github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/syscall/exec_linux.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:build linux 6 7 package syscall 8 9 import ( 10 "internal/itoa" 11 "runtime" 12 "unsafe" 13 ) 14 15 // Linux unshare/clone/clone2/clone3 flags, architecture-independent, 16 // copied from linux/sched.h. 17 const ( 18 CLONE_VM = 0x00000100 // set if VM shared between processes 19 CLONE_FS = 0x00000200 // set if fs info shared between processes 20 CLONE_FILES = 0x00000400 // set if open files shared between processes 21 CLONE_SIGHAND = 0x00000800 // set if signal handlers and blocked signals shared 22 CLONE_PIDFD = 0x00001000 // set if a pidfd should be placed in parent 23 CLONE_PTRACE = 0x00002000 // set if we want to let tracing continue on the child too 24 CLONE_VFORK = 0x00004000 // set if the parent wants the child to wake it up on mm_release 25 CLONE_PARENT = 0x00008000 // set if we want to have the same parent as the cloner 26 CLONE_THREAD = 0x00010000 // Same thread group? 27 CLONE_NEWNS = 0x00020000 // New mount namespace group 28 CLONE_SYSVSEM = 0x00040000 // share system V SEM_UNDO semantics 29 CLONE_SETTLS = 0x00080000 // create a new TLS for the child 30 CLONE_PARENT_SETTID = 0x00100000 // set the TID in the parent 31 CLONE_CHILD_CLEARTID = 0x00200000 // clear the TID in the child 32 CLONE_DETACHED = 0x00400000 // Unused, ignored 33 CLONE_UNTRACED = 0x00800000 // set if the tracing process can't force CLONE_PTRACE on this clone 34 CLONE_CHILD_SETTID = 0x01000000 // set the TID in the child 35 CLONE_NEWCGROUP = 0x02000000 // New cgroup namespace 36 CLONE_NEWUTS = 0x04000000 // New utsname namespace 37 CLONE_NEWIPC = 0x08000000 // New ipc namespace 38 CLONE_NEWUSER = 0x10000000 // New user namespace 39 CLONE_NEWPID = 0x20000000 // New pid namespace 40 CLONE_NEWNET = 0x40000000 // New network namespace 41 CLONE_IO = 0x80000000 // Clone io context 42 43 // Flags for the clone3() syscall. 44 45 CLONE_CLEAR_SIGHAND = 0x100000000 // Clear any signal handler and reset to SIG_DFL. 46 CLONE_INTO_CGROUP = 0x200000000 // Clone into a specific cgroup given the right permissions. 47 48 // Cloning flags intersect with CSIGNAL so can be used with unshare and clone3 49 // syscalls only: 50 51 CLONE_NEWTIME = 0x00000080 // New time namespace 52 ) 53 54 // SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux. 55 // See user_namespaces(7). 56 type SysProcIDMap struct { 57 ContainerID int // Container ID. 58 HostID int // Host ID. 59 Size int // Size. 60 } 61 62 type SysProcAttr struct { 63 Chroot string // Chroot. 64 Credential *Credential // Credential. 65 // Ptrace tells the child to call ptrace(PTRACE_TRACEME). 66 // Call runtime.LockOSThread before starting a process with this set, 67 // and don't call UnlockOSThread until done with PtraceSyscall calls. 68 Ptrace bool 69 Setsid bool // Create session. 70 // Setpgid sets the process group ID of the child to Pgid, 71 // or, if Pgid == 0, to the new child's process ID. 72 Setpgid bool 73 // Setctty sets the controlling terminal of the child to 74 // file descriptor Ctty. Ctty must be a descriptor number 75 // in the child process: an index into ProcAttr.Files. 76 // This is only meaningful if Setsid is true. 77 Setctty bool 78 Noctty bool // Detach fd 0 from controlling terminal 79 Ctty int // Controlling TTY fd 80 // Foreground places the child process group in the foreground. 81 // This implies Setpgid. The Ctty field must be set to 82 // the descriptor of the controlling TTY. 83 // Unlike Setctty, in this case Ctty must be a descriptor 84 // number in the parent process. 85 Foreground bool 86 Pgid int // Child's process group ID if Setpgid. 87 // Pdeathsig, if non-zero, is a signal that the kernel will send to 88 // the child process when the creating thread dies. Note that the signal 89 // is sent on thread termination, which may happen before process termination. 90 // There are more details at https://go.dev/issue/27505. 91 Pdeathsig Signal 92 Cloneflags uintptr // Flags for clone calls (Linux only) 93 Unshareflags uintptr // Flags for unshare calls (Linux only) 94 UidMappings []SysProcIDMap // User ID mappings for user namespaces. 95 GidMappings []SysProcIDMap // Group ID mappings for user namespaces. 96 // GidMappingsEnableSetgroups enabling setgroups syscall. 97 // If false, then setgroups syscall will be disabled for the child process. 98 // This parameter is no-op if GidMappings == nil. Otherwise for unprivileged 99 // users this should be set to false for mappings work. 100 GidMappingsEnableSetgroups bool 101 AmbientCaps []uintptr // Ambient capabilities (Linux only) 102 UseCgroupFD bool // Whether to make use of the CgroupFD field. 103 CgroupFD int // File descriptor of a cgroup to put the new process into. 104 } 105 106 var ( 107 none = [...]byte{'n', 'o', 'n', 'e', 0} 108 slash = [...]byte{'/', 0} 109 ) 110 111 // Implemented in runtime package. 112 func runtime_BeforeFork() 113 func runtime_AfterFork() 114 func runtime_AfterForkInChild() 115 116 // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. 117 // If a dup or exec fails, write the errno error to pipe. 118 // (Pipe is close-on-exec so if exec succeeds, it will be closed.) 119 // In the child, this function must not acquire any locks, because 120 // they might have been locked at the time of the fork. This means 121 // no rescheduling, no malloc calls, and no new stack segments. 122 // For the same reason compiler does not race instrument it. 123 // The calls to RawSyscall are okay because they are assembly 124 // functions that do not grow the stack. 125 // 126 //go:norace 127 func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { 128 // Set up and fork. This returns immediately in the parent or 129 // if there's an error. 130 r1, err1, p, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe) 131 if locked { 132 runtime_AfterFork() 133 } 134 if err1 != 0 { 135 return 0, err1 136 } 137 138 // parent; return PID 139 pid = int(r1) 140 141 if sys.UidMappings != nil || sys.GidMappings != nil { 142 Close(p[0]) 143 var err2 Errno 144 // uid/gid mappings will be written after fork and unshare(2) for user 145 // namespaces. 146 if sys.Unshareflags&CLONE_NEWUSER == 0 { 147 if err := writeUidGidMappings(pid, sys); err != nil { 148 err2 = err.(Errno) 149 } 150 } 151 RawSyscall(SYS_WRITE, uintptr(p[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) 152 Close(p[1]) 153 } 154 155 return pid, 0 156 } 157 158 const _LINUX_CAPABILITY_VERSION_3 = 0x20080522 159 160 type capHeader struct { 161 version uint32 162 pid int32 163 } 164 165 type capData struct { 166 effective uint32 167 permitted uint32 168 inheritable uint32 169 } 170 type caps struct { 171 hdr capHeader 172 data [2]capData 173 } 174 175 // See CAP_TO_INDEX in linux/capability.h: 176 func capToIndex(cap uintptr) uintptr { return cap >> 5 } 177 178 // See CAP_TO_MASK in linux/capability.h: 179 func capToMask(cap uintptr) uint32 { return 1 << uint(cap&31) } 180 181 // cloneArgs holds arguments for clone3 Linux syscall. 182 type cloneArgs struct { 183 flags uint64 // Flags bit mask 184 pidFD uint64 // Where to store PID file descriptor (int *) 185 childTID uint64 // Where to store child TID, in child's memory (pid_t *) 186 parentTID uint64 // Where to store child TID, in parent's memory (pid_t *) 187 exitSignal uint64 // Signal to deliver to parent on child termination 188 stack uint64 // Pointer to lowest byte of stack 189 stackSize uint64 // Size of stack 190 tls uint64 // Location of new TLS 191 setTID uint64 // Pointer to a pid_t array (since Linux 5.5) 192 setTIDSize uint64 // Number of elements in set_tid (since Linux 5.5) 193 cgroup uint64 // File descriptor for target cgroup of child (since Linux 5.7) 194 } 195 196 // forkAndExecInChild1 implements the body of forkAndExecInChild up to 197 // the parent's post-fork path. This is a separate function so we can 198 // separate the child's and parent's stack frames if we're using 199 // vfork. 200 // 201 // This is go:noinline because the point is to keep the stack frames 202 // of this and forkAndExecInChild separate. 203 // 204 //go:noinline 205 //go:norace 206 func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (r1 uintptr, err1 Errno, p [2]int, locked bool) { 207 // Defined in linux/prctl.h starting with Linux 4.3. 208 const ( 209 PR_CAP_AMBIENT = 0x2f 210 PR_CAP_AMBIENT_RAISE = 0x2 211 ) 212 213 // vfork requires that the child not touch any of the parent's 214 // active stack frames. Hence, the child does all post-fork 215 // processing in this stack frame and never returns, while the 216 // parent returns immediately from this frame and does all 217 // post-fork processing in the outer frame. 218 // Declare all variables at top in case any 219 // declarations require heap allocation (e.g., err1). 220 var ( 221 err2 Errno 222 nextfd int 223 i int 224 caps caps 225 fd1, flags uintptr 226 puid, psetgroups, pgid []byte 227 uidmap, setgroups, gidmap []byte 228 clone3 *cloneArgs 229 ) 230 231 if sys.UidMappings != nil { 232 puid = []byte("/proc/self/uid_map\000") 233 uidmap = formatIDMappings(sys.UidMappings) 234 } 235 236 if sys.GidMappings != nil { 237 psetgroups = []byte("/proc/self/setgroups\000") 238 pgid = []byte("/proc/self/gid_map\000") 239 240 if sys.GidMappingsEnableSetgroups { 241 setgroups = []byte("allow\000") 242 } else { 243 setgroups = []byte("deny\000") 244 } 245 gidmap = formatIDMappings(sys.GidMappings) 246 } 247 248 // Record parent PID so child can test if it has died. 249 ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0) 250 251 // Guard against side effects of shuffling fds below. 252 // Make sure that nextfd is beyond any currently open files so 253 // that we can't run the risk of overwriting any of them. 254 fd := make([]int, len(attr.Files)) 255 nextfd = len(attr.Files) 256 for i, ufd := range attr.Files { 257 if nextfd < int(ufd) { 258 nextfd = int(ufd) 259 } 260 fd[i] = int(ufd) 261 } 262 nextfd++ 263 264 // Allocate another pipe for parent to child communication for 265 // synchronizing writing of User ID/Group ID mappings. 266 if sys.UidMappings != nil || sys.GidMappings != nil { 267 if err := forkExecPipe(p[:]); err != nil { 268 err1 = err.(Errno) 269 return 270 } 271 } 272 273 flags = sys.Cloneflags 274 if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 { 275 flags |= CLONE_VFORK | CLONE_VM 276 } 277 // Whether to use clone3. 278 if sys.UseCgroupFD { 279 clone3 = &cloneArgs{ 280 flags: uint64(flags) | CLONE_INTO_CGROUP, 281 exitSignal: uint64(SIGCHLD), 282 cgroup: uint64(sys.CgroupFD), 283 } 284 } 285 286 // About to call fork. 287 // No more allocation or calls of non-assembly functions. 288 runtime_BeforeFork() 289 locked = true 290 if clone3 != nil { 291 r1, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3)) 292 } else { 293 flags |= uintptr(SIGCHLD) 294 if runtime.GOARCH == "s390x" { 295 // On Linux/s390, the first two arguments of clone(2) are swapped. 296 r1, err1 = rawVforkSyscall(SYS_CLONE, 0, flags) 297 } else { 298 r1, err1 = rawVforkSyscall(SYS_CLONE, flags, 0) 299 } 300 } 301 if err1 != 0 || r1 != 0 { 302 // If we're in the parent, we must return immediately 303 // so we're not in the same stack frame as the child. 304 // This can at most use the return PC, which the child 305 // will not modify, and the results of 306 // rawVforkSyscall, which must have been written after 307 // the child was replaced. 308 return 309 } 310 311 // Fork succeeded, now in child. 312 313 // Enable the "keep capabilities" flag to set ambient capabilities later. 314 if len(sys.AmbientCaps) > 0 { 315 _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0) 316 if err1 != 0 { 317 goto childerror 318 } 319 } 320 321 // Wait for User ID/Group ID mappings to be written. 322 if sys.UidMappings != nil || sys.GidMappings != nil { 323 if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(p[1]), 0, 0); err1 != 0 { 324 goto childerror 325 } 326 r1, _, err1 = RawSyscall(SYS_READ, uintptr(p[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) 327 if err1 != 0 { 328 goto childerror 329 } 330 if r1 != unsafe.Sizeof(err2) { 331 err1 = EINVAL 332 goto childerror 333 } 334 if err2 != 0 { 335 err1 = err2 336 goto childerror 337 } 338 } 339 340 // Session ID 341 if sys.Setsid { 342 _, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0) 343 if err1 != 0 { 344 goto childerror 345 } 346 } 347 348 // Set process group 349 if sys.Setpgid || sys.Foreground { 350 // Place child in process group. 351 _, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0) 352 if err1 != 0 { 353 goto childerror 354 } 355 } 356 357 if sys.Foreground { 358 pgrp := int32(sys.Pgid) 359 if pgrp == 0 { 360 r1, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0) 361 362 pgrp = int32(r1) 363 } 364 365 // Place process group in foreground. 366 _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp))) 367 if err1 != 0 { 368 goto childerror 369 } 370 } 371 372 // Restore the signal mask. We do this after TIOCSPGRP to avoid 373 // having the kernel send a SIGTTOU signal to the process group. 374 runtime_AfterForkInChild() 375 376 // Unshare 377 if sys.Unshareflags != 0 { 378 _, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0) 379 if err1 != 0 { 380 goto childerror 381 } 382 383 if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil { 384 dirfd := int(_AT_FDCWD) 385 if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { 386 goto childerror 387 } 388 r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups))) 389 if err1 != 0 { 390 goto childerror 391 } 392 if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 { 393 goto childerror 394 } 395 396 if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { 397 goto childerror 398 } 399 r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap))) 400 if err1 != 0 { 401 goto childerror 402 } 403 if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 { 404 goto childerror 405 } 406 } 407 408 if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil { 409 dirfd := int(_AT_FDCWD) 410 if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { 411 goto childerror 412 } 413 r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap))) 414 if err1 != 0 { 415 goto childerror 416 } 417 if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 { 418 goto childerror 419 } 420 } 421 422 // The unshare system call in Linux doesn't unshare mount points 423 // mounted with --shared. Systemd mounts / with --shared. For a 424 // long discussion of the pros and cons of this see debian bug 739593. 425 // The Go model of unsharing is more like Plan 9, where you ask 426 // to unshare and the namespaces are unconditionally unshared. 427 // To make this model work we must further mark / as MS_PRIVATE. 428 // This is what the standard unshare command does. 429 if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS { 430 _, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0) 431 if err1 != 0 { 432 goto childerror 433 } 434 } 435 } 436 437 // Chroot 438 if chroot != nil { 439 _, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0) 440 if err1 != 0 { 441 goto childerror 442 } 443 } 444 445 // User and groups 446 if cred := sys.Credential; cred != nil { 447 ngroups := uintptr(len(cred.Groups)) 448 groups := uintptr(0) 449 if ngroups > 0 { 450 groups = uintptr(unsafe.Pointer(&cred.Groups[0])) 451 } 452 if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups { 453 _, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0) 454 if err1 != 0 { 455 goto childerror 456 } 457 } 458 _, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0) 459 if err1 != 0 { 460 goto childerror 461 } 462 _, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0) 463 if err1 != 0 { 464 goto childerror 465 } 466 } 467 468 if len(sys.AmbientCaps) != 0 { 469 // Ambient capabilities were added in the 4.3 kernel, 470 // so it is safe to always use _LINUX_CAPABILITY_VERSION_3. 471 caps.hdr.version = _LINUX_CAPABILITY_VERSION_3 472 473 if _, _, err1 := RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 { 474 goto childerror 475 } 476 477 for _, c := range sys.AmbientCaps { 478 // Add the c capability to the permitted and inheritable capability mask, 479 // otherwise we will not be able to add it to the ambient capability mask. 480 caps.data[capToIndex(c)].permitted |= capToMask(c) 481 caps.data[capToIndex(c)].inheritable |= capToMask(c) 482 } 483 484 if _, _, err1 := RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 { 485 goto childerror 486 } 487 488 for _, c := range sys.AmbientCaps { 489 _, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0) 490 if err1 != 0 { 491 goto childerror 492 } 493 } 494 } 495 496 // Chdir 497 if dir != nil { 498 _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0) 499 if err1 != 0 { 500 goto childerror 501 } 502 } 503 504 // Parent death signal 505 if sys.Pdeathsig != 0 { 506 _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0) 507 if err1 != 0 { 508 goto childerror 509 } 510 511 // Signal self if parent is already dead. This might cause a 512 // duplicate signal in rare cases, but it won't matter when 513 // using SIGKILL. 514 r1, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0) 515 if r1 != ppid { 516 pid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0) 517 _, _, err1 := RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0) 518 if err1 != 0 { 519 goto childerror 520 } 521 } 522 } 523 524 // Pass 1: look for fd[i] < i and move those up above len(fd) 525 // so that pass 2 won't stomp on an fd it needs later. 526 if pipe < nextfd { 527 _, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC) 528 if err1 != 0 { 529 goto childerror 530 } 531 pipe = nextfd 532 nextfd++ 533 } 534 for i = 0; i < len(fd); i++ { 535 if fd[i] >= 0 && fd[i] < i { 536 if nextfd == pipe { // don't stomp on pipe 537 nextfd++ 538 } 539 _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC) 540 if err1 != 0 { 541 goto childerror 542 } 543 fd[i] = nextfd 544 nextfd++ 545 } 546 } 547 548 // Pass 2: dup fd[i] down onto i. 549 for i = 0; i < len(fd); i++ { 550 if fd[i] == -1 { 551 RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) 552 continue 553 } 554 if fd[i] == i { 555 // dup2(i, i) won't clear close-on-exec flag on Linux, 556 // probably not elsewhere either. 557 _, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0) 558 if err1 != 0 { 559 goto childerror 560 } 561 continue 562 } 563 // The new fd is created NOT close-on-exec, 564 // which is exactly what we want. 565 _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(i), 0) 566 if err1 != 0 { 567 goto childerror 568 } 569 } 570 571 // By convention, we don't close-on-exec the fds we are 572 // started with, so if len(fd) < 3, close 0, 1, 2 as needed. 573 // Programs that know they inherit fds >= 3 will need 574 // to set them close-on-exec. 575 for i = len(fd); i < 3; i++ { 576 RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) 577 } 578 579 // Detach fd 0 from tty 580 if sys.Noctty { 581 _, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0) 582 if err1 != 0 { 583 goto childerror 584 } 585 } 586 587 // Set the controlling TTY to Ctty 588 if sys.Setctty { 589 _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1) 590 if err1 != 0 { 591 goto childerror 592 } 593 } 594 595 // Enable tracing if requested. 596 // Do this right before exec so that we don't unnecessarily trace the runtime 597 // setting up after the fork. See issue #21428. 598 if sys.Ptrace { 599 _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0) 600 if err1 != 0 { 601 goto childerror 602 } 603 } 604 605 // Time to exec. 606 _, _, err1 = RawSyscall(SYS_EXECVE, 607 uintptr(unsafe.Pointer(argv0)), 608 uintptr(unsafe.Pointer(&argv[0])), 609 uintptr(unsafe.Pointer(&envv[0]))) 610 611 childerror: 612 // send error code on pipe 613 RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)) 614 for { 615 RawSyscall(SYS_EXIT, 253, 0, 0) 616 } 617 } 618 619 // Try to open a pipe with O_CLOEXEC set on both file descriptors. 620 func forkExecPipe(p []int) (err error) { 621 return Pipe2(p, O_CLOEXEC) 622 } 623 624 func formatIDMappings(idMap []SysProcIDMap) []byte { 625 var data []byte 626 for _, im := range idMap { 627 data = append(data, itoa.Itoa(im.ContainerID)+" "+itoa.Itoa(im.HostID)+" "+itoa.Itoa(im.Size)+"\n"...) 628 } 629 return data 630 } 631 632 // writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path. 633 func writeIDMappings(path string, idMap []SysProcIDMap) error { 634 fd, err := Open(path, O_RDWR, 0) 635 if err != nil { 636 return err 637 } 638 639 if _, err := Write(fd, formatIDMappings(idMap)); err != nil { 640 Close(fd) 641 return err 642 } 643 644 if err := Close(fd); err != nil { 645 return err 646 } 647 648 return nil 649 } 650 651 // writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false 652 // and "allow" if enable is true. 653 // This is needed since kernel 3.19, because you can't write gid_map without 654 // disabling setgroups() system call. 655 func writeSetgroups(pid int, enable bool) error { 656 sgf := "/proc/" + itoa.Itoa(pid) + "/setgroups" 657 fd, err := Open(sgf, O_RDWR, 0) 658 if err != nil { 659 return err 660 } 661 662 var data []byte 663 if enable { 664 data = []byte("allow") 665 } else { 666 data = []byte("deny") 667 } 668 669 if _, err := Write(fd, data); err != nil { 670 Close(fd) 671 return err 672 } 673 674 return Close(fd) 675 } 676 677 // writeUidGidMappings writes User ID and Group ID mappings for user namespaces 678 // for a process and it is called from the parent process. 679 func writeUidGidMappings(pid int, sys *SysProcAttr) error { 680 if sys.UidMappings != nil { 681 uidf := "/proc/" + itoa.Itoa(pid) + "/uid_map" 682 if err := writeIDMappings(uidf, sys.UidMappings); err != nil { 683 return err 684 } 685 } 686 687 if sys.GidMappings != nil { 688 // If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK. 689 if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT { 690 return err 691 } 692 gidf := "/proc/" + itoa.Itoa(pid) + "/gid_map" 693 if err := writeIDMappings(gidf, sys.GidMappings); err != nil { 694 return err 695 } 696 } 697 698 return nil 699 }