of contended mutexes
   108  //
   109  // These predefined profiles maintain themselves and panic on an explicit
   110  // Add or Remove method call.
   111  //
   112  // The heap profile reports statistics as of the most recently completed
   113  // garbage collection; it elides more recent allocation to avoid skewing
   114  // the profile away from live data and toward garbage.
   115  // If there has been no garbage collection at all, the heap profile reports
   116  // all known allocations. This exception helps mainly in programs running
   117  // without garbage collection enabled, usually for debugging purposes.
   118  //
   119  // The heap profile tracks both the allocation sites for all live objects in
   120  // the application memory and for all objects allocated since the program start.
   121  // Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects
   122  // flags select which to display, defaulting to -inuse_space (live objects,
   123  // scaled by size).
   124  //
   125  // The allocs profile is the same as the heap profile but changes the default
   126  // pprof display to -alloc_space, the total number of bytes allocated since
   127  // the program began (including garbage-collected bytes).
   128  //
   129  // The CPU profile is not available as a Profile. It has a special API,
   130  // the StartCPUProfile and StopCPUProfile functions, because it streams
   131  // output to a writer during profiling.
   132  type Profile struct {
   133  	name  string
   134  	mu    sync.Mutex
   135  	m     map[any][]uintptr
   136  	count func() int
   137  	write func(io.Writer, int) error
   138  }
   139  
   140  // profiles records all registered profiles.
   141  var profiles struct {
   142  	mu sync.Mutex
   143  	m  map[string]*Profile
   144  }
   145  
   146  var goroutineProfile = &Profile{
   147  	name:  "goroutine",
   148  	count: countGoroutine,
   149  	write: writeGoroutine,
   150  }
   151  
   152  var threadcreateProfile = &Profile{
   153  	name:  "threadcreate",
   154  	count: countThreadCreate,
   155  	write: writeThreadCreate,
   156  }
   157  
   158  var heapProfile = &Profile{
   159  	name:  "heap",
   160  	count: countHeap,
   161  	write: writeHeap,
   162  }
   163  
   164  var allocsProfile = &Profile{
   165  	name:  "allocs",
   166  	count: countHeap, // identical to heap profile
   167  	write: writeAlloc,
   168  }
   169  
   170  var blockProfile = &Profile{
   171  	name:  "block",
   172  	count: countBlock,
   173  	write: writeBlock,
   174  }
   175  
   176  var mutexProfile = &Profile{
   177  	name:  "mutex",
   178  	count: countMutex,
   179  	write: writeMutex,
   180  }
   181  
   182  func lockProfiles() {
   183  	profiles.mu.Lock()
   184  	if profiles.m == nil {
   185  		// Initial built-in profiles.
   186  		profiles.m = map[string]*Profile{
   187  			"goroutine":    goroutineProfile,
   188  			"threadcreate": threadcreateProfile,
   189  			"heap":         heapProfile,
   190  			"allocs":       allocsProfile,
   191  			"block":        blockProfile,
   192  			"mutex":        mutexProfile,
   193  		}
   194  	}
   195  }
   196  
   197  func unlockProfiles() {
   198  	profiles.mu.Unlock()
   199  }
   200  
   201  // NewProfile creates a new profile with the given name.
   202  // If a profile with that name already exists, NewProfile panics.
   203  // The convention is to use a 'import/path.' prefix to create
   204  // separate name spaces for each package.
   205  // For compatibility with various tools that read pprof data,
   206  // profile names should not contain spaces.
   207  func NewProfile(name string) *Profile {
   208  	lockProfiles()
   209  	defer unlockProfiles()
   210  	if name == "" {
   211  		panic("pprof: NewProfile with empty name")
   212  	}
   213  	if profiles.m[name] != nil {
   214  		panic("pprof: NewProfile name already in use: " + name)
   215  	}
   216  	p := &Profile{
   217  		name: name,
   218  		m:    map[any][]uintptr{},
   219  	}
   220  	profiles.m[name] = p
   221  	return p
   222  }
   223  
   224  // Lookup returns the profile with the given name, or nil if no such profile exists.
   225  func Lookup(name string) *Profile {
   226  	lockProfiles()
   227  	defer unlockProfiles()
   228  	return profiles.m[name]
   229  }
   230  
   231  // Profiles returns a slice of all the known profiles, sorted by name.
   232  func Profiles() []*Profile {
   233  	lockProfiles()
   234  	defer unlockProfiles()
   235  
   236  	all := make([]*Profile, 0, len(profiles.m))
   237  	for _, p := range profiles.m {
   238  		all = append(all, p)
   239  	}
   240  
   241  	sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name })
   242  	return all
   243  }
   244  
   245  // Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
   246  func (p *Profile) Name() string {
   247  	return p.name
   248  }
   249  
   250  // Count returns the number of execution stacks currently in the profile.
   251  func (p *Profile) Count() int {
   252  	p.mu.Lock()
   253  	defer p.mu.Unlock()
   254  	if p.count != nil {
   255  		return p.count()
   256  	}
   257  	return len(p.m)
   258  }
   259  
   260  // Add adds the current execution stack to the profile, associated with value.
   261  // Add stores value in an internal map, so value must be suitable for use as
   262  // a map key and will not be garbage collected until the corresponding
   263  // call to Remove. Add panics if the profile already contains a stack for value.
   264  //
   265  // The skip parameter has the same meaning as runtime.Caller's skip
   266  // and controls where the stack trace begins. Passing skip=0 begins the
   267  // trace in the function calling Add. For example, given this
   268  // execution stack:
   269  //
   270  //	Add
   271  //	called from rpc.NewClient
   272  //	called from mypkg.Run
   273  //	called from main.main
   274  //
   275  // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
   276  // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
   277  func (p *Profile) Add(value any, skip int) {
   278  	if p.name == "" {
   279  		panic("pprof: use of uninitialized Profile")
   280  	}
   281  	if p.write != nil {
   282  		panic("pprof: Add called on built-in Profile " + p.name)
   283  	}
   284  
   285  	stk := make([]uintptr, 32)
   286  	n := runtime.Callers(skip+1, stk[:])
   287  	stk = stk[:n]
   288  	if len(stk) == 0 {
   289  		// The value for skip is too large, and there's no stack trace to record.
   290  		stk = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)}
   291  	}
   292  
   293  	p.mu.Lock()
   294  	defer p.mu.Unlock()
   295  	if p.m[value] != nil {
   296  		panic("pprof: Profile.Add of duplicate value")
   297  	}
   298  	p.m[value] = stk
   299  }
   300  
   301  // Remove removes the execution stack associated with value from the profile.
   302  // It is a no-op if the value is not in the profile.
   303  func (p *Profile) Remove(value any) {
   304  	p.mu.Lock()
   305  	defer p.mu.Unlock()
   306  	delete(p.m, value)
   307  }
   308  
   309  // WriteTo writes a pprof-formatted snapshot of the profile to w.
   310  // If a write to w returns an error, WriteTo returns that error.
   311  // Otherwise, WriteTo returns nil.
   312  //
   313  // The debug parameter enables additional output.
   314  // Passing debug=0 writes the gzip-compressed protocol buffer described
   315  // in https://github.com/google/pprof/tree/master/proto#overview.
   316  // Passing debug=1 writes the legacy text format with comments
   317  // translating addresses to function names and line numbers, so that a
   318  // programmer can read the profile without tools.
   319  //
   320  // The predefined profiles may assign meaning to other debug values;
   321  // for example, when printing the "goroutine" profile, debug=2 means to
   322  // print the goroutine stacks in the same form that a Go program uses
   323  // when dying due to an unrecovered panic.
   324  func (p *Profile) WriteTo(w io.Writer, debug int) error {
   325  	if p.name == "" {
   326  		panic("pprof: use of zero Profile")
   327  	}
   328  	if p.write != nil {
   329  		return p.write(w, debug)
   330  	}
   331  
   332  	// Obtain consistent snapshot under lock; then process without lock.
   333  	p.mu.Lock()
   334  	all := make([][]uintptr, 0, len(p.m))
   335  	for _, stk := range p.m {
   336  		all = append(all, stk)
   337  	}
   338  	p.mu.Unlock()
   339  
   340  	// Map order is non-deterministic; make output deterministic.
   341  	sort.Slice(all, func(i, j int) bool {
   342  		t, u := all[i], all[j]
   343  		for k := 0; k < len(t) && k < len(u); k++ {
   344  			if t[k] != u[k] {
   345  				return t[k] < u[k]
   346  			}
   347  		}
   348  		return len(t) < len(u)
   349  	})
   350  
   351  	return printCountProfile(w, debug, p.name, stackProfile(all))
   352  }
   353  
   354  type stackProfile [][]uintptr
   355  
   356  func (x stackProfile) Len() int              { return len(x) }
   357  func (x stackProfile) Stack(i int) []uintptr { return x[i] }
   358  func (x stackProfile) Label(i int) *labelMap { return nil }
   359  
   360  // A countProfile is a set of stack traces to be printed as counts
   361  // grouped by stack trace. There are multiple implementations:
   362  // all that matters is that we can find out how many traces there are
   363  // and obtain each trace in turn.
   364  type countProfile interface {
   365  	Len() int
   366  	Stack(i int) []uintptr
   367  	Label(i int) *labelMap
   368  }
   369  
   370  // printCountCycleProfile outputs block profile records (for block or mutex profiles)
   371  // as the pprof-proto format output. Translations from cycle count to time duration
   372  // are done because The proto expects count and time (nanoseconds) instead of count
   373  // and the number of cycles for block, contention profiles.
   374  // Possible 'scaler' functions are scaleBlockProfile and scaleMutexProfile.
   375  func printCountCycleProfile(w io.Writer, countName, cycleName string, scaler func(int64, float64) (int64, float64), records []runtime.BlockProfileRecord) error {
   376  	// Output profile in protobuf form.
   377  	b := newProfileBuilder(w)
   378  	b.pbValueType(tagProfile_PeriodType, countName, "count")
   379  	b.pb.int64Opt(tagProfile_Period, 1)
   380  	b.pbValueType(tagProfile_SampleType, countName, "count")
   381  	b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds")
   382  
   383  	cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9
   384  
   385  	values := []int64{0, 0}
   386  	var locs []uint64
   387  	for _, r := range records {
   388  		count, nanosec := scaler(r.Count, float64(r.Cycles)/cpuGHz)
   389  		values[0] = count
   390  		values[1] = int64(nanosec)
   391  		// For count profiles, all stack addresses are
   392  		// return PCs, which is what appendLocsForStack expects.
   393  		locs = b.appendLocsForStack(locs[:0], r.Stack())
   394  		b.pbSample(values, locs, nil)
   395  	}
   396  	b.build()
   397  	return nil
   398  }
   399  
   400  // printCountProfile prints a countProfile at the specified debug level.
   401  // The profile will be in compressed proto format unless debug is nonzero.
   402  func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
   403  	// Build count of each stack.
   404  	var buf strings.Builder
   405  	key := func(stk []uintptr, lbls *labelMap) string {
   406  		buf.Reset()
   407  		fmt.Fprintf(&buf, "@")
   408  		for _, pc := range stk {
   409  			fmt.Fprintf(&buf, " %#x", pc)
   410  		}
   411  		if lbls != nil {
   412  			buf.WriteString("\n# labels: ")
   413  			buf.WriteString(lbls.String())
   414  		}
   415  		return buf.String()
   416  	}
   417  	count := map[string]int{}
   418  	index := map[string]int{}
   419  	var keys []string
   420  	n := p.Len()
   421  	for i := 0; i < n; i++ {
   422  		k := key(p.Stack(i), p.Label(i))
   423  		if count[k] == 0 {
   424  			index[k] = i
   425  			keys = append(keys, k)
   426  		}
   427  		count[k]++
   428  	}
   429  
   430  	sort.Sort(&keysByCount{keys, count})
   431  
   432  	if debug > 0 {
   433  		// Print debug profile in legacy format
   434  		tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
   435  		fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len())
   436  		for _, k := range keys {
   437  			fmt.Fprintf(tw, "%d %s\n", count[k], k)
   438  			printStackRecord(tw, p.Stack(index[k]), false)
   439  		}
   440  		return tw.Flush()
   441  	}
   442  
   443  	// Output profile in protobuf form.
   444  	b := newProfileBuilder(w)
   445  	b.pbValueType(tagProfile_PeriodType, name, "count")
   446  	b.pb.int64Opt(tagProfile_Period, 1)
   447  	b.pbValueType(tagProfile_SampleType, name, "count")
   448  
   449  	values := []int64{0}
   450  	var locs []uint64
   451  	for _, k := range keys {
   452  		values[0] = int64(count[k])
   453  		// For count profiles, all stack addresses are
   454  		// return PCs, which is what appendLocsForStack expects.
   455  		locs = b.appendLocsForStack(locs[:0], p.Stack(index[k]))
   456  		idx := index[k]
   457  		var labels func()
   458  		if p.Label(idx) != nil {
   459  			labels = func() {
   460  				for k, v := range *p.Label(idx) {
   461  					b.pbLabel(tagSample_Label, k, v, 0)
   462  				}
   463  			}
   464  		}
   465  		b.pbSample(values, locs, labels)
   466  	}
   467  	b.build()
   468  	return nil
   469  }
   470  
   471  // keysByCount sorts keys with higher counts first, breaking ties by key string order.
   472  type keysByCount struct {
   473  	keys  []string
   474  	count map[string]int
   475  }
   476  
   477  func (x *keysByCount) Len() int      { return len(x.keys) }
   478  func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] }
   479  func (x *keysByCount) Less(i, j int) bool {
   480  	ki, kj := x.keys[i], x.keys[j]
   481  	ci, cj := x.count[ki], x.count[kj]
   482  	if ci != cj {
   483  		return ci > cj
   484  	}
   485  	return ki < kj
   486  }
   487  
   488  // printStackRecord prints the function + source line information
   489  // for a single stack trace.
   490  func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
   491  	show := allFrames
   492  	frames := runtime.CallersFrames(stk)
   493  	for {
   494  		frame, more := frames.Next()
   495  		name := frame.Function
   496  		if name == "" {
   497  			show = true
   498  			fmt.Fprintf(w, "#\t%#x\n", frame.PC)
   499  		} else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) {
   500  			// Hide runtime.goexit and any runtime functions at the beginning.
   501  			// This is useful mainly for allocation traces.
   502  			show = true
   503  			fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line)
   504  		}
   505  		if !more {
   506  			break
   507  		}
   508  	}
   509  	if !show {
   510  		// We didn't print anything; do it again,
   511  		// and this time include runtime functions.
   512  		printStackRecord(w, stk, true)
   513  		return
   514  	}
   515  	fmt.Fprintf(w, "\n")
   516  }
   517  
   518  // Interface to system profiles.
   519  
   520  // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
   521  // It is preserved for backwards compatibility.
   522  func WriteHeapProfile(w io.Writer) error {
   523  	return writeHeap(w, 0)
   524  }
   525  
   526  // countHeap returns the number of records in the heap profile.
   527  func countHeap() int {
   528  	n, _ := runtime.MemProfile(nil, true)
   529  	return n
   530  }
   531  
   532  // writeHeap writes the current runtime heap profile to w.
   533  func writeHeap(w io.Writer, debug int) error {
   534  	return writeHeapInternal(w, debug, "")
   535  }
   536  
   537  // writeAlloc writes the current runtime heap profile to w
   538  // with the total allocation space as the default sample type.
   539  func writeAlloc(w io.Writer, debug int) error {
   540  	return writeHeapInternal(w, debug, "alloc_space")
   541  }
   542  
   543  func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error {
   544  	var memStats *runtime.MemStats
   545  	if debug != 0 {
   546  		// Read mem stats first, so that our other allocations
   547  		// do not appear in the statistics.
   548  		memStats = new(runtime.MemStats)
   549  		runtime.ReadMemStats(memStats)
   550  	}
   551  
   552  	// Find out how many records there are (MemProfile(nil, true)),
   553  	// allocate that many records, and get the data.
   554  	// There's a race—more records might be added between
   555  	// the two calls—so allocate a few extra records for safety
   556  	// and also try again if we're very unlucky.
   557  	// The loop should only execute one iteration in the common case.
   558  	var p []runtime.MemProfileRecord
   559  	n, ok := runtime.MemProfile(nil, true)
   560  	for {
   561  		// Allocate room for a slightly bigger profile,
   562  		// in case a few more entries have been added
   563  		// since the call to MemProfile.
   564  		p = make([]runtime.MemProfileRecord, n+50)
   565  		n, ok = runtime.MemProfile(p, true)
   566  		if ok {
   567  			p = p[0:n]
   568  			break
   569  		}
   570  		// Profile grew; try again.
   571  	}
   572  
   573  	if debug == 0 {
   574  		return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType)
   575  	}
   576  
   577  	sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() })
   578  
   579  	b := bufio.NewWriter(w)
   580  	tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0)
   581  	w = tw
   582  
   583  	var total runtime.MemProfileRecord
   584  	for i := range p {
   585  		r := &p[i]
   586  		total.AllocBytes += r.AllocBytes
   587  		total.AllocObjects += r.AllocObjects
   588  		total.FreeBytes += r.FreeBytes
   589  		total.FreeObjects += r.FreeObjects
   590  	}
   591  
   592  	// Technically the rate is MemProfileRate not 2*MemProfileRate,
   593  	// but early versions of the C++ heap profiler reported 2*MemProfileRate,
   594  	// so that's what pprof has come to expect.
   595  	rate := 2 * runtime.MemProfileRate
   596  
   597  	// pprof reads a profile with alloc == inuse as being a "2-column" profile
   598  	// (objects and bytes, not distinguishing alloc from inuse),
   599  	// but then such a profile can't be merged using pprof *.prof with
   600  	// other 4-column profiles where alloc != inuse.
   601  	// The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes.
   602  	// pprof doesn't use these header values anymore except for checking equality.
   603  	inUseBytes := total.InUseBytes()
   604  	allocBytes := total.AllocBytes
   605  	if inUseBytes == allocBytes {
   606  		allocBytes++
   607  	}
   608  
   609  	fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
   610  		total.InUseObjects(), inUseBytes,
   611  		total.AllocObjects, allocBytes,
   612  		rate)
   613  
   614  	for i := range p {
   615  		r := &p[i]
   616  		fmt.Fprintf(w, "%d: %d [%d: %d] @",
   617  			r.InUseObjects(), r.InUseBytes(),
   618  			r.AllocObjects, r.AllocBytes)
   619  		for _, pc := range r.Stack() {
   620  			fmt.Fprintf(w, " %#x", pc)
   621  		}
   622  		fmt.Fprintf(w, "\n")
   623  		printStackRecord(w, r.Stack(), false)
   624  	}
   625  
   626  	// Print memstats information too.
   627  	// Pprof will ignore, but useful for people
   628  	s := memStats
   629  	fmt.Fprintf(w, "\n# runtime.MemStats\n")
   630  	fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
   631  	fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
   632  	fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
   633  	fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
   634  	fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
   635  	fmt.Fprintf(w, "# Frees = %d\n", s.Frees)
   636  
   637  	fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
   638  	fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
   639  	fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
   640  	fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
   641  	fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
   642  	fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)
   643  
   644  	fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
   645  	fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
   646  	fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
   647  	fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
   648  	fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys)
   649  	fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys)
   650  
   651  	fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
   652  	fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC)
   653  	fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
   654  	fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd)
   655  	fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
   656  	fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC)
   657  	fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction)
   658  	fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
   659  
   660  	// Also flush out MaxRSS on supported platforms.
   661  	addMaxRSS(w)
   662  
   663  	tw.Flush()
   664  	return b.Flush()
   665  }
   666  
   667  // countThreadCreate returns the size of the current ThreadCreateProfile.
   668  func countThreadCreate() int {
   669  	n, _ := runtime.ThreadCreateProfile(nil)
   670  	return n
   671  }
   672  
   673  // writeThreadCreate writes the current runtime ThreadCreateProfile to w.
   674  func writeThreadCreate(w io.Writer, debug int) error {
   675  	// Until https://golang.org/issues/6104 is addressed, wrap
   676  	// ThreadCreateProfile because there's no point in tracking labels when we
   677  	// don't get any stack-traces.
   678  	return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) {
   679  		return runtime.ThreadCreateProfile(p)
   680  	})
   681  }
   682  
   683  // countGoroutine returns the number of goroutines.
   684  func countGoroutine() int {
   685  	return runtime.NumGoroutine()
   686  }
   687  
   688  // runtime_goroutineProfileWithLabels is defined in runtime/mprof.go
   689  func runtime_goroutineProfileWithLabels(p []runtime.StackRecord, labels []unsafe.Pointer) (n int, ok bool)
   690  
   691  // writeGoroutine writes the current runtime GoroutineProfile to w.
   692  func writeGoroutine(w io.Writer, debug int) error {
   693  	if debug >= 2 {
   694  		return writeGoroutineStacks(w)
   695  	}
   696  	return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels)
   697  }
   698  
   699  func writeGoroutineStacks(w io.Writer) error {
   700  	// We don't know how big the buffer needs to be to collect
   701  	// all the goroutines. Start with 1 MB and try a few times, doubling each time.
   702  	// Give up and use a truncated trace if 64 MB is not enough.
   703  	buf := make([]byte, 1<<20)
   704  	for i := 0; ; i++ {
   705  		n := runtime.Stack(buf, true)
   706  		if n < len(buf) {
   707  			buf = buf[:n]
   708  			break
   709  		}
   710  		if len(buf) >= 64<<20 {
   711  			// Filled 64 MB - stop there.
   712  			break
   713  		}
   714  		buf = make([]byte, 2*len(buf))
   715  	}
   716  	_, err := w.Write(buf)
   717  	return err
   718  }
   719  
   720  func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error {
   721  	// Find out how many records there are (fetch(nil)),
   722  	// allocate that many records, and get the data.
   723  	// There's a race—more records might be added between
   724  	// the two calls—so allocate a few extra records for safety
   725  	// and also try again if we're very unlucky.
   726  	// The loop should only execute one iteration in the common case.
   727  	var p []runtime.StackRecord
   728  	var labels []unsafe.Pointer
   729  	n, ok := fetch(nil, nil)
   730  	for {
   731  		// Allocate room for a slightly bigger profile,
   732  		// in case a few more entries have been added
   733  		// since the call to ThreadProfile.
   734  		p = make([]runtime.StackRecord, n+10)
   735  		labels = make([]unsafe.Pointer, n+10)
   736  		n, ok = fetch(p, labels)
   737  		if ok {
   738  			p = p[0:n]
   739  			break
   740  		}
   741  		// Profile grew; try again.
   742  	}
   743  
   744  	return printCountProfile(w, debug, name, &runtimeProfile{p, labels})
   745  }
   746  
   747  type runtimeProfile struct {
   748  	stk    []runtime.StackRecord
   749  	labels []unsafe.Pointer
   750  }
   751  
   752  func (p *runtimeProfile) Len() int              { return len(p.stk) }
   753  func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack() }
   754  func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) }
   755  
   756  var cpu struct {
   757  	sync.Mutex
   758  	profiling bool
   759  	done      chan bool
   760  }
   761  
   762  // StartCPUProfile enables CPU profiling for the current process.
   763  // While profiling, the profile will be buffered and written to w.
   764  // StartCPUProfile returns an error if profiling is already enabled.
   765  //
   766  // On Unix-like systems, StartCPUProfile does not work by default for
   767  // Go code built with -buildmode=c-archive or -buildmode=c-shared.
   768  // StartCPUProfile relies on the SIGPROF signal, but that signal will
   769  // be delivered to the main program's SIGPROF signal handler (if any)
   770  // not to the one used by Go. To make it work, call os/signal.Notify
   771  // for syscall.SIGPROF, but note that doing so may break any profiling
   772  // being done by the main program.
   773  func StartCPUProfile(w io.Writer) error {
   774  	// The runtime routines allow a variable profiling rate,
   775  	// but in practice operating systems cannot trigger signals
   776  	// at more than about 500 Hz, and our processing of the
   777  	// signal is not cheap (mostly getting the stack trace).
   778  	// 100 Hz is a reasonable choice: it is frequent enough to
   779  	// produce useful data, rare enough not to bog down the
   780  	// system, and a nice round number to make it easy to
   781  	// convert sample counts to seconds. Instead of requiring
   782  	// each client to specify the frequency, we hard code it.
   783  	const hz = 100
   784  
   785  	cpu.Lock()
   786  	defer cpu.Unlock()
   787  	if cpu.done == nil {
   788  		cpu.done = make(chan bool)
   789  	}
   790  	// Double-check.
   791  	if cpu.profiling {
   792  		return fmt.Errorf("cpu profiling already in use")
   793  	}
   794  	cpu.profiling = true
   795  	runtime.SetCPUProfileRate(hz)
   796  	go profileWriter(w)
   797  	return nil
   798  }
   799  
   800  // readProfile, provided by the runtime, returns the next chunk of
   801  // binary CPU profiling stack trace data, blocking until data is available.
   802  // If profiling is turned off and all the profile data accumulated while it was
   803  // on has been returned, readProfile returns eof=true.
   804  // The caller must save the returned data and tags before calling readProfile again.
   805  func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool)
   806  
   807  func profileWriter(w io.Writer) {
   808  	b := newProfileBuilder(w)
   809  	var err error
   810  	for {
   811  		time.Sleep(100 * time.Millisecond)
   812  		data, tags, eof := readProfile()
   813  		if e := b.addCPUData(data, tags); e != nil && err == nil {
   814  			err = e
   815  		}
   816  		if eof {
   817  			break
   818  		}
   819  	}
   820  	if err != nil {
   821  		// The runtime should never produce an invalid or truncated profile.
   822  		// It drops records that can't fit into its log buffers.
   823  		panic("runtime/pprof: converting profile: " + err.Error())
   824  	}
   825  	b.build()
   826  	cpu.done <- true
   827  }
   828  
   829  // StopCPUProfile stops the current CPU profile, if any.
   830  // StopCPUProfile only returns after all the writes for the
   831  // profile have completed.
   832  func StopCPUProfile() {
   833  	cpu.Lock()
   834  	defer cpu.Unlock()
   835  
   836  	if !cpu.profiling {
   837  		return
   838  	}
   839  	cpu.profiling = false
   840  	runtime.SetCPUProfileRate(0)
   841  	<-cpu.done
   842  }
   843  
   844  // countBlock returns the number of records in the blocking profile.
   845  func countBlock() int {
   846  	n, _ := runtime.BlockProfile(nil)
   847  	return n
   848  }
   849  
   850  // countMutex returns the number of records in the mutex profile.
   851  func countMutex() int {
   852  	n, _ := runtime.MutexProfile(nil)
   853  	return n
   854  }
   855  
   856  // writeBlock writes the current blocking profile to w.
   857  func writeBlock(w io.Writer, debug int) error {
   858  	return writeProfileInternal(w, debug, "contention", runtime.BlockProfile, scaleBlockProfile)
   859  }
   860  
   861  func scaleBlockProfile(cnt int64, ns float64) (int64, float64) {
   862  	// Do nothing.
   863  	// The current way of block profile sampling makes it
   864  	// hard to compute the unsampled number. The legacy block
   865  	// profile parse doesn't attempt to scale or unsample.
   866  	return cnt, ns
   867  }
   868  
   869  // writeMutex writes the current mutex profile to w.
   870  func writeMutex(w io.Writer, debug int) error {
   871  	return writeProfileInternal(w, debug, "mutex", runtime.MutexProfile, scaleMutexProfile)
   872  }
   873  
   874  // writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters
   875  func writeProfileInternal(w io.Writer, debug int, name string, runtimeProfile func([]runtime.BlockProfileRecord) (int, bool), scaleProfile func(int64, float64) (int64, float64)) error {
   876  	var p []runtime.BlockProfileRecord
   877  	n, ok := runtimeProfile(nil)
   878  	for {
   879  		p = make([]runtime.BlockProfileRecord, n+50)
   880  		n, ok = runtimeProfile(p)
   881  		if ok {
   882  			p = p[:n]
   883  			break
   884  		}
   885  	}
   886  
   887  	sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })
   888  
   889  	if debug <= 0 {
   890  		return printCountCycleProfile(w, "contentions", "delay", scaleProfile, p)
   891  	}
   892  
   893  	b := bufio.NewWriter(w)
   894  	tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
   895  	w = tw
   896  
   897  	fmt.Fprintf(w, "--- %v:\n", name)
   898  	fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
   899  	if name == "mutex" {
   900  		fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
   901  	}
   902  	for i := range p {
   903  		r := &p[i]
   904  		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
   905  		for _, pc := range r.Stack() {
   906  			fmt.Fprintf(w, " %#x", pc)
   907  		}
   908  		fmt.Fprint(w, "\n")
   909  		if debug > 0 {
   910  			printStackRecord(w, r.Stack(), true)
   911  		}
   912  	}
   913  
   914  	if tw != nil {
   915  		tw.Flush()
   916  	}
   917  	return b.Flush()
   918  }
   919  
   920  func scaleMutexProfile(cnt int64, ns float64) (int64, float64) {
   921  	period := runtime.SetMutexProfileFraction(-1)
   922  	return cnt * int64(period), ns * float64(period)
   923  }
   924  
   925  func runtime_cyclesPerSecond() int64