github.com/mtsmfm/go/src@v0.0.0-20221020090648-44bdcb9f8fde/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "errors" 9 "fmt" 10 "internal/fmtsort" 11 "io" 12 "reflect" 13 "runtime" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 var maxExecDepth = initMaxExecDepth() 23 24 func initMaxExecDepth() int { 25 if runtime.GOARCH == "wasm" { 26 return 1000 27 } 28 return 100000 29 } 30 31 // state represents the state of an execution. It's not part of the 32 // template so that multiple executions of the same template 33 // can execute in parallel. 34 type state struct { 35 tmpl *Template 36 wr io.Writer 37 node parse.Node // current node, for errors 38 vars []variable // push-down stack of variable values. 39 depth int // the height of the stack of executing templates. 40 } 41 42 // variable holds the dynamic value of a variable such as $, $x etc. 43 type variable struct { 44 name string 45 value reflect.Value 46 } 47 48 // push pushes a new variable on the stack. 49 func (s *state) push(name string, value reflect.Value) { 50 s.vars = append(s.vars, variable{name, value}) 51 } 52 53 // mark returns the length of the variable stack. 54 func (s *state) mark() int { 55 return len(s.vars) 56 } 57 58 // pop pops the variable stack up to the mark. 59 func (s *state) pop(mark int) { 60 s.vars = s.vars[0:mark] 61 } 62 63 // setVar overwrites the last declared variable with the given name. 64 // Used by variable assignments. 65 func (s *state) setVar(name string, value reflect.Value) { 66 for i := s.mark() - 1; i >= 0; i-- { 67 if s.vars[i].name == name { 68 s.vars[i].value = value 69 return 70 } 71 } 72 s.errorf("undefined variable: %s", name) 73 } 74 75 // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 76 func (s *state) setTopVar(n int, value reflect.Value) { 77 s.vars[len(s.vars)-n].value = value 78 } 79 80 // varValue returns the value of the named variable. 81 func (s *state) varValue(name string) reflect.Value { 82 for i := s.mark() - 1; i >= 0; i-- { 83 if s.vars[i].name == name { 84 return s.vars[i].value 85 } 86 } 87 s.errorf("undefined variable: %s", name) 88 return zero 89 } 90 91 var zero reflect.Value 92 93 type missingValType struct{} 94 95 var missingVal = reflect.ValueOf(missingValType{}) 96 97 var missingValReflectType = reflect.TypeOf(missingValType{}) 98 99 func isMissing(v reflect.Value) bool { 100 return v.IsValid() && v.Type() == missingValReflectType 101 } 102 103 // at marks the state to be on node n, for error reporting. 104 func (s *state) at(node parse.Node) { 105 s.node = node 106 } 107 108 // doublePercent returns the string with %'s replaced by %%, if necessary, 109 // so it can be used safely inside a Printf format string. 110 func doublePercent(str string) string { 111 return strings.ReplaceAll(str, "%", "%%") 112 } 113 114 // TODO: It would be nice if ExecError was more broken down, but 115 // the way ErrorContext embeds the template name makes the 116 // processing too clumsy. 117 118 // ExecError is the custom error type returned when Execute has an 119 // error evaluating its template. (If a write error occurs, the actual 120 // error is returned; it will not be of type ExecError.) 121 type ExecError struct { 122 Name string // Name of template. 123 Err error // Pre-formatted error. 124 } 125 126 func (e ExecError) Error() string { 127 return e.Err.Error() 128 } 129 130 func (e ExecError) Unwrap() error { 131 return e.Err 132 } 133 134 // errorf records an ExecError and terminates processing. 135 func (s *state) errorf(format string, args ...any) { 136 name := doublePercent(s.tmpl.Name()) 137 if s.node == nil { 138 format = fmt.Sprintf("template: %s: %s", name, format) 139 } else { 140 location, context := s.tmpl.ErrorContext(s.node) 141 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 142 } 143 panic(ExecError{ 144 Name: s.tmpl.Name(), 145 Err: fmt.Errorf(format, args...), 146 }) 147 } 148 149 // writeError is the wrapper type used internally when Execute has an 150 // error writing to its output. We strip the wrapper in errRecover. 151 // Note that this is not an implementation of error, so it cannot escape 152 // from the package as an error value. 153 type writeError struct { 154 Err error // Original error. 155 } 156 157 func (s *state) writeError(err error) { 158 panic(writeError{ 159 Err: err, 160 }) 161 } 162 163 // errRecover is the handler that turns panics into returns from the top 164 // level of Parse. 165 func errRecover(errp *error) { 166 e := recover() 167 if e != nil { 168 switch err := e.(type) { 169 case runtime.Error: 170 panic(e) 171 case writeError: 172 *errp = err.Err // Strip the wrapper. 173 case ExecError: 174 *errp = err // Keep the wrapper. 175 default: 176 panic(e) 177 } 178 } 179 } 180 181 // ExecuteTemplate applies the template associated with t that has the given name 182 // to the specified data object and writes the output to wr. 183 // If an error occurs executing the template or writing its output, 184 // execution stops, but partial results may already have been written to 185 // the output writer. 186 // A template may be executed safely in parallel, although if parallel 187 // executions share a Writer the output may be interleaved. 188 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error { 189 tmpl := t.Lookup(name) 190 if tmpl == nil { 191 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 192 } 193 return tmpl.Execute(wr, data) 194 } 195 196 // Execute applies a parsed template to the specified data object, 197 // and writes the output to wr. 198 // If an error occurs executing the template or writing its output, 199 // execution stops, but partial results may already have been written to 200 // the output writer. 201 // A template may be executed safely in parallel, although if parallel 202 // executions share a Writer the output may be interleaved. 203 // 204 // If data is a reflect.Value, the template applies to the concrete 205 // value that the reflect.Value holds, as in fmt.Print. 206 func (t *Template) Execute(wr io.Writer, data any) error { 207 return t.execute(wr, data) 208 } 209 210 func (t *Template) execute(wr io.Writer, data any) (err error) { 211 defer errRecover(&err) 212 value, ok := data.(reflect.Value) 213 if !ok { 214 value = reflect.ValueOf(data) 215 } 216 state := &state{ 217 tmpl: t, 218 wr: wr, 219 vars: []variable{{"$", value}}, 220 } 221 if t.Tree == nil || t.Root == nil { 222 state.errorf("%q is an incomplete or empty template", t.Name()) 223 } 224 state.walk(value, t.Root) 225 return 226 } 227 228 // DefinedTemplates returns a string listing the defined templates, 229 // prefixed by the string "; defined templates are: ". If there are none, 230 // it returns the empty string. For generating an error message here 231 // and in html/template. 232 func (t *Template) DefinedTemplates() string { 233 if t.common == nil { 234 return "" 235 } 236 var b strings.Builder 237 t.muTmpl.RLock() 238 defer t.muTmpl.RUnlock() 239 for name, tmpl := range t.tmpl { 240 if tmpl.Tree == nil || tmpl.Root == nil { 241 continue 242 } 243 if b.Len() == 0 { 244 b.WriteString("; defined templates are: ") 245 } else { 246 b.WriteString(", ") 247 } 248 fmt.Fprintf(&b, "%q", name) 249 } 250 return b.String() 251 } 252 253 // Sentinel errors for use with panic to signal early exits from range loops. 254 var ( 255 walkBreak = errors.New("break") 256 walkContinue = errors.New("continue") 257 ) 258 259 // Walk functions step through the major pieces of the template structure, 260 // generating output as they go. 261 func (s *state) walk(dot reflect.Value, node parse.Node) { 262 s.at(node) 263 switch node := node.(type) { 264 case *parse.ActionNode: 265 // Do not pop variables so they persist until next end. 266 // Also, if the action declares variables, don't print the result. 267 val := s.evalPipeline(dot, node.Pipe) 268 if len(node.Pipe.Decl) == 0 { 269 s.printValue(node, val) 270 } 271 case *parse.BreakNode: 272 panic(walkBreak) 273 case *parse.CommentNode: 274 case *parse.ContinueNode: 275 panic(walkContinue) 276 case *parse.IfNode: 277 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 278 case *parse.ListNode: 279 for _, node := range node.Nodes { 280 s.walk(dot, node) 281 } 282 case *parse.RangeNode: 283 s.walkRange(dot, node) 284 case *parse.TemplateNode: 285 s.walkTemplate(dot, node) 286 case *parse.TextNode: 287 if _, err := s.wr.Write(node.Text); err != nil { 288 s.writeError(err) 289 } 290 case *parse.WithNode: 291 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 292 default: 293 s.errorf("unknown node: %s", node) 294 } 295 } 296 297 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 298 // are identical in behavior except that 'with' sets dot. 299 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 300 defer s.pop(s.mark()) 301 val := s.evalPipeline(dot, pipe) 302 truth, ok := isTrue(indirectInterface(val)) 303 if !ok { 304 s.errorf("if/with can't use %v", val) 305 } 306 if truth { 307 if typ == parse.NodeWith { 308 s.walk(val, list) 309 } else { 310 s.walk(dot, list) 311 } 312 } else if elseList != nil { 313 s.walk(dot, elseList) 314 } 315 } 316 317 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 318 // and whether the value has a meaningful truth value. This is the definition of 319 // truth used by if and other such actions. 320 func IsTrue(val any) (truth, ok bool) { 321 return isTrue(reflect.ValueOf(val)) 322 } 323 324 func isTrue(val reflect.Value) (truth, ok bool) { 325 if !val.IsValid() { 326 // Something like var x interface{}, never set. It's a form of nil. 327 return false, true 328 } 329 switch val.Kind() { 330 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 331 truth = val.Len() > 0 332 case reflect.Bool: 333 truth = val.Bool() 334 case reflect.Complex64, reflect.Complex128: 335 truth = val.Complex() != 0 336 case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface: 337 truth = !val.IsNil() 338 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 339 truth = val.Int() != 0 340 case reflect.Float32, reflect.Float64: 341 truth = val.Float() != 0 342 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 343 truth = val.Uint() != 0 344 case reflect.Struct: 345 truth = true // Struct values are always true. 346 default: 347 return 348 } 349 return truth, true 350 } 351 352 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 353 s.at(r) 354 defer func() { 355 if r := recover(); r != nil && r != walkBreak { 356 panic(r) 357 } 358 }() 359 defer s.pop(s.mark()) 360 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 361 // mark top of stack before any variables in the body are pushed. 362 mark := s.mark() 363 oneIteration := func(index, elem reflect.Value) { 364 // Set top var (lexically the second if there are two) to the element. 365 if len(r.Pipe.Decl) > 0 { 366 s.setTopVar(1, elem) 367 } 368 // Set next var (lexically the first if there are two) to the index. 369 if len(r.Pipe.Decl) > 1 { 370 s.setTopVar(2, index) 371 } 372 defer s.pop(mark) 373 defer func() { 374 // Consume panic(walkContinue) 375 if r := recover(); r != nil && r != walkContinue { 376 panic(r) 377 } 378 }() 379 s.walk(elem, r.List) 380 } 381 switch val.Kind() { 382 case reflect.Array, reflect.Slice: 383 if val.Len() == 0 { 384 break 385 } 386 for i := 0; i < val.Len(); i++ { 387 oneIteration(reflect.ValueOf(i), val.Index(i)) 388 } 389 return 390 case reflect.Map: 391 if val.Len() == 0 { 392 break 393 } 394 om := fmtsort.Sort(val) 395 for i, key := range om.Key { 396 oneIteration(key, om.Value[i]) 397 } 398 return 399 case reflect.Chan: 400 if val.IsNil() { 401 break 402 } 403 if val.Type().ChanDir() == reflect.SendDir { 404 s.errorf("range over send-only channel %v", val) 405 break 406 } 407 i := 0 408 for ; ; i++ { 409 elem, ok := val.Recv() 410 if !ok { 411 break 412 } 413 oneIteration(reflect.ValueOf(i), elem) 414 } 415 if i == 0 { 416 break 417 } 418 return 419 case reflect.Invalid: 420 break // An invalid value is likely a nil map, etc. and acts like an empty map. 421 default: 422 s.errorf("range can't iterate over %v", val) 423 } 424 if r.ElseList != nil { 425 s.walk(dot, r.ElseList) 426 } 427 } 428 429 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 430 s.at(t) 431 tmpl := s.tmpl.Lookup(t.Name) 432 if tmpl == nil { 433 s.errorf("template %q not defined", t.Name) 434 } 435 if s.depth == maxExecDepth { 436 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 437 } 438 // Variables declared by the pipeline persist. 439 dot = s.evalPipeline(dot, t.Pipe) 440 newState := *s 441 newState.depth++ 442 newState.tmpl = tmpl 443 // No dynamic scoping: template invocations inherit no variables. 444 newState.vars = []variable{{"$", dot}} 445 newState.walk(dot, tmpl.Root) 446 } 447 448 // Eval functions evaluate pipelines, commands, and their elements and extract 449 // values from the data structure by examining fields, calling methods, and so on. 450 // The printing of those values happens only through walk functions. 451 452 // evalPipeline returns the value acquired by evaluating a pipeline. If the 453 // pipeline has a variable declaration, the variable will be pushed on the 454 // stack. Callers should therefore pop the stack after they are finished 455 // executing commands depending on the pipeline value. 456 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 457 if pipe == nil { 458 return 459 } 460 s.at(pipe) 461 value = missingVal 462 for _, cmd := range pipe.Cmds { 463 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 464 // If the object has type interface{}, dig down one level to the thing inside. 465 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 466 value = reflect.ValueOf(value.Interface()) // lovely! 467 } 468 } 469 for _, variable := range pipe.Decl { 470 if pipe.IsAssign { 471 s.setVar(variable.Ident[0], value) 472 } else { 473 s.push(variable.Ident[0], value) 474 } 475 } 476 return value 477 } 478 479 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 480 if len(args) > 1 || !isMissing(final) { 481 s.errorf("can't give argument to non-function %s", args[0]) 482 } 483 } 484 485 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 486 firstWord := cmd.Args[0] 487 switch n := firstWord.(type) { 488 case *parse.FieldNode: 489 return s.evalFieldNode(dot, n, cmd.Args, final) 490 case *parse.ChainNode: 491 return s.evalChainNode(dot, n, cmd.Args, final) 492 case *parse.IdentifierNode: 493 // Must be a function. 494 return s.evalFunction(dot, n, cmd, cmd.Args, final) 495 case *parse.PipeNode: 496 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 497 s.notAFunction(cmd.Args, final) 498 return s.evalPipeline(dot, n) 499 case *parse.VariableNode: 500 return s.evalVariableNode(dot, n, cmd.Args, final) 501 } 502 s.at(firstWord) 503 s.notAFunction(cmd.Args, final) 504 switch word := firstWord.(type) { 505 case *parse.BoolNode: 506 return reflect.ValueOf(word.True) 507 case *parse.DotNode: 508 return dot 509 case *parse.NilNode: 510 s.errorf("nil is not a command") 511 case *parse.NumberNode: 512 return s.idealConstant(word) 513 case *parse.StringNode: 514 return reflect.ValueOf(word.Text) 515 } 516 s.errorf("can't evaluate command %q", firstWord) 517 panic("not reached") 518 } 519 520 // idealConstant is called to return the value of a number in a context where 521 // we don't know the type. In that case, the syntax of the number tells us 522 // its type, and we use Go rules to resolve. Note there is no such thing as 523 // a uint ideal constant in this situation - the value must be of int type. 524 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 525 // These are ideal constants but we don't know the type 526 // and we have no context. (If it was a method argument, 527 // we'd know what we need.) The syntax guides us to some extent. 528 s.at(constant) 529 switch { 530 case constant.IsComplex: 531 return reflect.ValueOf(constant.Complex128) // incontrovertible. 532 533 case constant.IsFloat && 534 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 535 strings.ContainsAny(constant.Text, ".eEpP"): 536 return reflect.ValueOf(constant.Float64) 537 538 case constant.IsInt: 539 n := int(constant.Int64) 540 if int64(n) != constant.Int64 { 541 s.errorf("%s overflows int", constant.Text) 542 } 543 return reflect.ValueOf(n) 544 545 case constant.IsUint: 546 s.errorf("%s overflows int", constant.Text) 547 } 548 return zero 549 } 550 551 func isRuneInt(s string) bool { 552 return len(s) > 0 && s[0] == '\'' 553 } 554 555 func isHexInt(s string) bool { 556 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 557 } 558 559 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 560 s.at(field) 561 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 562 } 563 564 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 565 s.at(chain) 566 if len(chain.Field) == 0 { 567 s.errorf("internal error: no fields in evalChainNode") 568 } 569 if chain.Node.Type() == parse.NodeNil { 570 s.errorf("indirection through explicit nil in %s", chain) 571 } 572 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 573 pipe := s.evalArg(dot, nil, chain.Node) 574 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 575 } 576 577 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 578 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 579 s.at(variable) 580 value := s.varValue(variable.Ident[0]) 581 if len(variable.Ident) == 1 { 582 s.notAFunction(args, final) 583 return value 584 } 585 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 586 } 587 588 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 589 // dot is the environment in which to evaluate arguments, while 590 // receiver is the value being walked along the chain. 591 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 592 n := len(ident) 593 for i := 0; i < n-1; i++ { 594 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 595 } 596 // Now if it's a method, it gets the arguments. 597 return s.evalField(dot, ident[n-1], node, args, final, receiver) 598 } 599 600 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 601 s.at(node) 602 name := node.Ident 603 function, isBuiltin, ok := findFunction(name, s.tmpl) 604 if !ok { 605 s.errorf("%q is not a defined function", name) 606 } 607 return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) 608 } 609 610 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 611 // The 'final' argument represents the return value from the preceding 612 // value of the pipeline, if any. 613 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 614 if !receiver.IsValid() { 615 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 616 s.errorf("nil data; no entry for key %q", fieldName) 617 } 618 return zero 619 } 620 typ := receiver.Type() 621 receiver, isNil := indirect(receiver) 622 if receiver.Kind() == reflect.Interface && isNil { 623 // Calling a method on a nil interface can't work. The 624 // MethodByName method call below would panic. 625 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 626 return zero 627 } 628 629 // Unless it's an interface, need to get to a value of type *T to guarantee 630 // we see all methods of T and *T. 631 ptr := receiver 632 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { 633 ptr = ptr.Addr() 634 } 635 if method := ptr.MethodByName(fieldName); method.IsValid() { 636 return s.evalCall(dot, method, false, node, fieldName, args, final) 637 } 638 hasArgs := len(args) > 1 || !isMissing(final) 639 // It's not a method; must be a field of a struct or an element of a map. 640 switch receiver.Kind() { 641 case reflect.Struct: 642 tField, ok := receiver.Type().FieldByName(fieldName) 643 if ok { 644 field, err := receiver.FieldByIndexErr(tField.Index) 645 if !tField.IsExported() { 646 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 647 } 648 if err != nil { 649 s.errorf("%v", err) 650 } 651 // If it's a function, we must call it. 652 if hasArgs { 653 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 654 } 655 return field 656 } 657 case reflect.Map: 658 // If it's a map, attempt to use the field name as a key. 659 nameVal := reflect.ValueOf(fieldName) 660 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 661 if hasArgs { 662 s.errorf("%s is not a method but has arguments", fieldName) 663 } 664 result := receiver.MapIndex(nameVal) 665 if !result.IsValid() { 666 switch s.tmpl.option.missingKey { 667 case mapInvalid: 668 // Just use the invalid value. 669 case mapZeroValue: 670 result = reflect.Zero(receiver.Type().Elem()) 671 case mapError: 672 s.errorf("map has no entry for key %q", fieldName) 673 } 674 } 675 return result 676 } 677 case reflect.Pointer: 678 etyp := receiver.Type().Elem() 679 if etyp.Kind() == reflect.Struct { 680 if _, ok := etyp.FieldByName(fieldName); !ok { 681 // If there's no such field, say "can't evaluate" 682 // instead of "nil pointer evaluating". 683 break 684 } 685 } 686 if isNil { 687 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 688 } 689 } 690 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 691 panic("not reached") 692 } 693 694 var ( 695 errorType = reflect.TypeOf((*error)(nil)).Elem() 696 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 697 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 698 ) 699 700 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 701 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 702 // as the function itself. 703 func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 704 if args != nil { 705 args = args[1:] // Zeroth arg is function name/node; not passed to function. 706 } 707 typ := fun.Type() 708 numIn := len(args) 709 if !isMissing(final) { 710 numIn++ 711 } 712 numFixed := len(args) 713 if typ.IsVariadic() { 714 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 715 if numIn < numFixed { 716 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 717 } 718 } else if numIn != typ.NumIn() { 719 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 720 } 721 if !goodFunc(typ) { 722 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 723 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 724 } 725 726 unwrap := func(v reflect.Value) reflect.Value { 727 if v.Type() == reflectValueType { 728 v = v.Interface().(reflect.Value) 729 } 730 return v 731 } 732 733 // Special case for builtin and/or, which short-circuit. 734 if isBuiltin && (name == "and" || name == "or") { 735 argType := typ.In(0) 736 var v reflect.Value 737 for _, arg := range args { 738 v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) 739 if truth(v) == (name == "or") { 740 // This value was already unwrapped 741 // by the .Interface().(reflect.Value). 742 return v 743 } 744 } 745 if final != missingVal { 746 // The last argument to and/or is coming from 747 // the pipeline. We didn't short circuit on an earlier 748 // argument, so we are going to return this one. 749 // We don't have to evaluate final, but we do 750 // have to check its type. Then, since we are 751 // going to return it, we have to unwrap it. 752 v = unwrap(s.validateType(final, argType)) 753 } 754 return v 755 } 756 757 // Build the arg list. 758 argv := make([]reflect.Value, numIn) 759 // Args must be evaluated. Fixed args first. 760 i := 0 761 for ; i < numFixed && i < len(args); i++ { 762 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 763 } 764 // Now the ... args. 765 if typ.IsVariadic() { 766 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 767 for ; i < len(args); i++ { 768 argv[i] = s.evalArg(dot, argType, args[i]) 769 } 770 } 771 // Add final value if necessary. 772 if !isMissing(final) { 773 t := typ.In(typ.NumIn() - 1) 774 if typ.IsVariadic() { 775 if numIn-1 < numFixed { 776 // The added final argument corresponds to a fixed parameter of the function. 777 // Validate against the type of the actual parameter. 778 t = typ.In(numIn - 1) 779 } else { 780 // The added final argument corresponds to the variadic part. 781 // Validate against the type of the elements of the variadic slice. 782 t = t.Elem() 783 } 784 } 785 argv[i] = s.validateType(final, t) 786 } 787 v, err := safeCall(fun, argv) 788 // If we have an error that is not nil, stop execution and return that 789 // error to the caller. 790 if err != nil { 791 s.at(node) 792 s.errorf("error calling %s: %w", name, err) 793 } 794 return unwrap(v) 795 } 796 797 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 798 func canBeNil(typ reflect.Type) bool { 799 switch typ.Kind() { 800 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 801 return true 802 case reflect.Struct: 803 return typ == reflectValueType 804 } 805 return false 806 } 807 808 // validateType guarantees that the value is valid and assignable to the type. 809 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 810 if !value.IsValid() { 811 if typ == nil { 812 // An untyped nil interface{}. Accept as a proper nil value. 813 return reflect.ValueOf(nil) 814 } 815 if canBeNil(typ) { 816 // Like above, but use the zero value of the non-nil type. 817 return reflect.Zero(typ) 818 } 819 s.errorf("invalid value; expected %s", typ) 820 } 821 if typ == reflectValueType && value.Type() != typ { 822 return reflect.ValueOf(value) 823 } 824 if typ != nil && !value.Type().AssignableTo(typ) { 825 if value.Kind() == reflect.Interface && !value.IsNil() { 826 value = value.Elem() 827 if value.Type().AssignableTo(typ) { 828 return value 829 } 830 // fallthrough 831 } 832 // Does one dereference or indirection work? We could do more, as we 833 // do with method receivers, but that gets messy and method receivers 834 // are much more constrained, so it makes more sense there than here. 835 // Besides, one is almost always all you need. 836 switch { 837 case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ): 838 value = value.Elem() 839 if !value.IsValid() { 840 s.errorf("dereference of nil pointer of type %s", typ) 841 } 842 case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 843 value = value.Addr() 844 default: 845 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 846 } 847 } 848 return value 849 } 850 851 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 852 s.at(n) 853 switch arg := n.(type) { 854 case *parse.DotNode: 855 return s.validateType(dot, typ) 856 case *parse.NilNode: 857 if canBeNil(typ) { 858 return reflect.Zero(typ) 859 } 860 s.errorf("cannot assign nil to %s", typ) 861 case *parse.FieldNode: 862 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 863 case *parse.VariableNode: 864 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 865 case *parse.PipeNode: 866 return s.validateType(s.evalPipeline(dot, arg), typ) 867 case *parse.IdentifierNode: 868 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 869 case *parse.ChainNode: 870 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 871 } 872 switch typ.Kind() { 873 case reflect.Bool: 874 return s.evalBool(typ, n) 875 case reflect.Complex64, reflect.Complex128: 876 return s.evalComplex(typ, n) 877 case reflect.Float32, reflect.Float64: 878 return s.evalFloat(typ, n) 879 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 880 return s.evalInteger(typ, n) 881 case reflect.Interface: 882 if typ.NumMethod() == 0 { 883 return s.evalEmptyInterface(dot, n) 884 } 885 case reflect.Struct: 886 if typ == reflectValueType { 887 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 888 } 889 case reflect.String: 890 return s.evalString(typ, n) 891 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 892 return s.evalUnsignedInteger(typ, n) 893 } 894 s.errorf("can't handle %s for arg of type %s", n, typ) 895 panic("not reached") 896 } 897 898 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 899 s.at(n) 900 if n, ok := n.(*parse.BoolNode); ok { 901 value := reflect.New(typ).Elem() 902 value.SetBool(n.True) 903 return value 904 } 905 s.errorf("expected bool; found %s", n) 906 panic("not reached") 907 } 908 909 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 910 s.at(n) 911 if n, ok := n.(*parse.StringNode); ok { 912 value := reflect.New(typ).Elem() 913 value.SetString(n.Text) 914 return value 915 } 916 s.errorf("expected string; found %s", n) 917 panic("not reached") 918 } 919 920 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 921 s.at(n) 922 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 923 value := reflect.New(typ).Elem() 924 value.SetInt(n.Int64) 925 return value 926 } 927 s.errorf("expected integer; found %s", n) 928 panic("not reached") 929 } 930 931 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 932 s.at(n) 933 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 934 value := reflect.New(typ).Elem() 935 value.SetUint(n.Uint64) 936 return value 937 } 938 s.errorf("expected unsigned integer; found %s", n) 939 panic("not reached") 940 } 941 942 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 943 s.at(n) 944 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 945 value := reflect.New(typ).Elem() 946 value.SetFloat(n.Float64) 947 return value 948 } 949 s.errorf("expected float; found %s", n) 950 panic("not reached") 951 } 952 953 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 954 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 955 value := reflect.New(typ).Elem() 956 value.SetComplex(n.Complex128) 957 return value 958 } 959 s.errorf("expected complex; found %s", n) 960 panic("not reached") 961 } 962 963 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 964 s.at(n) 965 switch n := n.(type) { 966 case *parse.BoolNode: 967 return reflect.ValueOf(n.True) 968 case *parse.DotNode: 969 return dot 970 case *parse.FieldNode: 971 return s.evalFieldNode(dot, n, nil, missingVal) 972 case *parse.IdentifierNode: 973 return s.evalFunction(dot, n, n, nil, missingVal) 974 case *parse.NilNode: 975 // NilNode is handled in evalArg, the only place that calls here. 976 s.errorf("evalEmptyInterface: nil (can't happen)") 977 case *parse.NumberNode: 978 return s.idealConstant(n) 979 case *parse.StringNode: 980 return reflect.ValueOf(n.Text) 981 case *parse.VariableNode: 982 return s.evalVariableNode(dot, n, nil, missingVal) 983 case *parse.PipeNode: 984 return s.evalPipeline(dot, n) 985 } 986 s.errorf("can't handle assignment of %s to empty interface argument", n) 987 panic("not reached") 988 } 989 990 // indirect returns the item at the end of indirection, and a bool to indicate 991 // if it's nil. If the returned bool is true, the returned value's kind will be 992 // either a pointer or interface. 993 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 994 for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() { 995 if v.IsNil() { 996 return v, true 997 } 998 } 999 return v, false 1000 } 1001 1002 // indirectInterface returns the concrete value in an interface value, 1003 // or else the zero reflect.Value. 1004 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 1005 // the fact that x was an interface value is forgotten. 1006 func indirectInterface(v reflect.Value) reflect.Value { 1007 if v.Kind() != reflect.Interface { 1008 return v 1009 } 1010 if v.IsNil() { 1011 return reflect.Value{} 1012 } 1013 return v.Elem() 1014 } 1015 1016 // printValue writes the textual representation of the value to the output of 1017 // the template. 1018 func (s *state) printValue(n parse.Node, v reflect.Value) { 1019 s.at(n) 1020 iface, ok := printableValue(v) 1021 if !ok { 1022 s.errorf("can't print %s of type %s", n, v.Type()) 1023 } 1024 _, err := fmt.Fprint(s.wr, iface) 1025 if err != nil { 1026 s.writeError(err) 1027 } 1028 } 1029 1030 // printableValue returns the, possibly indirected, interface value inside v that 1031 // is best for a call to formatted printer. 1032 func printableValue(v reflect.Value) (any, bool) { 1033 if v.Kind() == reflect.Pointer { 1034 v, _ = indirect(v) // fmt.Fprint handles nil. 1035 } 1036 if !v.IsValid() { 1037 return "<no value>", true 1038 } 1039 1040 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 1041 if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) { 1042 v = v.Addr() 1043 } else { 1044 switch v.Kind() { 1045 case reflect.Chan, reflect.Func: 1046 return nil, false 1047 } 1048 } 1049 } 1050 return v.Interface(), true 1051 }