github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"errors"
     9  	"fmt"
    10  	"internal/fmtsort"
    11  	"io"
    12  	"reflect"
    13  	"runtime"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // maxExecDepth specifies the maximum stack depth of templates within
    19  // templates. This limit is only practically reached by accidentally
    20  // recursive template invocations. This limit allows us to return
    21  // an error instead of triggering a stack overflow.
    22  var maxExecDepth = initMaxExecDepth()
    23  
    24  func initMaxExecDepth() int {
    25  	if runtime.GOARCH == "wasm" {
    26  		return 1000
    27  	}
    28  	return 100000
    29  }
    30  
    31  // state represents the state of an execution. It's not part of the
    32  // template so that multiple executions of the same template
    33  // can execute in parallel.
    34  type state struct {
    35  	tmpl  *Template
    36  	wr    io.Writer
    37  	node  parse.Node // current node, for errors
    38  	vars  []variable // push-down stack of variable values.
    39  	depth int        // the height of the stack of executing templates.
    40  }
    41  
    42  // variable holds the dynamic value of a variable such as $, $x etc.
    43  type variable struct {
    44  	name  string
    45  	value reflect.Value
    46  }
    47  
    48  // push pushes a new variable on the stack.
    49  func (s *state) push(name string, value reflect.Value) {
    50  	s.vars = append(s.vars, variable{name, value})
    51  }
    52  
    53  // mark returns the length of the variable stack.
    54  func (s *state) mark() int {
    55  	return len(s.vars)
    56  }
    57  
    58  // pop pops the variable stack up to the mark.
    59  func (s *state) pop(mark int) {
    60  	s.vars = s.vars[0:mark]
    61  }
    62  
    63  // setVar overwrites the last declared variable with the given name.
    64  // Used by variable assignments.
    65  func (s *state) setVar(name string, value reflect.Value) {
    66  	for i := s.mark() - 1; i >= 0; i-- {
    67  		if s.vars[i].name == name {
    68  			s.vars[i].value = value
    69  			return
    70  		}
    71  	}
    72  	s.errorf("undefined variable: %s", name)
    73  }
    74  
    75  // setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
    76  func (s *state) setTopVar(n int, value reflect.Value) {
    77  	s.vars[len(s.vars)-n].value = value
    78  }
    79  
    80  // varValue returns the value of the named variable.
    81  func (s *state) varValue(name string) reflect.Value {
    82  	for i := s.mark() - 1; i >= 0; i-- {
    83  		if s.vars[i].name == name {
    84  			return s.vars[i].value
    85  		}
    86  	}
    87  	s.errorf("undefined variable: %s", name)
    88  	return zero
    89  }
    90  
    91  var zero reflect.Value
    92  
    93  type missingValType struct{}
    94  
    95  var missingVal = reflect.ValueOf(missingValType{})
    96  
    97  var missingValReflectType = reflect.TypeOf(missingValType{})
    98  
    99  func isMissing(v reflect.Value) bool {
   100  	return v.IsValid() && v.Type() == missingValReflectType
   101  }
   102  
   103  // at marks the state to be on node n, for error reporting.
   104  func (s *state) at(node parse.Node) {
   105  	s.node = node
   106  }
   107  
   108  // doublePercent returns the string with %'s replaced by %%, if necessary,
   109  // so it can be used safely inside a Printf format string.
   110  func doublePercent(str string) string {
   111  	return strings.ReplaceAll(str, "%", "%%")
   112  }
   113  
   114  // TODO: It would be nice if ExecError was more broken down, but
   115  // the way ErrorContext embeds the template name makes the
   116  // processing too clumsy.
   117  
   118  // ExecError is the custom error type returned when Execute has an
   119  // error evaluating its template. (If a write error occurs, the actual
   120  // error is returned; it will not be of type ExecError.)
   121  type ExecError struct {
   122  	Name string // Name of template.
   123  	Err  error  // Pre-formatted error.
   124  }
   125  
   126  func (e ExecError) Error() string {
   127  	return e.Err.Error()
   128  }
   129  
   130  func (e ExecError) Unwrap() error {
   131  	return e.Err
   132  }
   133  
   134  // errorf records an ExecError and terminates processing.
   135  func (s *state) errorf(format string, args ...any) {
   136  	name := doublePercent(s.tmpl.Name())
   137  	if s.node == nil {
   138  		format = fmt.Sprintf("template: %s: %s", name, format)
   139  	} else {
   140  		location, context := s.tmpl.ErrorContext(s.node)
   141  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   142  	}
   143  	panic(ExecError{
   144  		Name: s.tmpl.Name(),
   145  		Err:  fmt.Errorf(format, args...),
   146  	})
   147  }
   148  
   149  // writeError is the wrapper type used internally when Execute has an
   150  // error writing to its output. We strip the wrapper in errRecover.
   151  // Note that this is not an implementation of error, so it cannot escape
   152  // from the package as an error value.
   153  type writeError struct {
   154  	Err error // Original error.
   155  }
   156  
   157  func (s *state) writeError(err error) {
   158  	panic(writeError{
   159  		Err: err,
   160  	})
   161  }
   162  
   163  // errRecover is the handler that turns panics into returns from the top
   164  // level of Parse.
   165  func errRecover(errp *error) {
   166  	e := recover()
   167  	if e != nil {
   168  		switch err := e.(type) {
   169  		case runtime.Error:
   170  			panic(e)
   171  		case writeError:
   172  			*errp = err.Err // Strip the wrapper.
   173  		case ExecError:
   174  			*errp = err // Keep the wrapper.
   175  		default:
   176  			panic(e)
   177  		}
   178  	}
   179  }
   180  
   181  // ExecuteTemplate applies the template associated with t that has the given name
   182  // to the specified data object and writes the output to wr.
   183  // If an error occurs executing the template or writing its output,
   184  // execution stops, but partial results may already have been written to
   185  // the output writer.
   186  // A template may be executed safely in parallel, although if parallel
   187  // executions share a Writer the output may be interleaved.
   188  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error {
   189  	tmpl := t.Lookup(name)
   190  	if tmpl == nil {
   191  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   192  	}
   193  	return tmpl.Execute(wr, data)
   194  }
   195  
   196  // Execute applies a parsed template to the specified data object,
   197  // and writes the output to wr.
   198  // If an error occurs executing the template or writing its output,
   199  // execution stops, but partial results may already have been written to
   200  // the output writer.
   201  // A template may be executed safely in parallel, although if parallel
   202  // executions share a Writer the output may be interleaved.
   203  //
   204  // If data is a reflect.Value, the template applies to the concrete
   205  // value that the reflect.Value holds, as in fmt.Print.
   206  func (t *Template) Execute(wr io.Writer, data any) error {
   207  	return t.execute(wr, data)
   208  }
   209  
   210  func (t *Template) execute(wr io.Writer, data any) (err error) {
   211  	defer errRecover(&err)
   212  	value, ok := data.(reflect.Value)
   213  	if !ok {
   214  		value = reflect.ValueOf(data)
   215  	}
   216  	state := &state{
   217  		tmpl: t,
   218  		wr:   wr,
   219  		vars: []variable{{"$", value}},
   220  	}
   221  	if t.Tree == nil || t.Root == nil {
   222  		state.errorf("%q is an incomplete or empty template", t.Name())
   223  	}
   224  	state.walk(value, t.Root)
   225  	return
   226  }
   227  
   228  // DefinedTemplates returns a string listing the defined templates,
   229  // prefixed by the string "; defined templates are: ". If there are none,
   230  // it returns the empty string. For generating an error message here
   231  // and in html/template.
   232  func (t *Template) DefinedTemplates() string {
   233  	if t.common == nil {
   234  		return ""
   235  	}
   236  	var b strings.Builder
   237  	t.muTmpl.RLock()
   238  	defer t.muTmpl.RUnlock()
   239  	for name, tmpl := range t.tmpl {
   240  		if tmpl.Tree == nil || tmpl.Root == nil {
   241  			continue
   242  		}
   243  		if b.Len() == 0 {
   244  			b.WriteString("; defined templates are: ")
   245  		} else {
   246  			b.WriteString(", ")
   247  		}
   248  		fmt.Fprintf(&b, "%q", name)
   249  	}
   250  	return b.String()
   251  }
   252  
   253  // Sentinel errors for use with panic to signal early exits from range loops.
   254  var (
   255  	walkBreak    = errors.New("break")
   256  	walkContinue = errors.New("continue")
   257  )
   258  
   259  // Walk functions step through the major pieces of the template structure,
   260  // generating output as they go.
   261  func (s *state) walk(dot reflect.Value, node parse.Node) {
   262  	s.at(node)
   263  	switch node := node.(type) {
   264  	case *parse.ActionNode:
   265  		// Do not pop variables so they persist until next end.
   266  		// Also, if the action declares variables, don't print the result.
   267  		val := s.evalPipeline(dot, node.Pipe)
   268  		if len(node.Pipe.Decl) == 0 {
   269  			s.printValue(node, val)
   270  		}
   271  	case *parse.BreakNode:
   272  		panic(walkBreak)
   273  	case *parse.CommentNode:
   274  	case *parse.ContinueNode:
   275  		panic(walkContinue)
   276  	case *parse.IfNode:
   277  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   278  	case *parse.ListNode:
   279  		for _, node := range node.Nodes {
   280  			s.walk(dot, node)
   281  		}
   282  	case *parse.RangeNode:
   283  		s.walkRange(dot, node)
   284  	case *parse.TemplateNode:
   285  		s.walkTemplate(dot, node)
   286  	case *parse.TextNode:
   287  		if _, err := s.wr.Write(node.Text); err != nil {
   288  			s.writeError(err)
   289  		}
   290  	case *parse.WithNode:
   291  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   292  	default:
   293  		s.errorf("unknown node: %s", node)
   294  	}
   295  }
   296  
   297  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   298  // are identical in behavior except that 'with' sets dot.
   299  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   300  	defer s.pop(s.mark())
   301  	val := s.evalPipeline(dot, pipe)
   302  	truth, ok := isTrue(indirectInterface(val))
   303  	if !ok {
   304  		s.errorf("if/with can't use %v", val)
   305  	}
   306  	if truth {
   307  		if typ == parse.NodeWith {
   308  			s.walk(val, list)
   309  		} else {
   310  			s.walk(dot, list)
   311  		}
   312  	} else if elseList != nil {
   313  		s.walk(dot, elseList)
   314  	}
   315  }
   316  
   317  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   318  // and whether the value has a meaningful truth value. This is the definition of
   319  // truth used by if and other such actions.
   320  func IsTrue(val any) (truth, ok bool) {
   321  	return isTrue(reflect.ValueOf(val))
   322  }
   323  
   324  func isTrue(val reflect.Value) (truth, ok bool) {
   325  	if !val.IsValid() {
   326  		// Something like var x interface{}, never set. It's a form of nil.
   327  		return false, true
   328  	}
   329  	switch val.Kind() {
   330  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   331  		truth = val.Len() > 0
   332  	case reflect.Bool:
   333  		truth = val.Bool()
   334  	case reflect.Complex64, reflect.Complex128:
   335  		truth = val.Complex() != 0
   336  	case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface:
   337  		truth = !val.IsNil()
   338  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   339  		truth = val.Int() != 0
   340  	case reflect.Float32, reflect.Float64:
   341  		truth = val.Float() != 0
   342  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   343  		truth = val.Uint() != 0
   344  	case reflect.Struct:
   345  		truth = true // Struct values are always true.
   346  	default:
   347  		return
   348  	}
   349  	return truth, true
   350  }
   351  
   352  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   353  	s.at(r)
   354  	defer func() {
   355  		if r := recover(); r != nil && r != walkBreak {
   356  			panic(r)
   357  		}
   358  	}()
   359  	defer s.pop(s.mark())
   360  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   361  	// mark top of stack before any variables in the body are pushed.
   362  	mark := s.mark()
   363  	oneIteration := func(index, elem reflect.Value) {
   364  		// Set top var (lexically the second if there are two) to the element.
   365  		if len(r.Pipe.Decl) > 0 {
   366  			s.setTopVar(1, elem)
   367  		}
   368  		// Set next var (lexically the first if there are two) to the index.
   369  		if len(r.Pipe.Decl) > 1 {
   370  			s.setTopVar(2, index)
   371  		}
   372  		defer s.pop(mark)
   373  		defer func() {
   374  			// Consume panic(walkContinue)
   375  			if r := recover(); r != nil && r != walkContinue {
   376  				panic(r)
   377  			}
   378  		}()
   379  		s.walk(elem, r.List)
   380  	}
   381  	switch val.Kind() {
   382  	case reflect.Array, reflect.Slice:
   383  		if val.Len() == 0 {
   384  			break
   385  		}
   386  		for i := 0; i < val.Len(); i++ {
   387  			oneIteration(reflect.ValueOf(i), val.Index(i))
   388  		}
   389  		return
   390  	case reflect.Map:
   391  		if val.Len() == 0 {
   392  			break
   393  		}
   394  		om := fmtsort.Sort(val)
   395  		for i, key := range om.Key {
   396  			oneIteration(key, om.Value[i])
   397  		}
   398  		return
   399  	case reflect.Chan:
   400  		if val.IsNil() {
   401  			break
   402  		}
   403  		if val.Type().ChanDir() == reflect.SendDir {
   404  			s.errorf("range over send-only channel %v", val)
   405  			break
   406  		}
   407  		i := 0
   408  		for ; ; i++ {
   409  			elem, ok := val.Recv()
   410  			if !ok {
   411  				break
   412  			}
   413  			oneIteration(reflect.ValueOf(i), elem)
   414  		}
   415  		if i == 0 {
   416  			break
   417  		}
   418  		return
   419  	case reflect.Invalid:
   420  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   421  	default:
   422  		s.errorf("range can't iterate over %v", val)
   423  	}
   424  	if r.ElseList != nil {
   425  		s.walk(dot, r.ElseList)
   426  	}
   427  }
   428  
   429  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   430  	s.at(t)
   431  	tmpl := s.tmpl.Lookup(t.Name)
   432  	if tmpl == nil {
   433  		s.errorf("template %q not defined", t.Name)
   434  	}
   435  	if s.depth == maxExecDepth {
   436  		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   437  	}
   438  	// Variables declared by the pipeline persist.
   439  	dot = s.evalPipeline(dot, t.Pipe)
   440  	newState := *s
   441  	newState.depth++
   442  	newState.tmpl = tmpl
   443  	// No dynamic scoping: template invocations inherit no variables.
   444  	newState.vars = []variable{{"$", dot}}
   445  	newState.walk(dot, tmpl.Root)
   446  }
   447  
   448  // Eval functions evaluate pipelines, commands, and their elements and extract
   449  // values from the data structure by examining fields, calling methods, and so on.
   450  // The printing of those values happens only through walk functions.
   451  
   452  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   453  // pipeline has a variable declaration, the variable will be pushed on the
   454  // stack. Callers should therefore pop the stack after they are finished
   455  // executing commands depending on the pipeline value.
   456  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   457  	if pipe == nil {
   458  		return
   459  	}
   460  	s.at(pipe)
   461  	value = missingVal
   462  	for _, cmd := range pipe.Cmds {
   463  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   464  		// If the object has type interface{}, dig down one level to the thing inside.
   465  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   466  			value = reflect.ValueOf(value.Interface()) // lovely!
   467  		}
   468  	}
   469  	for _, variable := range pipe.Decl {
   470  		if pipe.IsAssign {
   471  			s.setVar(variable.Ident[0], value)
   472  		} else {
   473  			s.push(variable.Ident[0], value)
   474  		}
   475  	}
   476  	return value
   477  }
   478  
   479  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   480  	if len(args) > 1 || !isMissing(final) {
   481  		s.errorf("can't give argument to non-function %s", args[0])
   482  	}
   483  }
   484  
   485  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   486  	firstWord := cmd.Args[0]
   487  	switch n := firstWord.(type) {
   488  	case *parse.FieldNode:
   489  		return s.evalFieldNode(dot, n, cmd.Args, final)
   490  	case *parse.ChainNode:
   491  		return s.evalChainNode(dot, n, cmd.Args, final)
   492  	case *parse.IdentifierNode:
   493  		// Must be a function.
   494  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   495  	case *parse.PipeNode:
   496  		// Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent.
   497  		s.notAFunction(cmd.Args, final)
   498  		return s.evalPipeline(dot, n)
   499  	case *parse.VariableNode:
   500  		return s.evalVariableNode(dot, n, cmd.Args, final)
   501  	}
   502  	s.at(firstWord)
   503  	s.notAFunction(cmd.Args, final)
   504  	switch word := firstWord.(type) {
   505  	case *parse.BoolNode:
   506  		return reflect.ValueOf(word.True)
   507  	case *parse.DotNode:
   508  		return dot
   509  	case *parse.NilNode:
   510  		s.errorf("nil is not a command")
   511  	case *parse.NumberNode:
   512  		return s.idealConstant(word)
   513  	case *parse.StringNode:
   514  		return reflect.ValueOf(word.Text)
   515  	}
   516  	s.errorf("can't evaluate command %q", firstWord)
   517  	panic("not reached")
   518  }
   519  
   520  // idealConstant is called to return the value of a number in a context where
   521  // we don't know the type. In that case, the syntax of the number tells us
   522  // its type, and we use Go rules to resolve. Note there is no such thing as
   523  // a uint ideal constant in this situation - the value must be of int type.
   524  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   525  	// These are ideal constants but we don't know the type
   526  	// and we have no context.  (If it was a method argument,
   527  	// we'd know what we need.) The syntax guides us to some extent.
   528  	s.at(constant)
   529  	switch {
   530  	case constant.IsComplex:
   531  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   532  
   533  	case constant.IsFloat &&
   534  		!isHexInt(constant.Text) && !isRuneInt(constant.Text) &&
   535  		strings.ContainsAny(constant.Text, ".eEpP"):
   536  		return reflect.ValueOf(constant.Float64)
   537  
   538  	case constant.IsInt:
   539  		n := int(constant.Int64)
   540  		if int64(n) != constant.Int64 {
   541  			s.errorf("%s overflows int", constant.Text)
   542  		}
   543  		return reflect.ValueOf(n)
   544  
   545  	case constant.IsUint:
   546  		s.errorf("%s overflows int", constant.Text)
   547  	}
   548  	return zero
   549  }
   550  
   551  func isRuneInt(s string) bool {
   552  	return len(s) > 0 && s[0] == '\''
   553  }
   554  
   555  func isHexInt(s string) bool {
   556  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP")
   557  }
   558  
   559  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   560  	s.at(field)
   561  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   562  }
   563  
   564  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   565  	s.at(chain)
   566  	if len(chain.Field) == 0 {
   567  		s.errorf("internal error: no fields in evalChainNode")
   568  	}
   569  	if chain.Node.Type() == parse.NodeNil {
   570  		s.errorf("indirection through explicit nil in %s", chain)
   571  	}
   572  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   573  	pipe := s.evalArg(dot, nil, chain.Node)
   574  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   575  }
   576  
   577  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   578  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   579  	s.at(variable)
   580  	value := s.varValue(variable.Ident[0])
   581  	if len(variable.Ident) == 1 {
   582  		s.notAFunction(args, final)
   583  		return value
   584  	}
   585  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   586  }
   587  
   588  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   589  // dot is the environment in which to evaluate arguments, while
   590  // receiver is the value being walked along the chain.
   591  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   592  	n := len(ident)
   593  	for i := 0; i < n-1; i++ {
   594  		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
   595  	}
   596  	// Now if it's a method, it gets the arguments.
   597  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   598  }
   599  
   600  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   601  	s.at(node)
   602  	name := node.Ident
   603  	function, isBuiltin, ok := findFunction(name, s.tmpl)
   604  	if !ok {
   605  		s.errorf("%q is not a defined function", name)
   606  	}
   607  	return s.evalCall(dot, function, isBuiltin, cmd, name, args, final)
   608  }
   609  
   610  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   611  // The 'final' argument represents the return value from the preceding
   612  // value of the pipeline, if any.
   613  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   614  	if !receiver.IsValid() {
   615  		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
   616  			s.errorf("nil data; no entry for key %q", fieldName)
   617  		}
   618  		return zero
   619  	}
   620  	typ := receiver.Type()
   621  	receiver, isNil := indirect(receiver)
   622  	if receiver.Kind() == reflect.Interface && isNil {
   623  		// Calling a method on a nil interface can't work. The
   624  		// MethodByName method call below would panic.
   625  		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   626  		return zero
   627  	}
   628  
   629  	// Unless it's an interface, need to get to a value of type *T to guarantee
   630  	// we see all methods of T and *T.
   631  	ptr := receiver
   632  	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() {
   633  		ptr = ptr.Addr()
   634  	}
   635  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   636  		return s.evalCall(dot, method, false, node, fieldName, args, final)
   637  	}
   638  	hasArgs := len(args) > 1 || !isMissing(final)
   639  	// It's not a method; must be a field of a struct or an element of a map.
   640  	switch receiver.Kind() {
   641  	case reflect.Struct:
   642  		tField, ok := receiver.Type().FieldByName(fieldName)
   643  		if ok {
   644  			field, err := receiver.FieldByIndexErr(tField.Index)
   645  			if !tField.IsExported() {
   646  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   647  			}
   648  			if err != nil {
   649  				s.errorf("%v", err)
   650  			}
   651  			// If it's a function, we must call it.
   652  			if hasArgs {
   653  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   654  			}
   655  			return field
   656  		}
   657  	case reflect.Map:
   658  		// If it's a map, attempt to use the field name as a key.
   659  		nameVal := reflect.ValueOf(fieldName)
   660  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   661  			if hasArgs {
   662  				s.errorf("%s is not a method but has arguments", fieldName)
   663  			}
   664  			result := receiver.MapIndex(nameVal)
   665  			if !result.IsValid() {
   666  				switch s.tmpl.option.missingKey {
   667  				case mapInvalid:
   668  					// Just use the invalid value.
   669  				case mapZeroValue:
   670  					result = reflect.Zero(receiver.Type().Elem())
   671  				case mapError:
   672  					s.errorf("map has no entry for key %q", fieldName)
   673  				}
   674  			}
   675  			return result
   676  		}
   677  	case reflect.Pointer:
   678  		etyp := receiver.Type().Elem()
   679  		if etyp.Kind() == reflect.Struct {
   680  			if _, ok := etyp.FieldByName(fieldName); !ok {
   681  				// If there's no such field, say "can't evaluate"
   682  				// instead of "nil pointer evaluating".
   683  				break
   684  			}
   685  		}
   686  		if isNil {
   687  			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   688  		}
   689  	}
   690  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   691  	panic("not reached")
   692  }
   693  
   694  var (
   695  	errorType        = reflect.TypeOf((*error)(nil)).Elem()
   696  	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   697  	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
   698  )
   699  
   700  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   701  // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   702  // as the function itself.
   703  func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   704  	if args != nil {
   705  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   706  	}
   707  	typ := fun.Type()
   708  	numIn := len(args)
   709  	if !isMissing(final) {
   710  		numIn++
   711  	}
   712  	numFixed := len(args)
   713  	if typ.IsVariadic() {
   714  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   715  		if numIn < numFixed {
   716  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   717  		}
   718  	} else if numIn != typ.NumIn() {
   719  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
   720  	}
   721  	if !goodFunc(typ) {
   722  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   723  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   724  	}
   725  
   726  	unwrap := func(v reflect.Value) reflect.Value {
   727  		if v.Type() == reflectValueType {
   728  			v = v.Interface().(reflect.Value)
   729  		}
   730  		return v
   731  	}
   732  
   733  	// Special case for builtin and/or, which short-circuit.
   734  	if isBuiltin && (name == "and" || name == "or") {
   735  		argType := typ.In(0)
   736  		var v reflect.Value
   737  		for _, arg := range args {
   738  			v = s.evalArg(dot, argType, arg).Interface().(reflect.Value)
   739  			if truth(v) == (name == "or") {
   740  				// This value was already unwrapped
   741  				// by the .Interface().(reflect.Value).
   742  				return v
   743  			}
   744  		}
   745  		if final != missingVal {
   746  			// The last argument to and/or is coming from
   747  			// the pipeline. We didn't short circuit on an earlier
   748  			// argument, so we are going to return this one.
   749  			// We don't have to evaluate final, but we do
   750  			// have to check its type. Then, since we are
   751  			// going to return it, we have to unwrap it.
   752  			v = unwrap(s.validateType(final, argType))
   753  		}
   754  		return v
   755  	}
   756  
   757  	// Build the arg list.
   758  	argv := make([]reflect.Value, numIn)
   759  	// Args must be evaluated. Fixed args first.
   760  	i := 0
   761  	for ; i < numFixed && i < len(args); i++ {
   762  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   763  	}
   764  	// Now the ... args.
   765  	if typ.IsVariadic() {
   766  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   767  		for ; i < len(args); i++ {
   768  			argv[i] = s.evalArg(dot, argType, args[i])
   769  		}
   770  	}
   771  	// Add final value if necessary.
   772  	if !isMissing(final) {
   773  		t := typ.In(typ.NumIn() - 1)
   774  		if typ.IsVariadic() {
   775  			if numIn-1 < numFixed {
   776  				// The added final argument corresponds to a fixed parameter of the function.
   777  				// Validate against the type of the actual parameter.
   778  				t = typ.In(numIn - 1)
   779  			} else {
   780  				// The added final argument corresponds to the variadic part.
   781  				// Validate against the type of the elements of the variadic slice.
   782  				t = t.Elem()
   783  			}
   784  		}
   785  		argv[i] = s.validateType(final, t)
   786  	}
   787  	v, err := safeCall(fun, argv)
   788  	// If we have an error that is not nil, stop execution and return that
   789  	// error to the caller.
   790  	if err != nil {
   791  		s.at(node)
   792  		s.errorf("error calling %s: %w", name, err)
   793  	}
   794  	return unwrap(v)
   795  }
   796  
   797  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   798  func canBeNil(typ reflect.Type) bool {
   799  	switch typ.Kind() {
   800  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice:
   801  		return true
   802  	case reflect.Struct:
   803  		return typ == reflectValueType
   804  	}
   805  	return false
   806  }
   807  
   808  // validateType guarantees that the value is valid and assignable to the type.
   809  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   810  	if !value.IsValid() {
   811  		if typ == nil {
   812  			// An untyped nil interface{}. Accept as a proper nil value.
   813  			return reflect.ValueOf(nil)
   814  		}
   815  		if canBeNil(typ) {
   816  			// Like above, but use the zero value of the non-nil type.
   817  			return reflect.Zero(typ)
   818  		}
   819  		s.errorf("invalid value; expected %s", typ)
   820  	}
   821  	if typ == reflectValueType && value.Type() != typ {
   822  		return reflect.ValueOf(value)
   823  	}
   824  	if typ != nil && !value.Type().AssignableTo(typ) {
   825  		if value.Kind() == reflect.Interface && !value.IsNil() {
   826  			value = value.Elem()
   827  			if value.Type().AssignableTo(typ) {
   828  				return value
   829  			}
   830  			// fallthrough
   831  		}
   832  		// Does one dereference or indirection work? We could do more, as we
   833  		// do with method receivers, but that gets messy and method receivers
   834  		// are much more constrained, so it makes more sense there than here.
   835  		// Besides, one is almost always all you need.
   836  		switch {
   837  		case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ):
   838  			value = value.Elem()
   839  			if !value.IsValid() {
   840  				s.errorf("dereference of nil pointer of type %s", typ)
   841  			}
   842  		case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   843  			value = value.Addr()
   844  		default:
   845  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   846  		}
   847  	}
   848  	return value
   849  }
   850  
   851  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   852  	s.at(n)
   853  	switch arg := n.(type) {
   854  	case *parse.DotNode:
   855  		return s.validateType(dot, typ)
   856  	case *parse.NilNode:
   857  		if canBeNil(typ) {
   858  			return reflect.Zero(typ)
   859  		}
   860  		s.errorf("cannot assign nil to %s", typ)
   861  	case *parse.FieldNode:
   862  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
   863  	case *parse.VariableNode:
   864  		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
   865  	case *parse.PipeNode:
   866  		return s.validateType(s.evalPipeline(dot, arg), typ)
   867  	case *parse.IdentifierNode:
   868  		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
   869  	case *parse.ChainNode:
   870  		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
   871  	}
   872  	switch typ.Kind() {
   873  	case reflect.Bool:
   874  		return s.evalBool(typ, n)
   875  	case reflect.Complex64, reflect.Complex128:
   876  		return s.evalComplex(typ, n)
   877  	case reflect.Float32, reflect.Float64:
   878  		return s.evalFloat(typ, n)
   879  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   880  		return s.evalInteger(typ, n)
   881  	case reflect.Interface:
   882  		if typ.NumMethod() == 0 {
   883  			return s.evalEmptyInterface(dot, n)
   884  		}
   885  	case reflect.Struct:
   886  		if typ == reflectValueType {
   887  			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
   888  		}
   889  	case reflect.String:
   890  		return s.evalString(typ, n)
   891  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   892  		return s.evalUnsignedInteger(typ, n)
   893  	}
   894  	s.errorf("can't handle %s for arg of type %s", n, typ)
   895  	panic("not reached")
   896  }
   897  
   898  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   899  	s.at(n)
   900  	if n, ok := n.(*parse.BoolNode); ok {
   901  		value := reflect.New(typ).Elem()
   902  		value.SetBool(n.True)
   903  		return value
   904  	}
   905  	s.errorf("expected bool; found %s", n)
   906  	panic("not reached")
   907  }
   908  
   909  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   910  	s.at(n)
   911  	if n, ok := n.(*parse.StringNode); ok {
   912  		value := reflect.New(typ).Elem()
   913  		value.SetString(n.Text)
   914  		return value
   915  	}
   916  	s.errorf("expected string; found %s", n)
   917  	panic("not reached")
   918  }
   919  
   920  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   921  	s.at(n)
   922  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   923  		value := reflect.New(typ).Elem()
   924  		value.SetInt(n.Int64)
   925  		return value
   926  	}
   927  	s.errorf("expected integer; found %s", n)
   928  	panic("not reached")
   929  }
   930  
   931  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   932  	s.at(n)
   933  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   934  		value := reflect.New(typ).Elem()
   935  		value.SetUint(n.Uint64)
   936  		return value
   937  	}
   938  	s.errorf("expected unsigned integer; found %s", n)
   939  	panic("not reached")
   940  }
   941  
   942  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   943  	s.at(n)
   944  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   945  		value := reflect.New(typ).Elem()
   946  		value.SetFloat(n.Float64)
   947  		return value
   948  	}
   949  	s.errorf("expected float; found %s", n)
   950  	panic("not reached")
   951  }
   952  
   953  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   954  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   955  		value := reflect.New(typ).Elem()
   956  		value.SetComplex(n.Complex128)
   957  		return value
   958  	}
   959  	s.errorf("expected complex; found %s", n)
   960  	panic("not reached")
   961  }
   962  
   963  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   964  	s.at(n)
   965  	switch n := n.(type) {
   966  	case *parse.BoolNode:
   967  		return reflect.ValueOf(n.True)
   968  	case *parse.DotNode:
   969  		return dot
   970  	case *parse.FieldNode:
   971  		return s.evalFieldNode(dot, n, nil, missingVal)
   972  	case *parse.IdentifierNode:
   973  		return s.evalFunction(dot, n, n, nil, missingVal)
   974  	case *parse.NilNode:
   975  		// NilNode is handled in evalArg, the only place that calls here.
   976  		s.errorf("evalEmptyInterface: nil (can't happen)")
   977  	case *parse.NumberNode:
   978  		return s.idealConstant(n)
   979  	case *parse.StringNode:
   980  		return reflect.ValueOf(n.Text)
   981  	case *parse.VariableNode:
   982  		return s.evalVariableNode(dot, n, nil, missingVal)
   983  	case *parse.PipeNode:
   984  		return s.evalPipeline(dot, n)
   985  	}
   986  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   987  	panic("not reached")
   988  }
   989  
   990  // indirect returns the item at the end of indirection, and a bool to indicate
   991  // if it's nil. If the returned bool is true, the returned value's kind will be
   992  // either a pointer or interface.
   993  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   994  	for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() {
   995  		if v.IsNil() {
   996  			return v, true
   997  		}
   998  	}
   999  	return v, false
  1000  }
  1001  
  1002  // indirectInterface returns the concrete value in an interface value,
  1003  // or else the zero reflect.Value.
  1004  // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
  1005  // the fact that x was an interface value is forgotten.
  1006  func indirectInterface(v reflect.Value) reflect.Value {
  1007  	if v.Kind() != reflect.Interface {
  1008  		return v
  1009  	}
  1010  	if v.IsNil() {
  1011  		return reflect.Value{}
  1012  	}
  1013  	return v.Elem()
  1014  }
  1015  
  1016  // printValue writes the textual representation of the value to the output of
  1017  // the template.
  1018  func (s *state) printValue(n parse.Node, v reflect.Value) {
  1019  	s.at(n)
  1020  	iface, ok := printableValue(v)
  1021  	if !ok {
  1022  		s.errorf("can't print %s of type %s", n, v.Type())
  1023  	}
  1024  	_, err := fmt.Fprint(s.wr, iface)
  1025  	if err != nil {
  1026  		s.writeError(err)
  1027  	}
  1028  }
  1029  
  1030  // printableValue returns the, possibly indirected, interface value inside v that
  1031  // is best for a call to formatted printer.
  1032  func printableValue(v reflect.Value) (any, bool) {
  1033  	if v.Kind() == reflect.Pointer {
  1034  		v, _ = indirect(v) // fmt.Fprint handles nil.
  1035  	}
  1036  	if !v.IsValid() {
  1037  		return "<no value>", true
  1038  	}
  1039  
  1040  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
  1041  		if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) {
  1042  			v = v.Addr()
  1043  		} else {
  1044  			switch v.Kind() {
  1045  			case reflect.Chan, reflect.Func:
  1046  				return nil, false
  1047  			}
  1048  		}
  1049  	}
  1050  	return v.Interface(), true
  1051  }