github.com/muesli/go@v0.0.0-20170208044820-e410d2a81ef2/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of February 7, 2017",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   261  </p>
   262  <pre class="grammar">
   263  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   264  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   265  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   266  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   267  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   268       &amp;^          &amp;^=
   269  </pre>
   270  
   271  <h3 id="Integer_literals">Integer literals</h3>
   272  
   273  <p>
   274  An integer literal is a sequence of digits representing an
   275  <a href="#Constants">integer constant</a>.
   276  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   277  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   278  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   279  </p>
   280  <pre class="ebnf">
   281  int_lit     = decimal_lit | octal_lit | hex_lit .
   282  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   283  octal_lit   = "0" { octal_digit } .
   284  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   285  </pre>
   286  
   287  <pre>
   288  42
   289  0600
   290  0xBadFace
   291  170141183460469231731687303715884105727
   292  </pre>
   293  
   294  <h3 id="Floating-point_literals">Floating-point literals</h3>
   295  <p>
   296  A floating-point literal is a decimal representation of a
   297  <a href="#Constants">floating-point constant</a>.
   298  It has an integer part, a decimal point, a fractional part,
   299  and an exponent part.  The integer and fractional part comprise
   300  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   301  followed by an optionally signed decimal exponent.  One of the
   302  integer part or the fractional part may be elided; one of the decimal
   303  point or the exponent may be elided.
   304  </p>
   305  <pre class="ebnf">
   306  float_lit = decimals "." [ decimals ] [ exponent ] |
   307              decimals exponent |
   308              "." decimals [ exponent ] .
   309  decimals  = decimal_digit { decimal_digit } .
   310  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   311  </pre>
   312  
   313  <pre>
   314  0.
   315  72.40
   316  072.40  // == 72.40
   317  2.71828
   318  1.e+0
   319  6.67428e-11
   320  1E6
   321  .25
   322  .12345E+5
   323  </pre>
   324  
   325  <h3 id="Imaginary_literals">Imaginary literals</h3>
   326  <p>
   327  An imaginary literal is a decimal representation of the imaginary part of a
   328  <a href="#Constants">complex constant</a>.
   329  It consists of a
   330  <a href="#Floating-point_literals">floating-point literal</a>
   331  or decimal integer followed
   332  by the lower-case letter <code>i</code>.
   333  </p>
   334  <pre class="ebnf">
   335  imaginary_lit = (decimals | float_lit) "i" .
   336  </pre>
   337  
   338  <pre>
   339  0i
   340  011i  // == 11i
   341  0.i
   342  2.71828i
   343  1.e+0i
   344  6.67428e-11i
   345  1E6i
   346  .25i
   347  .12345E+5i
   348  </pre>
   349  
   350  
   351  <h3 id="Rune_literals">Rune literals</h3>
   352  
   353  <p>
   354  A rune literal represents a <a href="#Constants">rune constant</a>,
   355  an integer value identifying a Unicode code point.
   356  A rune literal is expressed as one or more characters enclosed in single quotes,
   357  as in <code>'x'</code> or <code>'\n'</code>.
   358  Within the quotes, any character may appear except newline and unescaped single
   359  quote. A single quoted character represents the Unicode value
   360  of the character itself,
   361  while multi-character sequences beginning with a backslash encode
   362  values in various formats.
   363  </p>
   364  <p>
   365  The simplest form represents the single character within the quotes;
   366  since Go source text is Unicode characters encoded in UTF-8, multiple
   367  UTF-8-encoded bytes may represent a single integer value.  For
   368  instance, the literal <code>'a'</code> holds a single byte representing
   369  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   370  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   371  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   372  </p>
   373  <p>
   374  Several backslash escapes allow arbitrary values to be encoded as
   375  ASCII text.  There are four ways to represent the integer value
   376  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   377  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   378  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   379  plain backslash <code>\</code> followed by exactly three octal digits.
   380  In each case the value of the literal is the value represented by
   381  the digits in the corresponding base.
   382  </p>
   383  <p>
   384  Although these representations all result in an integer, they have
   385  different valid ranges.  Octal escapes must represent a value between
   386  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   387  by construction. The escapes <code>\u</code> and <code>\U</code>
   388  represent Unicode code points so within them some values are illegal,
   389  in particular those above <code>0x10FFFF</code> and surrogate halves.
   390  </p>
   391  <p>
   392  After a backslash, certain single-character escapes represent special values:
   393  </p>
   394  <pre class="grammar">
   395  \a   U+0007 alert or bell
   396  \b   U+0008 backspace
   397  \f   U+000C form feed
   398  \n   U+000A line feed or newline
   399  \r   U+000D carriage return
   400  \t   U+0009 horizontal tab
   401  \v   U+000b vertical tab
   402  \\   U+005c backslash
   403  \'   U+0027 single quote  (valid escape only within rune literals)
   404  \"   U+0022 double quote  (valid escape only within string literals)
   405  </pre>
   406  <p>
   407  All other sequences starting with a backslash are illegal inside rune literals.
   408  </p>
   409  <pre class="ebnf">
   410  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   411  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   412  byte_value       = octal_byte_value | hex_byte_value .
   413  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   414  hex_byte_value   = `\` "x" hex_digit hex_digit .
   415  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   416  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   417                             hex_digit hex_digit hex_digit hex_digit .
   418  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   419  </pre>
   420  
   421  <pre>
   422  'a'
   423  'ä'
   424  '本'
   425  '\t'
   426  '\000'
   427  '\007'
   428  '\377'
   429  '\x07'
   430  '\xff'
   431  '\u12e4'
   432  '\U00101234'
   433  '\''         // rune literal containing single quote character
   434  'aa'         // illegal: too many characters
   435  '\xa'        // illegal: too few hexadecimal digits
   436  '\0'         // illegal: too few octal digits
   437  '\uDFFF'     // illegal: surrogate half
   438  '\U00110000' // illegal: invalid Unicode code point
   439  </pre>
   440  
   441  
   442  <h3 id="String_literals">String literals</h3>
   443  
   444  <p>
   445  A string literal represents a <a href="#Constants">string constant</a>
   446  obtained from concatenating a sequence of characters. There are two forms:
   447  raw string literals and interpreted string literals.
   448  </p>
   449  <p>
   450  Raw string literals are character sequences between back quotes, as in
   451  <code>`foo`</code>.  Within the quotes, any character may appear except
   452  back quote. The value of a raw string literal is the
   453  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   454  between the quotes;
   455  in particular, backslashes have no special meaning and the string may
   456  contain newlines.
   457  Carriage return characters ('\r') inside raw string literals
   458  are discarded from the raw string value.
   459  </p>
   460  <p>
   461  Interpreted string literals are character sequences between double
   462  quotes, as in <code>&quot;bar&quot;</code>.
   463  Within the quotes, any character may appear except newline and unescaped double quote.
   464  The text between the quotes forms the
   465  value of the literal, with backslash escapes interpreted as they
   466  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   467  <code>\"</code> is legal), with the same restrictions.
   468  The three-digit octal (<code>\</code><i>nnn</i>)
   469  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   470  <i>bytes</i> of the resulting string; all other escapes represent
   471  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   472  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   473  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   474  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   475  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   476  U+00FF.
   477  </p>
   478  
   479  <pre class="ebnf">
   480  string_lit             = raw_string_lit | interpreted_string_lit .
   481  raw_string_lit         = "`" { unicode_char | newline } "`" .
   482  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   483  </pre>
   484  
   485  <pre>
   486  `abc`                // same as "abc"
   487  `\n
   488  \n`                  // same as "\\n\n\\n"
   489  "\n"
   490  "\""                 // same as `"`
   491  "Hello, world!\n"
   492  "日本語"
   493  "\u65e5本\U00008a9e"
   494  "\xff\u00FF"
   495  "\uD800"             // illegal: surrogate half
   496  "\U00110000"         // illegal: invalid Unicode code point
   497  </pre>
   498  
   499  <p>
   500  These examples all represent the same string:
   501  </p>
   502  
   503  <pre>
   504  "日本語"                                 // UTF-8 input text
   505  `日本語`                                 // UTF-8 input text as a raw literal
   506  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   507  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   508  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   509  </pre>
   510  
   511  <p>
   512  If the source code represents a character as two code points, such as
   513  a combining form involving an accent and a letter, the result will be
   514  an error if placed in a rune literal (it is not a single code
   515  point), and will appear as two code points if placed in a string
   516  literal.
   517  </p>
   518  
   519  
   520  <h2 id="Constants">Constants</h2>
   521  
   522  <p>There are <i>boolean constants</i>,
   523  <i>rune constants</i>,
   524  <i>integer constants</i>,
   525  <i>floating-point constants</i>, <i>complex constants</i>,
   526  and <i>string constants</i>. Rune, integer, floating-point,
   527  and complex constants are
   528  collectively called <i>numeric constants</i>.
   529  </p>
   530  
   531  <p>
   532  A constant value is represented by a
   533  <a href="#Rune_literals">rune</a>,
   534  <a href="#Integer_literals">integer</a>,
   535  <a href="#Floating-point_literals">floating-point</a>,
   536  <a href="#Imaginary_literals">imaginary</a>,
   537  or
   538  <a href="#String_literals">string</a> literal,
   539  an identifier denoting a constant,
   540  a <a href="#Constant_expressions">constant expression</a>,
   541  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   542  the result value of some built-in functions such as
   543  <code>unsafe.Sizeof</code> applied to any value,
   544  <code>cap</code> or <code>len</code> applied to
   545  <a href="#Length_and_capacity">some expressions</a>,
   546  <code>real</code> and <code>imag</code> applied to a complex constant
   547  and <code>complex</code> applied to numeric constants.
   548  The boolean truth values are represented by the predeclared constants
   549  <code>true</code> and <code>false</code>. The predeclared identifier
   550  <a href="#Iota">iota</a> denotes an integer constant.
   551  </p>
   552  
   553  <p>
   554  In general, complex constants are a form of
   555  <a href="#Constant_expressions">constant expression</a>
   556  and are discussed in that section.
   557  </p>
   558  
   559  <p>
   560  Numeric constants represent exact values of arbitrary precision and do not overflow.
   561  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   562  and not-a-number values.
   563  </p>
   564  
   565  <p>
   566  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   567  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   568  and certain <a href="#Constant_expressions">constant expressions</a>
   569  containing only untyped constant operands are untyped.
   570  </p>
   571  
   572  <p>
   573  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   574  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   575  <a href="#Variable_declarations">variable declaration</a> or an
   576  <a href="#Assignments">assignment</a> or as an
   577  operand in an <a href="#Expressions">expression</a>.
   578  It is an error if the constant value
   579  cannot be represented as a value of the respective type.
   580  For instance, <code>3.0</code> can be given any integer or any
   581  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   582  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   583  not <code>int32</code> or <code>string</code>.
   584  </p>
   585  
   586  <p>
   587  An untyped constant has a <i>default type</i> which is the type to which the
   588  constant is implicitly converted in contexts where a typed value is required,
   589  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   590  such as <code>i := 0</code> where there is no explicit type.
   591  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   592  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   593  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   594  complex, or string constant.
   595  </p>
   596  
   597  <p>
   598  Implementation restriction: Although numeric constants have arbitrary
   599  precision in the language, a compiler may implement them using an
   600  internal representation with limited precision.  That said, every
   601  implementation must:
   602  </p>
   603  <ul>
   604  	<li>Represent integer constants with at least 256 bits.</li>
   605  
   606  	<li>Represent floating-point constants, including the parts of
   607  	    a complex constant, with a mantissa of at least 256 bits
   608  	    and a signed binary exponent of at least 16 bits.</li>
   609  
   610  	<li>Give an error if unable to represent an integer constant
   611  	    precisely.</li>
   612  
   613  	<li>Give an error if unable to represent a floating-point or
   614  	    complex constant due to overflow.</li>
   615  
   616  	<li>Round to the nearest representable constant if unable to
   617  	    represent a floating-point or complex constant due to limits
   618  	    on precision.</li>
   619  </ul>
   620  <p>
   621  These requirements apply both to literal constants and to the result
   622  of evaluating <a href="#Constant_expressions">constant
   623  expressions</a>.
   624  </p>
   625  
   626  <h2 id="Variables">Variables</h2>
   627  
   628  <p>
   629  A variable is a storage location for holding a <i>value</i>.
   630  The set of permissible values is determined by the
   631  variable's <i><a href="#Types">type</a></i>.
   632  </p>
   633  
   634  <p>
   635  A <a href="#Variable_declarations">variable declaration</a>
   636  or, for function parameters and results, the signature
   637  of a <a href="#Function_declarations">function declaration</a>
   638  or <a href="#Function_literals">function literal</a> reserves
   639  storage for a named variable.
   640  
   641  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   642  or taking the address of a <a href="#Composite_literals">composite literal</a>
   643  allocates storage for a variable at run time.
   644  Such an anonymous variable is referred to via a (possibly implicit)
   645  <a href="#Address_operators">pointer indirection</a>.
   646  </p>
   647  
   648  <p>
   649  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   650  and <a href="#Struct_types">struct</a> types have elements and fields that may
   651  be <a href="#Address_operators">addressed</a> individually. Each such element
   652  acts like a variable.
   653  </p>
   654  
   655  <p>
   656  The <i>static type</i> (or just <i>type</i>) of a variable is the
   657  type given in its declaration, the type provided in the
   658  <code>new</code> call or composite literal, or the type of
   659  an element of a structured variable.
   660  Variables of interface type also have a distinct <i>dynamic type</i>,
   661  which is the concrete type of the value assigned to the variable at run time
   662  (unless the value is the predeclared identifier <code>nil</code>,
   663  which has no type).
   664  The dynamic type may vary during execution but values stored in interface
   665  variables are always <a href="#Assignability">assignable</a>
   666  to the static type of the variable.
   667  </p>
   668  
   669  <pre>
   670  var x interface{}  // x is nil and has static type interface{}
   671  var v *T           // v has value nil, static type *T
   672  x = 42             // x has value 42 and dynamic type int
   673  x = v              // x has value (*T)(nil) and dynamic type *T
   674  </pre>
   675  
   676  <p>
   677  A variable's value is retrieved by referring to the variable in an
   678  <a href="#Expressions">expression</a>; it is the most recent value
   679  <a href="#Assignments">assigned</a> to the variable.
   680  If a variable has not yet been assigned a value, its value is the
   681  <a href="#The_zero_value">zero value</a> for its type.
   682  </p>
   683  
   684  
   685  <h2 id="Types">Types</h2>
   686  
   687  <p>
   688  A type determines a set of values together with operations and methods specific
   689  to those values. A type may be denoted by a <i>type name</i>, if it has one,
   690  or specified using a <i>type literal</i>, which composes a type from existing types.
   691  </p>
   692  
   693  <pre class="ebnf">
   694  Type      = TypeName | TypeLit | "(" Type ")" .
   695  TypeName  = identifier | QualifiedIdent .
   696  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   697  	    SliceType | MapType | ChannelType .
   698  </pre>
   699  
   700  <p>
   701  Named instances of the boolean, numeric, and string types are
   702  <a href="#Predeclared_identifiers">predeclared</a>.
   703  Other named types are introduced with <a href="#Type_declarations">type declarations</a>.
   704  <i>Composite types</i>&mdash;array, struct, pointer, function,
   705  interface, slice, map, and channel types&mdash;may be constructed using
   706  type literals.
   707  </p>
   708  
   709  <p>
   710  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   711  is one of the predeclared boolean, numeric, or string types, or a type literal,
   712  the corresponding underlying
   713  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   714  is the underlying type of the type to which <code>T</code> refers in its
   715  <a href="#Type_declarations">type declaration</a>.
   716  </p>
   717  
   718  <pre>
   719  type (
   720  	A1 = string
   721  	A2 = A1
   722  )
   723  
   724  type (
   725  	B1 string
   726  	B2 B1
   727  	B3 []B1
   728  	B4 B3
   729  )
   730  </pre>
   731  
   732  <p>
   733  The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
   734  and <code>B2</code> is <code>string</code>.
   735  The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
   736  </p>
   737  
   738  <h3 id="Method_sets">Method sets</h3>
   739  <p>
   740  A type may have a <i>method set</i> associated with it.
   741  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   742  The method set of any other type <code>T</code> consists of all
   743  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   744  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   745  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   746  (that is, it also contains the method set of <code>T</code>).
   747  Further rules apply to structs containing embedded fields, as described
   748  in the section on <a href="#Struct_types">struct types</a>.
   749  Any other type has an empty method set.
   750  In a method set, each method must have a
   751  <a href="#Uniqueness_of_identifiers">unique</a>
   752  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   753  </p>
   754  
   755  <p>
   756  The method set of a type determines the interfaces that the
   757  type <a href="#Interface_types">implements</a>
   758  and the methods that can be <a href="#Calls">called</a>
   759  using a receiver of that type.
   760  </p>
   761  
   762  <h3 id="Boolean_types">Boolean types</h3>
   763  
   764  <p>
   765  A <i>boolean type</i> represents the set of Boolean truth values
   766  denoted by the predeclared constants <code>true</code>
   767  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   768  </p>
   769  
   770  <h3 id="Numeric_types">Numeric types</h3>
   771  
   772  <p>
   773  A <i>numeric type</i> represents sets of integer or floating-point values.
   774  The predeclared architecture-independent numeric types are:
   775  </p>
   776  
   777  <pre class="grammar">
   778  uint8       the set of all unsigned  8-bit integers (0 to 255)
   779  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   780  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   781  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   782  
   783  int8        the set of all signed  8-bit integers (-128 to 127)
   784  int16       the set of all signed 16-bit integers (-32768 to 32767)
   785  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   786  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   787  
   788  float32     the set of all IEEE-754 32-bit floating-point numbers
   789  float64     the set of all IEEE-754 64-bit floating-point numbers
   790  
   791  complex64   the set of all complex numbers with float32 real and imaginary parts
   792  complex128  the set of all complex numbers with float64 real and imaginary parts
   793  
   794  byte        alias for uint8
   795  rune        alias for int32
   796  </pre>
   797  
   798  <p>
   799  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   800  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   801  </p>
   802  
   803  <p>
   804  There is also a set of predeclared numeric types with implementation-specific sizes:
   805  </p>
   806  
   807  <pre class="grammar">
   808  uint     either 32 or 64 bits
   809  int      same size as uint
   810  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   811  </pre>
   812  
   813  <p>
   814  To avoid portability issues all numeric types are distinct except
   815  <code>byte</code>, which is an alias for <code>uint8</code>, and
   816  <code>rune</code>, which is an alias for <code>int32</code>.
   817  Conversions
   818  are required when different numeric types are mixed in an expression
   819  or assignment. For instance, <code>int32</code> and <code>int</code>
   820  are not the same type even though they may have the same size on a
   821  particular architecture.
   822  
   823  
   824  <h3 id="String_types">String types</h3>
   825  
   826  <p>
   827  A <i>string type</i> represents the set of string values.
   828  A string value is a (possibly empty) sequence of bytes.
   829  Strings are immutable: once created,
   830  it is impossible to change the contents of a string.
   831  The predeclared string type is <code>string</code>.
   832  </p>
   833  
   834  <p>
   835  The length of a string <code>s</code> (its size in bytes) can be discovered using
   836  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   837  The length is a compile-time constant if the string is a constant.
   838  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   839  0 through <code>len(s)-1</code>.
   840  It is illegal to take the address of such an element; if
   841  <code>s[i]</code> is the <code>i</code>'th byte of a
   842  string, <code>&amp;s[i]</code> is invalid.
   843  </p>
   844  
   845  
   846  <h3 id="Array_types">Array types</h3>
   847  
   848  <p>
   849  An array is a numbered sequence of elements of a single
   850  type, called the element type.
   851  The number of elements is called the length and is never
   852  negative.
   853  </p>
   854  
   855  <pre class="ebnf">
   856  ArrayType   = "[" ArrayLength "]" ElementType .
   857  ArrayLength = Expression .
   858  ElementType = Type .
   859  </pre>
   860  
   861  <p>
   862  The length is part of the array's type; it must evaluate to a
   863  non-negative <a href="#Constants">constant</a> representable by a value
   864  of type <code>int</code>.
   865  The length of array <code>a</code> can be discovered
   866  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   867  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   868  0 through <code>len(a)-1</code>.
   869  Array types are always one-dimensional but may be composed to form
   870  multi-dimensional types.
   871  </p>
   872  
   873  <pre>
   874  [32]byte
   875  [2*N] struct { x, y int32 }
   876  [1000]*float64
   877  [3][5]int
   878  [2][2][2]float64  // same as [2]([2]([2]float64))
   879  </pre>
   880  
   881  <h3 id="Slice_types">Slice types</h3>
   882  
   883  <p>
   884  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   885  provides access to a numbered sequence of elements from that array.
   886  A slice type denotes the set of all slices of arrays of its element type.
   887  The value of an uninitialized slice is <code>nil</code>.
   888  </p>
   889  
   890  <pre class="ebnf">
   891  SliceType = "[" "]" ElementType .
   892  </pre>
   893  
   894  <p>
   895  Like arrays, slices are indexable and have a length.  The length of a
   896  slice <code>s</code> can be discovered by the built-in function
   897  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   898  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   899  0 through <code>len(s)-1</code>.  The slice index of a
   900  given element may be less than the index of the same element in the
   901  underlying array.
   902  </p>
   903  <p>
   904  A slice, once initialized, is always associated with an underlying
   905  array that holds its elements.  A slice therefore shares storage
   906  with its array and with other slices of the same array; by contrast,
   907  distinct arrays always represent distinct storage.
   908  </p>
   909  <p>
   910  The array underlying a slice may extend past the end of the slice.
   911  The <i>capacity</i> is a measure of that extent: it is the sum of
   912  the length of the slice and the length of the array beyond the slice;
   913  a slice of length up to that capacity can be created by
   914  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   915  The capacity of a slice <code>a</code> can be discovered using the
   916  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   917  </p>
   918  
   919  <p>
   920  A new, initialized slice value for a given element type <code>T</code> is
   921  made using the built-in function
   922  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   923  which takes a slice type
   924  and parameters specifying the length and optionally the capacity.
   925  A slice created with <code>make</code> always allocates a new, hidden array
   926  to which the returned slice value refers. That is, executing
   927  </p>
   928  
   929  <pre>
   930  make([]T, length, capacity)
   931  </pre>
   932  
   933  <p>
   934  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   935  it, so these two expressions are equivalent:
   936  </p>
   937  
   938  <pre>
   939  make([]int, 50, 100)
   940  new([100]int)[0:50]
   941  </pre>
   942  
   943  <p>
   944  Like arrays, slices are always one-dimensional but may be composed to construct
   945  higher-dimensional objects.
   946  With arrays of arrays, the inner arrays are, by construction, always the same length;
   947  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   948  Moreover, the inner slices must be initialized individually.
   949  </p>
   950  
   951  <h3 id="Struct_types">Struct types</h3>
   952  
   953  <p>
   954  A struct is a sequence of named elements, called fields, each of which has a
   955  name and a type. Field names may be specified explicitly (IdentifierList) or
   956  implicitly (EmbeddedField).
   957  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   958  be <a href="#Uniqueness_of_identifiers">unique</a>.
   959  </p>
   960  
   961  <pre class="ebnf">
   962  StructType    = "struct" "{" { FieldDecl ";" } "}" .
   963  FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
   964  EmbeddedField = [ "*" ] TypeName .
   965  Tag           = string_lit .
   966  </pre>
   967  
   968  <pre>
   969  // An empty struct.
   970  struct {}
   971  
   972  // A struct with 6 fields.
   973  struct {
   974  	x, y int
   975  	u float32
   976  	_ float32  // padding
   977  	A *[]int
   978  	F func()
   979  }
   980  </pre>
   981  
   982  <p>
   983  A field declared with a type but no explicit field name is called an <i>embedded field</i>.
   984  An embedded field must be specified as
   985  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   986  and <code>T</code> itself may not be
   987  a pointer type. The unqualified type name acts as the field name.
   988  </p>
   989  
   990  <pre>
   991  // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
   992  struct {
   993  	T1        // field name is T1
   994  	*T2       // field name is T2
   995  	P.T3      // field name is T3
   996  	*P.T4     // field name is T4
   997  	x, y int  // field names are x and y
   998  }
   999  </pre>
  1000  
  1001  <p>
  1002  The following declaration is illegal because field names must be unique
  1003  in a struct type:
  1004  </p>
  1005  
  1006  <pre>
  1007  struct {
  1008  	T     // conflicts with embedded field *T and *P.T
  1009  	*T    // conflicts with embedded field T and *P.T
  1010  	*P.T  // conflicts with embedded field T and *T
  1011  }
  1012  </pre>
  1013  
  1014  <p>
  1015  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1016  embedded field in a struct <code>x</code> is called <i>promoted</i> if
  1017  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1018  that field or method <code>f</code>.
  1019  </p>
  1020  
  1021  <p>
  1022  Promoted fields act like ordinary fields
  1023  of a struct except that they cannot be used as field names in
  1024  <a href="#Composite_literals">composite literals</a> of the struct.
  1025  </p>
  1026  
  1027  <p>
  1028  Given a struct type <code>S</code> and a type named <code>T</code>,
  1029  promoted methods are included in the method set of the struct as follows:
  1030  </p>
  1031  <ul>
  1032  	<li>
  1033  	If <code>S</code> contains an embedded field <code>T</code>,
  1034  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1035  	and <code>*S</code> both include promoted methods with receiver
  1036  	<code>T</code>. The method set of <code>*S</code> also
  1037  	includes promoted methods with receiver <code>*T</code>.
  1038  	</li>
  1039  
  1040  	<li>
  1041  	If <code>S</code> contains an embedded field <code>*T</code>,
  1042  	the method sets of <code>S</code> and <code>*S</code> both
  1043  	include promoted methods with receiver <code>T</code> or
  1044  	<code>*T</code>.
  1045  	</li>
  1046  </ul>
  1047  
  1048  <p>
  1049  A field declaration may be followed by an optional string literal <i>tag</i>,
  1050  which becomes an attribute for all the fields in the corresponding
  1051  field declaration. An empty tag string is equivalent to an absent tag.
  1052  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1053  and take part in <a href="#Type_identity">type identity</a> for structs
  1054  but are otherwise ignored.
  1055  </p>
  1056  
  1057  <pre>
  1058  struct {
  1059  	x, y float64 ""  // an empty tag string is like an absent tag
  1060  	name string  "any string is permitted as a tag"
  1061  	_    [4]byte "ceci n'est pas un champ de structure"
  1062  }
  1063  
  1064  // A struct corresponding to a TimeStamp protocol buffer.
  1065  // The tag strings define the protocol buffer field numbers;
  1066  // they follow the convention outlined by the reflect package.
  1067  struct {
  1068  	microsec  uint64 `protobuf:"1"`
  1069  	serverIP6 uint64 `protobuf:"2"`
  1070  }
  1071  </pre>
  1072  
  1073  <h3 id="Pointer_types">Pointer types</h3>
  1074  
  1075  <p>
  1076  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1077  type, called the <i>base type</i> of the pointer.
  1078  The value of an uninitialized pointer is <code>nil</code>.
  1079  </p>
  1080  
  1081  <pre class="ebnf">
  1082  PointerType = "*" BaseType .
  1083  BaseType    = Type .
  1084  </pre>
  1085  
  1086  <pre>
  1087  *Point
  1088  *[4]int
  1089  </pre>
  1090  
  1091  <h3 id="Function_types">Function types</h3>
  1092  
  1093  <p>
  1094  A function type denotes the set of all functions with the same parameter
  1095  and result types. The value of an uninitialized variable of function type
  1096  is <code>nil</code>.
  1097  </p>
  1098  
  1099  <pre class="ebnf">
  1100  FunctionType   = "func" Signature .
  1101  Signature      = Parameters [ Result ] .
  1102  Result         = Parameters | Type .
  1103  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1104  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1105  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1106  </pre>
  1107  
  1108  <p>
  1109  Within a list of parameters or results, the names (IdentifierList)
  1110  must either all be present or all be absent. If present, each name
  1111  stands for one item (parameter or result) of the specified type and
  1112  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1113  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1114  If absent, each type stands for one item of that type.
  1115  Parameter and result
  1116  lists are always parenthesized except that if there is exactly
  1117  one unnamed result it may be written as an unparenthesized type.
  1118  </p>
  1119  
  1120  <p>
  1121  The final incoming parameter in a function signature may have
  1122  a type prefixed with <code>...</code>.
  1123  A function with such a parameter is called <i>variadic</i> and
  1124  may be invoked with zero or more arguments for that parameter.
  1125  </p>
  1126  
  1127  <pre>
  1128  func()
  1129  func(x int) int
  1130  func(a, _ int, z float32) bool
  1131  func(a, b int, z float32) (bool)
  1132  func(prefix string, values ...int)
  1133  func(a, b int, z float64, opt ...interface{}) (success bool)
  1134  func(int, int, float64) (float64, *[]int)
  1135  func(n int) func(p *T)
  1136  </pre>
  1137  
  1138  
  1139  <h3 id="Interface_types">Interface types</h3>
  1140  
  1141  <p>
  1142  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1143  A variable of interface type can store a value of any type with a method set
  1144  that is any superset of the interface. Such a type is said to
  1145  <i>implement the interface</i>.
  1146  The value of an uninitialized variable of interface type is <code>nil</code>.
  1147  </p>
  1148  
  1149  <pre class="ebnf">
  1150  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1151  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1152  MethodName         = identifier .
  1153  InterfaceTypeName  = TypeName .
  1154  </pre>
  1155  
  1156  <p>
  1157  As with all method sets, in an interface type, each method must have a
  1158  <a href="#Uniqueness_of_identifiers">unique</a>
  1159  non-<a href="#Blank_identifier">blank</a> name.
  1160  </p>
  1161  
  1162  <pre>
  1163  // A simple File interface
  1164  interface {
  1165  	Read(b Buffer) bool
  1166  	Write(b Buffer) bool
  1167  	Close()
  1168  }
  1169  </pre>
  1170  
  1171  <p>
  1172  More than one type may implement an interface.
  1173  For instance, if two types <code>S1</code> and <code>S2</code>
  1174  have the method set
  1175  </p>
  1176  
  1177  <pre>
  1178  func (p T) Read(b Buffer) bool { return … }
  1179  func (p T) Write(b Buffer) bool { return … }
  1180  func (p T) Close() { … }
  1181  </pre>
  1182  
  1183  <p>
  1184  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1185  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1186  <code>S2</code>, regardless of what other methods
  1187  <code>S1</code> and <code>S2</code> may have or share.
  1188  </p>
  1189  
  1190  <p>
  1191  A type implements any interface comprising any subset of its methods
  1192  and may therefore implement several distinct interfaces. For
  1193  instance, all types implement the <i>empty interface</i>:
  1194  </p>
  1195  
  1196  <pre>
  1197  interface{}
  1198  </pre>
  1199  
  1200  <p>
  1201  Similarly, consider this interface specification,
  1202  which appears within a <a href="#Type_declarations">type declaration</a>
  1203  to define an interface called <code>Locker</code>:
  1204  </p>
  1205  
  1206  <pre>
  1207  type Locker interface {
  1208  	Lock()
  1209  	Unlock()
  1210  }
  1211  </pre>
  1212  
  1213  <p>
  1214  If <code>S1</code> and <code>S2</code> also implement
  1215  </p>
  1216  
  1217  <pre>
  1218  func (p T) Lock() { … }
  1219  func (p T) Unlock() { … }
  1220  </pre>
  1221  
  1222  <p>
  1223  they implement the <code>Locker</code> interface as well
  1224  as the <code>File</code> interface.
  1225  </p>
  1226  
  1227  <p>
  1228  An interface <code>T</code> may use a (possibly qualified) interface type
  1229  name <code>E</code> in place of a method specification. This is called
  1230  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1231  all (exported and non-exported) methods of <code>E</code> to the interface
  1232  <code>T</code>.
  1233  </p>
  1234  
  1235  <pre>
  1236  type ReadWriter interface {
  1237  	Read(b Buffer) bool
  1238  	Write(b Buffer) bool
  1239  }
  1240  
  1241  type File interface {
  1242  	ReadWriter  // same as adding the methods of ReadWriter
  1243  	Locker      // same as adding the methods of Locker
  1244  	Close()
  1245  }
  1246  
  1247  type LockedFile interface {
  1248  	Locker
  1249  	File        // illegal: Lock, Unlock not unique
  1250  	Lock()      // illegal: Lock not unique
  1251  }
  1252  </pre>
  1253  
  1254  <p>
  1255  An interface type <code>T</code> may not embed itself
  1256  or any interface type that embeds <code>T</code>, recursively.
  1257  </p>
  1258  
  1259  <pre>
  1260  // illegal: Bad cannot embed itself
  1261  type Bad interface {
  1262  	Bad
  1263  }
  1264  
  1265  // illegal: Bad1 cannot embed itself using Bad2
  1266  type Bad1 interface {
  1267  	Bad2
  1268  }
  1269  type Bad2 interface {
  1270  	Bad1
  1271  }
  1272  </pre>
  1273  
  1274  <h3 id="Map_types">Map types</h3>
  1275  
  1276  <p>
  1277  A map is an unordered group of elements of one type, called the
  1278  element type, indexed by a set of unique <i>keys</i> of another type,
  1279  called the key type.
  1280  The value of an uninitialized map is <code>nil</code>.
  1281  </p>
  1282  
  1283  <pre class="ebnf">
  1284  MapType     = "map" "[" KeyType "]" ElementType .
  1285  KeyType     = Type .
  1286  </pre>
  1287  
  1288  <p>
  1289  The <a href="#Comparison_operators">comparison operators</a>
  1290  <code>==</code> and <code>!=</code> must be fully defined
  1291  for operands of the key type; thus the key type must not be a function, map, or
  1292  slice.
  1293  If the key type is an interface type, these
  1294  comparison operators must be defined for the dynamic key values;
  1295  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1296  
  1297  </p>
  1298  
  1299  <pre>
  1300  map[string]int
  1301  map[*T]struct{ x, y float64 }
  1302  map[string]interface{}
  1303  </pre>
  1304  
  1305  <p>
  1306  The number of map elements is called its length.
  1307  For a map <code>m</code>, it can be discovered using the
  1308  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1309  and may change during execution. Elements may be added during execution
  1310  using <a href="#Assignments">assignments</a> and retrieved with
  1311  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1312  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1313  </p>
  1314  <p>
  1315  A new, empty map value is made using the built-in
  1316  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1317  which takes the map type and an optional capacity hint as arguments:
  1318  </p>
  1319  
  1320  <pre>
  1321  make(map[string]int)
  1322  make(map[string]int, 100)
  1323  </pre>
  1324  
  1325  <p>
  1326  The initial capacity does not bound its size:
  1327  maps grow to accommodate the number of items
  1328  stored in them, with the exception of <code>nil</code> maps.
  1329  A <code>nil</code> map is equivalent to an empty map except that no elements
  1330  may be added.
  1331  
  1332  <h3 id="Channel_types">Channel types</h3>
  1333  
  1334  <p>
  1335  A channel provides a mechanism for
  1336  <a href="#Go_statements">concurrently executing functions</a>
  1337  to communicate by
  1338  <a href="#Send_statements">sending</a> and
  1339  <a href="#Receive_operator">receiving</a>
  1340  values of a specified element type.
  1341  The value of an uninitialized channel is <code>nil</code>.
  1342  </p>
  1343  
  1344  <pre class="ebnf">
  1345  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1346  </pre>
  1347  
  1348  <p>
  1349  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1350  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1351  <i>bidirectional</i>.
  1352  A channel may be constrained only to send or only to receive by
  1353  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1354  </p>
  1355  
  1356  <pre>
  1357  chan T          // can be used to send and receive values of type T
  1358  chan&lt;- float64  // can only be used to send float64s
  1359  &lt;-chan int      // can only be used to receive ints
  1360  </pre>
  1361  
  1362  <p>
  1363  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1364  possible:
  1365  </p>
  1366  
  1367  <pre>
  1368  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1369  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1370  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1371  chan (&lt;-chan int)
  1372  </pre>
  1373  
  1374  <p>
  1375  A new, initialized channel
  1376  value can be made using the built-in function
  1377  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1378  which takes the channel type and an optional <i>capacity</i> as arguments:
  1379  </p>
  1380  
  1381  <pre>
  1382  make(chan int, 100)
  1383  </pre>
  1384  
  1385  <p>
  1386  The capacity, in number of elements, sets the size of the buffer in the channel.
  1387  If the capacity is zero or absent, the channel is unbuffered and communication
  1388  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1389  is buffered and communication succeeds without blocking if the buffer
  1390  is not full (sends) or not empty (receives).
  1391  A <code>nil</code> channel is never ready for communication.
  1392  </p>
  1393  
  1394  <p>
  1395  A channel may be closed with the built-in function
  1396  <a href="#Close"><code>close</code></a>.
  1397  The multi-valued assignment form of the
  1398  <a href="#Receive_operator">receive operator</a>
  1399  reports whether a received value was sent before
  1400  the channel was closed.
  1401  </p>
  1402  
  1403  <p>
  1404  A single channel may be used in
  1405  <a href="#Send_statements">send statements</a>,
  1406  <a href="#Receive_operator">receive operations</a>,
  1407  and calls to the built-in functions
  1408  <a href="#Length_and_capacity"><code>cap</code></a> and
  1409  <a href="#Length_and_capacity"><code>len</code></a>
  1410  by any number of goroutines without further synchronization.
  1411  Channels act as first-in-first-out queues.
  1412  For example, if one goroutine sends values on a channel
  1413  and a second goroutine receives them, the values are
  1414  received in the order sent.
  1415  </p>
  1416  
  1417  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1418  
  1419  <h3 id="Type_identity">Type identity</h3>
  1420  
  1421  <p>
  1422  Two types are either <i>identical</i> or <i>different</i>.
  1423  </p>
  1424  
  1425  <p>
  1426  A <a href="#Type_definitions">defined type</a> is always different from any other type.
  1427  Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
  1428  structurally equivalent; that is, they have the same literal structure and corresponding
  1429  components have identical types. In detail:
  1430  </p>
  1431  
  1432  <ul>
  1433  	<li>Two array types are identical if they have identical element types and
  1434  	    the same array length.</li>
  1435  
  1436  	<li>Two slice types are identical if they have identical element types.</li>
  1437  
  1438  	<li>Two struct types are identical if they have the same sequence of fields,
  1439  	    and if corresponding fields have the same names, and identical types,
  1440  	    and identical tags.
  1441  	    <a href="#Exported_identifiers">Non-exported</a> field names from different
  1442  	    packages are always different.</li>
  1443  
  1444  	<li>Two pointer types are identical if they have identical base types.</li>
  1445  
  1446  	<li>Two function types are identical if they have the same number of parameters
  1447  	    and result values, corresponding parameter and result types are
  1448  	    identical, and either both functions are variadic or neither is.
  1449  	    Parameter and result names are not required to match.</li>
  1450  
  1451  	<li>Two interface types are identical if they have the same set of methods
  1452  	    with the same names and identical function types.
  1453  	    <a href="#Exported_identifiers">Non-exported</a> method names from different
  1454  	    packages are always different. The order of the methods is irrelevant.</li>
  1455  
  1456  	<li>Two map types are identical if they have identical key and value types.</li>
  1457  
  1458  	<li>Two channel types are identical if they have identical value types and
  1459  	    the same direction.</li>
  1460  </ul>
  1461  
  1462  <p>
  1463  Given the declarations
  1464  </p>
  1465  
  1466  <pre>
  1467  type (
  1468  	A0 = []string
  1469  	A1 = A0
  1470  	A2 = struct{ a, b int }
  1471  	A3 = int
  1472  	A4 = func(A3, float64) *A0
  1473  	A5 = func(x int, _ float64) *[]string
  1474  )
  1475  
  1476  type (
  1477  	B0 A0
  1478  	B1 []string
  1479  	B2 struct{ a, b int }
  1480  	B3 struct{ a, c int }
  1481  	B4 func(int, float64) *B0
  1482  	B5 func(x int, y float64) *A1
  1483  )
  1484  
  1485  type	C0 = B0
  1486  </pre>
  1487  
  1488  <p>
  1489  these types are identical:
  1490  </p>
  1491  
  1492  <pre>
  1493  A0, A1, and []string
  1494  A2 and struct{ a, b int }
  1495  A3 and int
  1496  A4, func(int, float64) *[]string, and A5
  1497  
  1498  B0, B0, and C0
  1499  []int and []int
  1500  struct{ a, b *T5 } and struct{ a, b *T5 }
  1501  func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
  1502  </pre>
  1503  
  1504  <p>
  1505  <code>B0</code> and <code>B1</code> are different because they are new types
  1506  created by distinct <a href="#Type_definitions">type definitions</a>;
  1507  <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
  1508  are different because <code>B0</code> is different from <code>[]string</code>.
  1509  </p>
  1510  
  1511  
  1512  <h3 id="Assignability">Assignability</h3>
  1513  
  1514  <p>
  1515  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1516  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1517  </p>
  1518  
  1519  <ul>
  1520  <li>
  1521  <code>x</code>'s type is identical to <code>T</code>.
  1522  </li>
  1523  <li>
  1524  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1525  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1526  or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
  1527  </li>
  1528  <li>
  1529  <code>T</code> is an interface type and
  1530  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1531  </li>
  1532  <li>
  1533  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1534  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1535  and at least one of <code>V</code> or <code>T</code> is not a defined type.
  1536  </li>
  1537  <li>
  1538  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1539  is a pointer, function, slice, map, channel, or interface type.
  1540  </li>
  1541  <li>
  1542  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1543  by a value of type <code>T</code>.
  1544  </li>
  1545  </ul>
  1546  
  1547  
  1548  <h2 id="Blocks">Blocks</h2>
  1549  
  1550  <p>
  1551  A <i>block</i> is a possibly empty sequence of declarations and statements
  1552  within matching brace brackets.
  1553  </p>
  1554  
  1555  <pre class="ebnf">
  1556  Block = "{" StatementList "}" .
  1557  StatementList = { Statement ";" } .
  1558  </pre>
  1559  
  1560  <p>
  1561  In addition to explicit blocks in the source code, there are implicit blocks:
  1562  </p>
  1563  
  1564  <ol>
  1565  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1566  
  1567  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1568  	    Go source text for that package.</li>
  1569  
  1570  	<li>Each file has a <i>file block</i> containing all Go source text
  1571  	    in that file.</li>
  1572  
  1573  	<li>Each <a href="#If_statements">"if"</a>,
  1574  	    <a href="#For_statements">"for"</a>, and
  1575  	    <a href="#Switch_statements">"switch"</a>
  1576  	    statement is considered to be in its own implicit block.</li>
  1577  
  1578  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1579  	    or <a href="#Select_statements">"select"</a> statement
  1580  	    acts as an implicit block.</li>
  1581  </ol>
  1582  
  1583  <p>
  1584  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1585  </p>
  1586  
  1587  
  1588  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1589  
  1590  <p>
  1591  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1592  <a href="#Constant_declarations">constant</a>,
  1593  <a href="#Type_declarations">type</a>,
  1594  <a href="#Variable_declarations">variable</a>,
  1595  <a href="#Function_declarations">function</a>,
  1596  <a href="#Labeled_statements">label</a>, or
  1597  <a href="#Import_declarations">package</a>.
  1598  Every identifier in a program must be declared.
  1599  No identifier may be declared twice in the same block, and
  1600  no identifier may be declared in both the file and package block.
  1601  </p>
  1602  
  1603  <p>
  1604  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1605  in a declaration, but it does not introduce a binding and thus is not declared.
  1606  In the package block, the identifier <code>init</code> may only be used for
  1607  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1608  and like the blank identifier it does not introduce a new binding.
  1609  </p>
  1610  
  1611  <pre class="ebnf">
  1612  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1613  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1614  </pre>
  1615  
  1616  <p>
  1617  The <i>scope</i> of a declared identifier is the extent of source text in which
  1618  the identifier denotes the specified constant, type, variable, function, label, or package.
  1619  </p>
  1620  
  1621  <p>
  1622  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1623  </p>
  1624  
  1625  <ol>
  1626  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1627  
  1628  	<li>The scope of an identifier denoting a constant, type, variable,
  1629  	    or function (but not method) declared at top level (outside any
  1630  	    function) is the package block.</li>
  1631  
  1632  	<li>The scope of the package name of an imported package is the file block
  1633  	    of the file containing the import declaration.</li>
  1634  
  1635  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1636  	    or result variable is the function body.</li>
  1637  
  1638  	<li>The scope of a constant or variable identifier declared
  1639  	    inside a function begins at the end of the ConstSpec or VarSpec
  1640  	    (ShortVarDecl for short variable declarations)
  1641  	    and ends at the end of the innermost containing block.</li>
  1642  
  1643  	<li>The scope of a type identifier declared inside a function
  1644  	    begins at the identifier in the TypeSpec
  1645  	    and ends at the end of the innermost containing block.</li>
  1646  </ol>
  1647  
  1648  <p>
  1649  An identifier declared in a block may be redeclared in an inner block.
  1650  While the identifier of the inner declaration is in scope, it denotes
  1651  the entity declared by the inner declaration.
  1652  </p>
  1653  
  1654  <p>
  1655  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1656  does not appear in any scope. Its purpose is to identify the files belonging
  1657  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1658  declarations.
  1659  </p>
  1660  
  1661  
  1662  <h3 id="Label_scopes">Label scopes</h3>
  1663  
  1664  <p>
  1665  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1666  used in the <a href="#Break_statements">"break"</a>,
  1667  <a href="#Continue_statements">"continue"</a>, and
  1668  <a href="#Goto_statements">"goto"</a> statements.
  1669  It is illegal to define a label that is never used.
  1670  In contrast to other identifiers, labels are not block scoped and do
  1671  not conflict with identifiers that are not labels. The scope of a label
  1672  is the body of the function in which it is declared and excludes
  1673  the body of any nested function.
  1674  </p>
  1675  
  1676  
  1677  <h3 id="Blank_identifier">Blank identifier</h3>
  1678  
  1679  <p>
  1680  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1681  It serves as an anonymous placeholder instead of a regular (non-blank)
  1682  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1683  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1684  </p>
  1685  
  1686  
  1687  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1688  
  1689  <p>
  1690  The following identifiers are implicitly declared in the
  1691  <a href="#Blocks">universe block</a>:
  1692  </p>
  1693  <pre class="grammar">
  1694  Types:
  1695  	bool byte complex64 complex128 error float32 float64
  1696  	int int8 int16 int32 int64 rune string
  1697  	uint uint8 uint16 uint32 uint64 uintptr
  1698  
  1699  Constants:
  1700  	true false iota
  1701  
  1702  Zero value:
  1703  	nil
  1704  
  1705  Functions:
  1706  	append cap close complex copy delete imag len
  1707  	make new panic print println real recover
  1708  </pre>
  1709  
  1710  
  1711  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1712  
  1713  <p>
  1714  An identifier may be <i>exported</i> to permit access to it from another package.
  1715  An identifier is exported if both:
  1716  </p>
  1717  <ol>
  1718  	<li>the first character of the identifier's name is a Unicode upper case
  1719  	letter (Unicode class "Lu"); and</li>
  1720  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1721  	or it is a <a href="#Struct_types">field name</a> or
  1722  	<a href="#MethodName">method name</a>.</li>
  1723  </ol>
  1724  <p>
  1725  All other identifiers are not exported.
  1726  </p>
  1727  
  1728  
  1729  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1730  
  1731  <p>
  1732  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1733  <i>different</i> from every other in the set.
  1734  Two identifiers are different if they are spelled differently, or if they
  1735  appear in different <a href="#Packages">packages</a> and are not
  1736  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1737  </p>
  1738  
  1739  <h3 id="Constant_declarations">Constant declarations</h3>
  1740  
  1741  <p>
  1742  A constant declaration binds a list of identifiers (the names of
  1743  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1744  The number of identifiers must be equal
  1745  to the number of expressions, and the <i>n</i>th identifier on
  1746  the left is bound to the value of the <i>n</i>th expression on the
  1747  right.
  1748  </p>
  1749  
  1750  <pre class="ebnf">
  1751  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1752  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1753  
  1754  IdentifierList = identifier { "," identifier } .
  1755  ExpressionList = Expression { "," Expression } .
  1756  </pre>
  1757  
  1758  <p>
  1759  If the type is present, all constants take the type specified, and
  1760  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1761  If the type is omitted, the constants take the
  1762  individual types of the corresponding expressions.
  1763  If the expression values are untyped <a href="#Constants">constants</a>,
  1764  the declared constants remain untyped and the constant identifiers
  1765  denote the constant values. For instance, if the expression is a
  1766  floating-point literal, the constant identifier denotes a floating-point
  1767  constant, even if the literal's fractional part is zero.
  1768  </p>
  1769  
  1770  <pre>
  1771  const Pi float64 = 3.14159265358979323846
  1772  const zero = 0.0         // untyped floating-point constant
  1773  const (
  1774  	size int64 = 1024
  1775  	eof        = -1  // untyped integer constant
  1776  )
  1777  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1778  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1779  </pre>
  1780  
  1781  <p>
  1782  Within a parenthesized <code>const</code> declaration list the
  1783  expression list may be omitted from any but the first declaration.
  1784  Such an empty list is equivalent to the textual substitution of the
  1785  first preceding non-empty expression list and its type if any.
  1786  Omitting the list of expressions is therefore equivalent to
  1787  repeating the previous list.  The number of identifiers must be equal
  1788  to the number of expressions in the previous list.
  1789  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1790  this mechanism permits light-weight declaration of sequential values:
  1791  </p>
  1792  
  1793  <pre>
  1794  const (
  1795  	Sunday = iota
  1796  	Monday
  1797  	Tuesday
  1798  	Wednesday
  1799  	Thursday
  1800  	Friday
  1801  	Partyday
  1802  	numberOfDays  // this constant is not exported
  1803  )
  1804  </pre>
  1805  
  1806  
  1807  <h3 id="Iota">Iota</h3>
  1808  
  1809  <p>
  1810  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1811  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1812  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1813  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1814  It can be used to construct a set of related constants:
  1815  </p>
  1816  
  1817  <pre>
  1818  const ( // iota is reset to 0
  1819  	c0 = iota  // c0 == 0
  1820  	c1 = iota  // c1 == 1
  1821  	c2 = iota  // c2 == 2
  1822  )
  1823  
  1824  const ( // iota is reset to 0
  1825  	a = 1 &lt;&lt; iota  // a == 1
  1826  	b = 1 &lt;&lt; iota  // b == 2
  1827  	c = 3          // c == 3  (iota is not used but still incremented)
  1828  	d = 1 &lt;&lt; iota  // d == 8
  1829  )
  1830  
  1831  const ( // iota is reset to 0
  1832  	u         = iota * 42  // u == 0     (untyped integer constant)
  1833  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1834  	w         = iota * 42  // w == 84    (untyped integer constant)
  1835  )
  1836  
  1837  const x = iota  // x == 0  (iota has been reset)
  1838  const y = iota  // y == 0  (iota has been reset)
  1839  </pre>
  1840  
  1841  <p>
  1842  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1843  it is only incremented after each ConstSpec:
  1844  </p>
  1845  
  1846  <pre>
  1847  const (
  1848  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1849  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1850  	_, _                                  // skips iota == 2
  1851  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1852  )
  1853  </pre>
  1854  
  1855  <p>
  1856  This last example exploits the implicit repetition of the
  1857  last non-empty expression list.
  1858  </p>
  1859  
  1860  
  1861  <h3 id="Type_declarations">Type declarations</h3>
  1862  
  1863  <p>
  1864  A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
  1865  Type declarations come in two forms: alias declarations and type definitions.
  1866  <p>
  1867  
  1868  <pre class="ebnf">
  1869  TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1870  TypeSpec = AliasDecl | TypeDef .
  1871  </pre>
  1872  
  1873  <h4 id="Alias_declarations">Alias declarations</h4>
  1874  
  1875  <p>
  1876  An alias declaration binds an identifier to the given type.
  1877  </p>
  1878  
  1879  <pre class="ebnf">
  1880  AliasDecl = identifier "=" Type .
  1881  </pre>
  1882  
  1883  <p>
  1884  Within the <a href="#Declarations_and_scope">scope</a> of
  1885  the identifier, it serves as an <i>alias</i> for the type.
  1886  </p>
  1887  
  1888  <pre>
  1889  type (
  1890  	nodeList = []*Node  // nodeList and []*Node are identical types
  1891  	Polar    = polar    // Polar and polar denote identical types
  1892  )
  1893  </pre>
  1894  
  1895  
  1896  <h4 id="Type_definitions">Type definitions</h4>
  1897  
  1898  <p>
  1899  A type definition creates a new, distinct type with the same
  1900  <a href="#Types">underlying type</a> and operations as the given type,
  1901  and binds an identifier to it.
  1902  </p>
  1903  
  1904  <pre class="ebnf">
  1905  TypeDef = identifier Type .
  1906  </pre>
  1907  
  1908  <p>
  1909  The new type is called a <i>defined type</i>.
  1910  It is <a href="#Type_identity">different</a> from any other type,
  1911  including the type it is created from.
  1912  </p>
  1913  
  1914  <pre>
  1915  type (
  1916  	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
  1917  	polar Point                   // polar and Point denote different types
  1918  )
  1919  
  1920  type TreeNode struct {
  1921  	left, right *TreeNode
  1922  	value *Comparable
  1923  }
  1924  
  1925  type Block interface {
  1926  	BlockSize() int
  1927  	Encrypt(src, dst []byte)
  1928  	Decrypt(src, dst []byte)
  1929  }
  1930  </pre>
  1931  
  1932  <p>
  1933  A defined type may have <a href="#Method_declarations">methods</a> associated with it.
  1934  It does not inherit any methods bound to the given type,
  1935  but the <a href="#Method_sets">method set</a>
  1936  of an interface type or of elements of a composite type remains unchanged:
  1937  </p>
  1938  
  1939  <pre>
  1940  // A Mutex is a data type with two methods, Lock and Unlock.
  1941  type Mutex struct         { /* Mutex fields */ }
  1942  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1943  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1944  
  1945  // NewMutex has the same composition as Mutex but its method set is empty.
  1946  type NewMutex Mutex
  1947  
  1948  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1949  // but the method set of PtrMutex is empty.
  1950  type PtrMutex *Mutex
  1951  
  1952  // The method set of *PrintableMutex contains the methods
  1953  // Lock and Unlock bound to its embedded field Mutex.
  1954  type PrintableMutex struct {
  1955  	Mutex
  1956  }
  1957  
  1958  // MyBlock is an interface type that has the same method set as Block.
  1959  type MyBlock Block
  1960  </pre>
  1961  
  1962  <p>
  1963  Type definitions may be used to define different boolean, numeric,
  1964  or string types and associate methods with them:
  1965  </p>
  1966  
  1967  <pre>
  1968  type TimeZone int
  1969  
  1970  const (
  1971  	EST TimeZone = -(5 + iota)
  1972  	CST
  1973  	MST
  1974  	PST
  1975  )
  1976  
  1977  func (tz TimeZone) String() string {
  1978  	return fmt.Sprintf("GMT%+dh", tz)
  1979  }
  1980  </pre>
  1981  
  1982  
  1983  <h3 id="Variable_declarations">Variable declarations</h3>
  1984  
  1985  <p>
  1986  A variable declaration creates one or more <a href="#Variables">variables</a>,
  1987  binds corresponding identifiers to them, and gives each a type and an initial value.
  1988  </p>
  1989  
  1990  <pre class="ebnf">
  1991  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1992  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1993  </pre>
  1994  
  1995  <pre>
  1996  var i int
  1997  var U, V, W float64
  1998  var k = 0
  1999  var x, y float32 = -1, -2
  2000  var (
  2001  	i       int
  2002  	u, v, s = 2.0, 3.0, "bar"
  2003  )
  2004  var re, im = complexSqrt(-1)
  2005  var _, found = entries[name]  // map lookup; only interested in "found"
  2006  </pre>
  2007  
  2008  <p>
  2009  If a list of expressions is given, the variables are initialized
  2010  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  2011  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  2012  </p>
  2013  
  2014  <p>
  2015  If a type is present, each variable is given that type.
  2016  Otherwise, each variable is given the type of the corresponding
  2017  initialization value in the assignment.
  2018  If that value is an untyped constant, it is first
  2019  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  2020  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  2021  The predeclared value <code>nil</code> cannot be used to initialize a variable
  2022  with no explicit type.
  2023  </p>
  2024  
  2025  <pre>
  2026  var d = math.Sin(0.5)  // d is float64
  2027  var i = 42             // i is int
  2028  var t, ok = x.(T)      // t is T, ok is bool
  2029  var n = nil            // illegal
  2030  </pre>
  2031  
  2032  <p>
  2033  Implementation restriction: A compiler may make it illegal to declare a variable
  2034  inside a <a href="#Function_declarations">function body</a> if the variable is
  2035  never used.
  2036  </p>
  2037  
  2038  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  2039  
  2040  <p>
  2041  A <i>short variable declaration</i> uses the syntax:
  2042  </p>
  2043  
  2044  <pre class="ebnf">
  2045  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2046  </pre>
  2047  
  2048  <p>
  2049  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2050  with initializer expressions but no types:
  2051  </p>
  2052  
  2053  <pre class="grammar">
  2054  "var" IdentifierList = ExpressionList .
  2055  </pre>
  2056  
  2057  <pre>
  2058  i, j := 0, 10
  2059  f := func() int { return 7 }
  2060  ch := make(chan int)
  2061  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2062  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2063  </pre>
  2064  
  2065  <p>
  2066  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2067  variables provided they were originally declared earlier in the same block
  2068  (or the parameter lists if the block is the function body) with the same type,
  2069  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2070  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2071  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2072  </p>
  2073  
  2074  <pre>
  2075  field1, offset := nextField(str, 0)
  2076  field2, offset := nextField(str, offset)  // redeclares offset
  2077  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2078  </pre>
  2079  
  2080  <p>
  2081  Short variable declarations may appear only inside functions.
  2082  In some contexts such as the initializers for
  2083  <a href="#If_statements">"if"</a>,
  2084  <a href="#For_statements">"for"</a>, or
  2085  <a href="#Switch_statements">"switch"</a> statements,
  2086  they can be used to declare local temporary variables.
  2087  </p>
  2088  
  2089  <h3 id="Function_declarations">Function declarations</h3>
  2090  
  2091  <p>
  2092  A function declaration binds an identifier, the <i>function name</i>,
  2093  to a function.
  2094  </p>
  2095  
  2096  <pre class="ebnf">
  2097  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2098  FunctionName = identifier .
  2099  Function     = Signature FunctionBody .
  2100  FunctionBody = Block .
  2101  </pre>
  2102  
  2103  <p>
  2104  If the function's <a href="#Function_types">signature</a> declares
  2105  result parameters, the function body's statement list must end in
  2106  a <a href="#Terminating_statements">terminating statement</a>.
  2107  </p>
  2108  
  2109  <pre>
  2110  func IndexRune(s string, r rune) int {
  2111  	for i, c := range s {
  2112  		if c == r {
  2113  			return i
  2114  		}
  2115  	}
  2116  	// invalid: missing return statement
  2117  }
  2118  </pre>
  2119  
  2120  <p>
  2121  A function declaration may omit the body. Such a declaration provides the
  2122  signature for a function implemented outside Go, such as an assembly routine.
  2123  </p>
  2124  
  2125  <pre>
  2126  func min(x int, y int) int {
  2127  	if x &lt; y {
  2128  		return x
  2129  	}
  2130  	return y
  2131  }
  2132  
  2133  func flushICache(begin, end uintptr)  // implemented externally
  2134  </pre>
  2135  
  2136  <h3 id="Method_declarations">Method declarations</h3>
  2137  
  2138  <p>
  2139  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2140  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2141  and associates the method with the receiver's <i>base type</i>.
  2142  </p>
  2143  
  2144  <pre class="ebnf">
  2145  MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
  2146  Receiver   = Parameters .
  2147  </pre>
  2148  
  2149  <p>
  2150  The receiver is specified via an extra parameter section preceding the method
  2151  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2152  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2153  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2154  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2155  it must be <a href="#Type_definitions">defined</a> in the same package as the method.
  2156  The method is said to be <i>bound</i> to the base type and the method name
  2157  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2158  or <code>*T</code>.
  2159  </p>
  2160  
  2161  <p>
  2162  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2163  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2164  If the receiver's value is not referenced inside the body of the method,
  2165  its identifier may be omitted in the declaration. The same applies in
  2166  general to parameters of functions and methods.
  2167  </p>
  2168  
  2169  <p>
  2170  For a base type, the non-blank names of methods bound to it must be unique.
  2171  If the base type is a <a href="#Struct_types">struct type</a>,
  2172  the non-blank method and field names must be distinct.
  2173  </p>
  2174  
  2175  <p>
  2176  Given type <code>Point</code>, the declarations
  2177  </p>
  2178  
  2179  <pre>
  2180  func (p *Point) Length() float64 {
  2181  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2182  }
  2183  
  2184  func (p *Point) Scale(factor float64) {
  2185  	p.x *= factor
  2186  	p.y *= factor
  2187  }
  2188  </pre>
  2189  
  2190  <p>
  2191  bind the methods <code>Length</code> and <code>Scale</code>,
  2192  with receiver type <code>*Point</code>,
  2193  to the base type <code>Point</code>.
  2194  </p>
  2195  
  2196  <p>
  2197  The type of a method is the type of a function with the receiver as first
  2198  argument.  For instance, the method <code>Scale</code> has type
  2199  </p>
  2200  
  2201  <pre>
  2202  func(p *Point, factor float64)
  2203  </pre>
  2204  
  2205  <p>
  2206  However, a function declared this way is not a method.
  2207  </p>
  2208  
  2209  
  2210  <h2 id="Expressions">Expressions</h2>
  2211  
  2212  <p>
  2213  An expression specifies the computation of a value by applying
  2214  operators and functions to operands.
  2215  </p>
  2216  
  2217  <h3 id="Operands">Operands</h3>
  2218  
  2219  <p>
  2220  Operands denote the elementary values in an expression. An operand may be a
  2221  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2222  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2223  <a href="#Constant_declarations">constant</a>,
  2224  <a href="#Variable_declarations">variable</a>, or
  2225  <a href="#Function_declarations">function</a>,
  2226  a <a href="#Method_expressions">method expression</a> yielding a function,
  2227  or a parenthesized expression.
  2228  </p>
  2229  
  2230  <p>
  2231  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2232  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2233  </p>
  2234  
  2235  <pre class="ebnf">
  2236  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2237  Literal     = BasicLit | CompositeLit | FunctionLit .
  2238  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2239  OperandName = identifier | QualifiedIdent.
  2240  </pre>
  2241  
  2242  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2243  
  2244  <p>
  2245  A qualified identifier is an identifier qualified with a package name prefix.
  2246  Both the package name and the identifier must not be
  2247  <a href="#Blank_identifier">blank</a>.
  2248  </p>
  2249  
  2250  <pre class="ebnf">
  2251  QualifiedIdent = PackageName "." identifier .
  2252  </pre>
  2253  
  2254  <p>
  2255  A qualified identifier accesses an identifier in a different package, which
  2256  must be <a href="#Import_declarations">imported</a>.
  2257  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2258  declared in the <a href="#Blocks">package block</a> of that package.
  2259  </p>
  2260  
  2261  <pre>
  2262  math.Sin	// denotes the Sin function in package math
  2263  </pre>
  2264  
  2265  <h3 id="Composite_literals">Composite literals</h3>
  2266  
  2267  <p>
  2268  Composite literals construct values for structs, arrays, slices, and maps
  2269  and create a new value each time they are evaluated.
  2270  They consist of the type of the literal followed by a brace-bound list of elements.
  2271  Each element may optionally be preceded by a corresponding key.
  2272  </p>
  2273  
  2274  <pre class="ebnf">
  2275  CompositeLit  = LiteralType LiteralValue .
  2276  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2277                  SliceType | MapType | TypeName .
  2278  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2279  ElementList   = KeyedElement { "," KeyedElement } .
  2280  KeyedElement  = [ Key ":" ] Element .
  2281  Key           = FieldName | Expression | LiteralValue .
  2282  FieldName     = identifier .
  2283  Element       = Expression | LiteralValue .
  2284  </pre>
  2285  
  2286  <p>
  2287  The LiteralType's underlying type must be a struct, array, slice, or map type
  2288  (the grammar enforces this constraint except when the type is given
  2289  as a TypeName).
  2290  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2291  to the respective field, element, and key types of the literal type;
  2292  there is no additional conversion.
  2293  The key is interpreted as a field name for struct literals,
  2294  an index for array and slice literals, and a key for map literals.
  2295  For map literals, all elements must have a key. It is an error
  2296  to specify multiple elements with the same field name or
  2297  constant key value.
  2298  </p>
  2299  
  2300  <p>
  2301  For struct literals the following rules apply:
  2302  </p>
  2303  <ul>
  2304  	<li>A key must be a field name declared in the struct type.
  2305  	</li>
  2306  	<li>An element list that does not contain any keys must
  2307  	    list an element for each struct field in the
  2308  	    order in which the fields are declared.
  2309  	</li>
  2310  	<li>If any element has a key, every element must have a key.
  2311  	</li>
  2312  	<li>An element list that contains keys does not need to
  2313  	    have an element for each struct field. Omitted fields
  2314  	    get the zero value for that field.
  2315  	</li>
  2316  	<li>A literal may omit the element list; such a literal evaluates
  2317  	    to the zero value for its type.
  2318  	</li>
  2319  	<li>It is an error to specify an element for a non-exported
  2320  	    field of a struct belonging to a different package.
  2321  	</li>
  2322  </ul>
  2323  
  2324  <p>
  2325  Given the declarations
  2326  </p>
  2327  <pre>
  2328  type Point3D struct { x, y, z float64 }
  2329  type Line struct { p, q Point3D }
  2330  </pre>
  2331  
  2332  <p>
  2333  one may write
  2334  </p>
  2335  
  2336  <pre>
  2337  origin := Point3D{}                            // zero value for Point3D
  2338  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2339  </pre>
  2340  
  2341  <p>
  2342  For array and slice literals the following rules apply:
  2343  </p>
  2344  <ul>
  2345  	<li>Each element has an associated integer index marking
  2346  	    its position in the array.
  2347  	</li>
  2348  	<li>An element with a key uses the key as its index. The
  2349  	    key must be a non-negative constant representable by
  2350  	    a value of type <code>int</code>; and if it is typed
  2351  	    it must be of integer type.
  2352  	</li>
  2353  	<li>An element without a key uses the previous element's index plus one.
  2354  	    If the first element has no key, its index is zero.
  2355  	</li>
  2356  </ul>
  2357  
  2358  <p>
  2359  <a href="#Address_operators">Taking the address</a> of a composite literal
  2360  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2361  with the literal's value.
  2362  </p>
  2363  <pre>
  2364  var pointer *Point3D = &amp;Point3D{y: 1000}
  2365  </pre>
  2366  
  2367  <p>
  2368  The length of an array literal is the length specified in the literal type.
  2369  If fewer elements than the length are provided in the literal, the missing
  2370  elements are set to the zero value for the array element type.
  2371  It is an error to provide elements with index values outside the index range
  2372  of the array. The notation <code>...</code> specifies an array length equal
  2373  to the maximum element index plus one.
  2374  </p>
  2375  
  2376  <pre>
  2377  buffer := [10]string{}             // len(buffer) == 10
  2378  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2379  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2380  </pre>
  2381  
  2382  <p>
  2383  A slice literal describes the entire underlying array literal.
  2384  Thus the length and capacity of a slice literal are the maximum
  2385  element index plus one. A slice literal has the form
  2386  </p>
  2387  
  2388  <pre>
  2389  []T{x1, x2, … xn}
  2390  </pre>
  2391  
  2392  <p>
  2393  and is shorthand for a slice operation applied to an array:
  2394  </p>
  2395  
  2396  <pre>
  2397  tmp := [n]T{x1, x2, … xn}
  2398  tmp[0 : n]
  2399  </pre>
  2400  
  2401  <p>
  2402  Within a composite literal of array, slice, or map type <code>T</code>,
  2403  elements or map keys that are themselves composite literals may elide the respective
  2404  literal type if it is identical to the element or key type of <code>T</code>.
  2405  Similarly, elements or keys that are addresses of composite literals may elide
  2406  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2407  </p>
  2408  
  2409  <pre>
  2410  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2411  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2412  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2413  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2414  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2415  
  2416  type PPoint *Point
  2417  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2418  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2419  </pre>
  2420  
  2421  <p>
  2422  A parsing ambiguity arises when a composite literal using the
  2423  TypeName form of the LiteralType appears as an operand between the
  2424  <a href="#Keywords">keyword</a> and the opening brace of the block
  2425  of an "if", "for", or "switch" statement, and the composite literal
  2426  is not enclosed in parentheses, square brackets, or curly braces.
  2427  In this rare case, the opening brace of the literal is erroneously parsed
  2428  as the one introducing the block of statements. To resolve the ambiguity,
  2429  the composite literal must appear within parentheses.
  2430  </p>
  2431  
  2432  <pre>
  2433  if x == (T{a,b,c}[i]) { … }
  2434  if (x == T{a,b,c}[i]) { … }
  2435  </pre>
  2436  
  2437  <p>
  2438  Examples of valid array, slice, and map literals:
  2439  </p>
  2440  
  2441  <pre>
  2442  // list of prime numbers
  2443  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2444  
  2445  // vowels[ch] is true if ch is a vowel
  2446  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2447  
  2448  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2449  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2450  
  2451  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2452  noteFrequency := map[string]float32{
  2453  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2454  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2455  }
  2456  </pre>
  2457  
  2458  
  2459  <h3 id="Function_literals">Function literals</h3>
  2460  
  2461  <p>
  2462  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2463  </p>
  2464  
  2465  <pre class="ebnf">
  2466  FunctionLit = "func" Function .
  2467  </pre>
  2468  
  2469  <pre>
  2470  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2471  </pre>
  2472  
  2473  <p>
  2474  A function literal can be assigned to a variable or invoked directly.
  2475  </p>
  2476  
  2477  <pre>
  2478  f := func(x, y int) int { return x + y }
  2479  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2480  </pre>
  2481  
  2482  <p>
  2483  Function literals are <i>closures</i>: they may refer to variables
  2484  defined in a surrounding function. Those variables are then shared between
  2485  the surrounding function and the function literal, and they survive as long
  2486  as they are accessible.
  2487  </p>
  2488  
  2489  
  2490  <h3 id="Primary_expressions">Primary expressions</h3>
  2491  
  2492  <p>
  2493  Primary expressions are the operands for unary and binary expressions.
  2494  </p>
  2495  
  2496  <pre class="ebnf">
  2497  PrimaryExpr =
  2498  	Operand |
  2499  	Conversion |
  2500  	PrimaryExpr Selector |
  2501  	PrimaryExpr Index |
  2502  	PrimaryExpr Slice |
  2503  	PrimaryExpr TypeAssertion |
  2504  	PrimaryExpr Arguments .
  2505  
  2506  Selector       = "." identifier .
  2507  Index          = "[" Expression "]" .
  2508  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2509                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2510  TypeAssertion  = "." "(" Type ")" .
  2511  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2512  </pre>
  2513  
  2514  
  2515  <pre>
  2516  x
  2517  2
  2518  (s + ".txt")
  2519  f(3.1415, true)
  2520  Point{1, 2}
  2521  m["foo"]
  2522  s[i : j + 1]
  2523  obj.color
  2524  f.p[i].x()
  2525  </pre>
  2526  
  2527  
  2528  <h3 id="Selectors">Selectors</h3>
  2529  
  2530  <p>
  2531  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2532  that is not a <a href="#Package_clause">package name</a>, the
  2533  <i>selector expression</i>
  2534  </p>
  2535  
  2536  <pre>
  2537  x.f
  2538  </pre>
  2539  
  2540  <p>
  2541  denotes the field or method <code>f</code> of the value <code>x</code>
  2542  (or sometimes <code>*x</code>; see below).
  2543  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2544  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2545  The type of the selector expression is the type of <code>f</code>.
  2546  If <code>x</code> is a package name, see the section on
  2547  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2548  </p>
  2549  
  2550  <p>
  2551  A selector <code>f</code> may denote a field or method <code>f</code> of
  2552  a type <code>T</code>, or it may refer
  2553  to a field or method <code>f</code> of a nested
  2554  <a href="#Struct_types">embedded field</a> of <code>T</code>.
  2555  The number of embedded fields traversed
  2556  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2557  The depth of a field or method <code>f</code>
  2558  declared in <code>T</code> is zero.
  2559  The depth of a field or method <code>f</code> declared in
  2560  an embedded field <code>A</code> in <code>T</code> is the
  2561  depth of <code>f</code> in <code>A</code> plus one.
  2562  </p>
  2563  
  2564  <p>
  2565  The following rules apply to selectors:
  2566  </p>
  2567  
  2568  <ol>
  2569  <li>
  2570  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2571  where <code>T</code> is not a pointer or interface type,
  2572  <code>x.f</code> denotes the field or method at the shallowest depth
  2573  in <code>T</code> where there
  2574  is such an <code>f</code>.
  2575  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2576  with shallowest depth, the selector expression is illegal.
  2577  </li>
  2578  
  2579  <li>
  2580  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2581  is an interface type, <code>x.f</code> denotes the actual method with name
  2582  <code>f</code> of the dynamic value of <code>x</code>.
  2583  If there is no method with name <code>f</code> in the
  2584  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2585  expression is illegal.
  2586  </li>
  2587  
  2588  <li>
  2589  As an exception, if the type of <code>x</code> is a named pointer type
  2590  and <code>(*x).f</code> is a valid selector expression denoting a field
  2591  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2592  </li>
  2593  
  2594  <li>
  2595  In all other cases, <code>x.f</code> is illegal.
  2596  </li>
  2597  
  2598  <li>
  2599  If <code>x</code> is of pointer type and has the value
  2600  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2601  assigning to or evaluating <code>x.f</code>
  2602  causes a <a href="#Run_time_panics">run-time panic</a>.
  2603  </li>
  2604  
  2605  <li>
  2606  If <code>x</code> is of interface type and has the value
  2607  <code>nil</code>, <a href="#Calls">calling</a> or
  2608  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2609  causes a <a href="#Run_time_panics">run-time panic</a>.
  2610  </li>
  2611  </ol>
  2612  
  2613  <p>
  2614  For example, given the declarations:
  2615  </p>
  2616  
  2617  <pre>
  2618  type T0 struct {
  2619  	x int
  2620  }
  2621  
  2622  func (*T0) M0()
  2623  
  2624  type T1 struct {
  2625  	y int
  2626  }
  2627  
  2628  func (T1) M1()
  2629  
  2630  type T2 struct {
  2631  	z int
  2632  	T1
  2633  	*T0
  2634  }
  2635  
  2636  func (*T2) M2()
  2637  
  2638  type Q *T2
  2639  
  2640  var t T2     // with t.T0 != nil
  2641  var p *T2    // with p != nil and (*p).T0 != nil
  2642  var q Q = p
  2643  </pre>
  2644  
  2645  <p>
  2646  one may write:
  2647  </p>
  2648  
  2649  <pre>
  2650  t.z          // t.z
  2651  t.y          // t.T1.y
  2652  t.x          // (*t.T0).x
  2653  
  2654  p.z          // (*p).z
  2655  p.y          // (*p).T1.y
  2656  p.x          // (*(*p).T0).x
  2657  
  2658  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2659  
  2660  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2661  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2662  p.M2()       // p.M2()              M2 expects *T2 receiver
  2663  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2664  </pre>
  2665  
  2666  <p>
  2667  but the following is invalid:
  2668  </p>
  2669  
  2670  <pre>
  2671  q.M0()       // (*q).M0 is valid but not a field selector
  2672  </pre>
  2673  
  2674  
  2675  <h3 id="Method_expressions">Method expressions</h3>
  2676  
  2677  <p>
  2678  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2679  <code>T.M</code> is a function that is callable as a regular function
  2680  with the same arguments as <code>M</code> prefixed by an additional
  2681  argument that is the receiver of the method.
  2682  </p>
  2683  
  2684  <pre class="ebnf">
  2685  MethodExpr    = ReceiverType "." MethodName .
  2686  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2687  </pre>
  2688  
  2689  <p>
  2690  Consider a struct type <code>T</code> with two methods,
  2691  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2692  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2693  </p>
  2694  
  2695  <pre>
  2696  type T struct {
  2697  	a int
  2698  }
  2699  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2700  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2701  
  2702  var t T
  2703  </pre>
  2704  
  2705  <p>
  2706  The expression
  2707  </p>
  2708  
  2709  <pre>
  2710  T.Mv
  2711  </pre>
  2712  
  2713  <p>
  2714  yields a function equivalent to <code>Mv</code> but
  2715  with an explicit receiver as its first argument; it has signature
  2716  </p>
  2717  
  2718  <pre>
  2719  func(tv T, a int) int
  2720  </pre>
  2721  
  2722  <p>
  2723  That function may be called normally with an explicit receiver, so
  2724  these five invocations are equivalent:
  2725  </p>
  2726  
  2727  <pre>
  2728  t.Mv(7)
  2729  T.Mv(t, 7)
  2730  (T).Mv(t, 7)
  2731  f1 := T.Mv; f1(t, 7)
  2732  f2 := (T).Mv; f2(t, 7)
  2733  </pre>
  2734  
  2735  <p>
  2736  Similarly, the expression
  2737  </p>
  2738  
  2739  <pre>
  2740  (*T).Mp
  2741  </pre>
  2742  
  2743  <p>
  2744  yields a function value representing <code>Mp</code> with signature
  2745  </p>
  2746  
  2747  <pre>
  2748  func(tp *T, f float32) float32
  2749  </pre>
  2750  
  2751  <p>
  2752  For a method with a value receiver, one can derive a function
  2753  with an explicit pointer receiver, so
  2754  </p>
  2755  
  2756  <pre>
  2757  (*T).Mv
  2758  </pre>
  2759  
  2760  <p>
  2761  yields a function value representing <code>Mv</code> with signature
  2762  </p>
  2763  
  2764  <pre>
  2765  func(tv *T, a int) int
  2766  </pre>
  2767  
  2768  <p>
  2769  Such a function indirects through the receiver to create a value
  2770  to pass as the receiver to the underlying method;
  2771  the method does not overwrite the value whose address is passed in
  2772  the function call.
  2773  </p>
  2774  
  2775  <p>
  2776  The final case, a value-receiver function for a pointer-receiver method,
  2777  is illegal because pointer-receiver methods are not in the method set
  2778  of the value type.
  2779  </p>
  2780  
  2781  <p>
  2782  Function values derived from methods are called with function call syntax;
  2783  the receiver is provided as the first argument to the call.
  2784  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2785  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2786  To construct a function that binds the receiver, use a
  2787  <a href="#Function_literals">function literal</a> or
  2788  <a href="#Method_values">method value</a>.
  2789  </p>
  2790  
  2791  <p>
  2792  It is legal to derive a function value from a method of an interface type.
  2793  The resulting function takes an explicit receiver of that interface type.
  2794  </p>
  2795  
  2796  <h3 id="Method_values">Method values</h3>
  2797  
  2798  <p>
  2799  If the expression <code>x</code> has static type <code>T</code> and
  2800  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2801  <code>x.M</code> is called a <i>method value</i>.
  2802  The method value <code>x.M</code> is a function value that is callable
  2803  with the same arguments as a method call of <code>x.M</code>.
  2804  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2805  method value; the saved copy is then used as the receiver in any calls,
  2806  which may be executed later.
  2807  </p>
  2808  
  2809  <p>
  2810  The type <code>T</code> may be an interface or non-interface type.
  2811  </p>
  2812  
  2813  <p>
  2814  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2815  consider a struct type <code>T</code> with two methods,
  2816  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2817  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2818  </p>
  2819  
  2820  <pre>
  2821  type T struct {
  2822  	a int
  2823  }
  2824  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2825  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2826  
  2827  var t T
  2828  var pt *T
  2829  func makeT() T
  2830  </pre>
  2831  
  2832  <p>
  2833  The expression
  2834  </p>
  2835  
  2836  <pre>
  2837  t.Mv
  2838  </pre>
  2839  
  2840  <p>
  2841  yields a function value of type
  2842  </p>
  2843  
  2844  <pre>
  2845  func(int) int
  2846  </pre>
  2847  
  2848  <p>
  2849  These two invocations are equivalent:
  2850  </p>
  2851  
  2852  <pre>
  2853  t.Mv(7)
  2854  f := t.Mv; f(7)
  2855  </pre>
  2856  
  2857  <p>
  2858  Similarly, the expression
  2859  </p>
  2860  
  2861  <pre>
  2862  pt.Mp
  2863  </pre>
  2864  
  2865  <p>
  2866  yields a function value of type
  2867  </p>
  2868  
  2869  <pre>
  2870  func(float32) float32
  2871  </pre>
  2872  
  2873  <p>
  2874  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2875  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2876  </p>
  2877  
  2878  <p>
  2879  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2880  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2881  </p>
  2882  
  2883  <pre>
  2884  f := t.Mv; f(7)   // like t.Mv(7)
  2885  f := pt.Mp; f(7)  // like pt.Mp(7)
  2886  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2887  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2888  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2889  </pre>
  2890  
  2891  <p>
  2892  Although the examples above use non-interface types, it is also legal to create a method value
  2893  from a value of interface type.
  2894  </p>
  2895  
  2896  <pre>
  2897  var i interface { M(int) } = myVal
  2898  f := i.M; f(7)  // like i.M(7)
  2899  </pre>
  2900  
  2901  
  2902  <h3 id="Index_expressions">Index expressions</h3>
  2903  
  2904  <p>
  2905  A primary expression of the form
  2906  </p>
  2907  
  2908  <pre>
  2909  a[x]
  2910  </pre>
  2911  
  2912  <p>
  2913  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2914  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2915  The following rules apply:
  2916  </p>
  2917  
  2918  <p>
  2919  If <code>a</code> is not a map:
  2920  </p>
  2921  <ul>
  2922  	<li>the index <code>x</code> must be of integer type or untyped;
  2923  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2924  	    otherwise it is <i>out of range</i></li>
  2925  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2926  	    and representable by a value of type <code>int</code>
  2927  </ul>
  2928  
  2929  <p>
  2930  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2931  </p>
  2932  <ul>
  2933  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2934  	<li>if <code>x</code> is out of range at run time,
  2935  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2936  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2937  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2938  </ul>
  2939  
  2940  <p>
  2941  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2942  </p>
  2943  <ul>
  2944  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2945  </ul>
  2946  
  2947  <p>
  2948  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2949  </p>
  2950  <ul>
  2951  	<li>if <code>x</code> is out of range at run time,
  2952  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2953  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2954  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2955  </ul>
  2956  
  2957  <p>
  2958  For <code>a</code> of <a href="#String_types">string type</a>:
  2959  </p>
  2960  <ul>
  2961  	<li>a <a href="#Constants">constant</a> index must be in range
  2962  	    if the string <code>a</code> is also constant</li>
  2963  	<li>if <code>x</code> is out of range at run time,
  2964  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2965  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2966  	    <code>a[x]</code> is <code>byte</code></li>
  2967  	<li><code>a[x]</code> may not be assigned to</li>
  2968  </ul>
  2969  
  2970  <p>
  2971  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2972  </p>
  2973  <ul>
  2974  	<li><code>x</code>'s type must be
  2975  	    <a href="#Assignability">assignable</a>
  2976  	    to the key type of <code>M</code></li>
  2977  	<li>if the map contains an entry with key <code>x</code>,
  2978  	    <code>a[x]</code> is the map value with key <code>x</code>
  2979  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2980  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2981  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2982  	    for the value type of <code>M</code></li>
  2983  </ul>
  2984  
  2985  <p>
  2986  Otherwise <code>a[x]</code> is illegal.
  2987  </p>
  2988  
  2989  <p>
  2990  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2991  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2992  </p>
  2993  
  2994  <pre>
  2995  v, ok = a[x]
  2996  v, ok := a[x]
  2997  var v, ok = a[x]
  2998  var v, ok T = a[x]
  2999  </pre>
  3000  
  3001  <p>
  3002  yields an additional untyped boolean value. The value of <code>ok</code> is
  3003  <code>true</code> if the key <code>x</code> is present in the map, and
  3004  <code>false</code> otherwise.
  3005  </p>
  3006  
  3007  <p>
  3008  Assigning to an element of a <code>nil</code> map causes a
  3009  <a href="#Run_time_panics">run-time panic</a>.
  3010  </p>
  3011  
  3012  
  3013  <h3 id="Slice_expressions">Slice expressions</h3>
  3014  
  3015  <p>
  3016  Slice expressions construct a substring or slice from a string, array, pointer
  3017  to array, or slice. There are two variants: a simple form that specifies a low
  3018  and high bound, and a full form that also specifies a bound on the capacity.
  3019  </p>
  3020  
  3021  <h4>Simple slice expressions</h4>
  3022  
  3023  <p>
  3024  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3025  </p>
  3026  
  3027  <pre>
  3028  a[low : high]
  3029  </pre>
  3030  
  3031  <p>
  3032  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3033  <code>high</code> select which elements of operand <code>a</code> appear
  3034  in the result. The result has indices starting at 0 and length equal to
  3035  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3036  After slicing the array <code>a</code>
  3037  </p>
  3038  
  3039  <pre>
  3040  a := [5]int{1, 2, 3, 4, 5}
  3041  s := a[1:4]
  3042  </pre>
  3043  
  3044  <p>
  3045  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3046  </p>
  3047  
  3048  <pre>
  3049  s[0] == 2
  3050  s[1] == 3
  3051  s[2] == 4
  3052  </pre>
  3053  
  3054  <p>
  3055  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3056  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3057  sliced operand:
  3058  </p>
  3059  
  3060  <pre>
  3061  a[2:]  // same as a[2 : len(a)]
  3062  a[:3]  // same as a[0 : 3]
  3063  a[:]   // same as a[0 : len(a)]
  3064  </pre>
  3065  
  3066  <p>
  3067  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3068  <code>(*a)[low : high]</code>.
  3069  </p>
  3070  
  3071  <p>
  3072  For arrays or strings, the indices are <i>in range</i> if
  3073  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3074  otherwise they are <i>out of range</i>.
  3075  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3076  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3077  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3078  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3079  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3080  </p>
  3081  
  3082  <p>
  3083  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3084  the result of the slice operation is a non-constant value of the same type as the operand.
  3085  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3086  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3087  and the result of the slice operation is a slice with the same element type as the array.
  3088  </p>
  3089  
  3090  <p>
  3091  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3092  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3093  operand.
  3094  </p>
  3095  
  3096  <h4>Full slice expressions</h4>
  3097  
  3098  <p>
  3099  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3100  </p>
  3101  
  3102  <pre>
  3103  a[low : high : max]
  3104  </pre>
  3105  
  3106  <p>
  3107  constructs a slice of the same type, and with the same length and elements as the simple slice
  3108  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3109  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3110  After slicing the array <code>a</code>
  3111  </p>
  3112  
  3113  <pre>
  3114  a := [5]int{1, 2, 3, 4, 5}
  3115  t := a[1:3:5]
  3116  </pre>
  3117  
  3118  <p>
  3119  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3120  </p>
  3121  
  3122  <pre>
  3123  t[0] == 2
  3124  t[1] == 3
  3125  </pre>
  3126  
  3127  <p>
  3128  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3129  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3130  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3131  </p>
  3132  
  3133  <p>
  3134  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3135  otherwise they are <i>out of range</i>.
  3136  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3137  <code>int</code>; for arrays, constant indices must also be in range.
  3138  If multiple indices are constant, the constants that are present must be in range relative to each
  3139  other.
  3140  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3141  </p>
  3142  
  3143  <h3 id="Type_assertions">Type assertions</h3>
  3144  
  3145  <p>
  3146  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3147  and a type <code>T</code>, the primary expression
  3148  </p>
  3149  
  3150  <pre>
  3151  x.(T)
  3152  </pre>
  3153  
  3154  <p>
  3155  asserts that <code>x</code> is not <code>nil</code>
  3156  and that the value stored in <code>x</code> is of type <code>T</code>.
  3157  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3158  </p>
  3159  <p>
  3160  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3161  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3162  to the type <code>T</code>.
  3163  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3164  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3165  to store a value of type <code>T</code>.
  3166  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3167  of <code>x</code> implements the interface <code>T</code>.
  3168  </p>
  3169  <p>
  3170  If the type assertion holds, the value of the expression is the value
  3171  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3172  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3173  In other words, even though the dynamic type of <code>x</code>
  3174  is known only at run time, the type of <code>x.(T)</code> is
  3175  known to be <code>T</code> in a correct program.
  3176  </p>
  3177  
  3178  <pre>
  3179  var x interface{} = 7          // x has dynamic type int and value 7
  3180  i := x.(int)                   // i has type int and value 7
  3181  
  3182  type I interface { m() }
  3183  
  3184  func f(y I) {
  3185  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3186  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3187  	…
  3188  }
  3189  </pre>
  3190  
  3191  <p>
  3192  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3193  </p>
  3194  
  3195  <pre>
  3196  v, ok = x.(T)
  3197  v, ok := x.(T)
  3198  var v, ok = x.(T)
  3199  var v, ok T1 = x.(T)
  3200  </pre>
  3201  
  3202  <p>
  3203  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3204  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3205  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3206  No run-time panic occurs in this case.
  3207  </p>
  3208  
  3209  
  3210  <h3 id="Calls">Calls</h3>
  3211  
  3212  <p>
  3213  Given an expression <code>f</code> of function type
  3214  <code>F</code>,
  3215  </p>
  3216  
  3217  <pre>
  3218  f(a1, a2, … an)
  3219  </pre>
  3220  
  3221  <p>
  3222  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3223  Except for one special case, arguments must be single-valued expressions
  3224  <a href="#Assignability">assignable</a> to the parameter types of
  3225  <code>F</code> and are evaluated before the function is called.
  3226  The type of the expression is the result type
  3227  of <code>F</code>.
  3228  A method invocation is similar but the method itself
  3229  is specified as a selector upon a value of the receiver type for
  3230  the method.
  3231  </p>
  3232  
  3233  <pre>
  3234  math.Atan2(x, y)  // function call
  3235  var pt *Point
  3236  pt.Scale(3.5)     // method call with receiver pt
  3237  </pre>
  3238  
  3239  <p>
  3240  In a function call, the function value and arguments are evaluated in
  3241  <a href="#Order_of_evaluation">the usual order</a>.
  3242  After they are evaluated, the parameters of the call are passed by value to the function
  3243  and the called function begins execution.
  3244  The return parameters of the function are passed by value
  3245  back to the calling function when the function returns.
  3246  </p>
  3247  
  3248  <p>
  3249  Calling a <code>nil</code> function value
  3250  causes a <a href="#Run_time_panics">run-time panic</a>.
  3251  </p>
  3252  
  3253  <p>
  3254  As a special case, if the return values of a function or method
  3255  <code>g</code> are equal in number and individually
  3256  assignable to the parameters of another function or method
  3257  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3258  will invoke <code>f</code> after binding the return values of
  3259  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3260  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3261  and <code>g</code> must have at least one return value.
  3262  If <code>f</code> has a final <code>...</code> parameter, it is
  3263  assigned the return values of <code>g</code> that remain after
  3264  assignment of regular parameters.
  3265  </p>
  3266  
  3267  <pre>
  3268  func Split(s string, pos int) (string, string) {
  3269  	return s[0:pos], s[pos:]
  3270  }
  3271  
  3272  func Join(s, t string) string {
  3273  	return s + t
  3274  }
  3275  
  3276  if Join(Split(value, len(value)/2)) != value {
  3277  	log.Panic("test fails")
  3278  }
  3279  </pre>
  3280  
  3281  <p>
  3282  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3283  of (the type of) <code>x</code> contains <code>m</code> and the
  3284  argument list can be assigned to the parameter list of <code>m</code>.
  3285  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3286  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3287  for <code>(&amp;x).m()</code>:
  3288  </p>
  3289  
  3290  <pre>
  3291  var p Point
  3292  p.Scale(3.5)
  3293  </pre>
  3294  
  3295  <p>
  3296  There is no distinct method type and there are no method literals.
  3297  </p>
  3298  
  3299  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3300  
  3301  <p>
  3302  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3303  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3304  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3305  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3306  the value passed to <code>p</code> is <code>nil</code>.
  3307  Otherwise, the value passed is a new slice
  3308  of type <code>[]T</code> with a new underlying array whose successive elements
  3309  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3310  to <code>T</code>. The length and capacity of the slice is therefore
  3311  the number of arguments bound to <code>p</code> and may differ for each
  3312  call site.
  3313  </p>
  3314  
  3315  <p>
  3316  Given the function and calls
  3317  </p>
  3318  <pre>
  3319  func Greeting(prefix string, who ...string)
  3320  Greeting("nobody")
  3321  Greeting("hello:", "Joe", "Anna", "Eileen")
  3322  </pre>
  3323  
  3324  <p>
  3325  within <code>Greeting</code>, <code>who</code> will have the value
  3326  <code>nil</code> in the first call, and
  3327  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3328  </p>
  3329  
  3330  <p>
  3331  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3332  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3333  is followed by <code>...</code>. In this case no new slice is created.
  3334  </p>
  3335  
  3336  <p>
  3337  Given the slice <code>s</code> and call
  3338  </p>
  3339  
  3340  <pre>
  3341  s := []string{"James", "Jasmine"}
  3342  Greeting("goodbye:", s...)
  3343  </pre>
  3344  
  3345  <p>
  3346  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3347  with the same underlying array.
  3348  </p>
  3349  
  3350  
  3351  <h3 id="Operators">Operators</h3>
  3352  
  3353  <p>
  3354  Operators combine operands into expressions.
  3355  </p>
  3356  
  3357  <pre class="ebnf">
  3358  Expression = UnaryExpr | Expression binary_op Expression .
  3359  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3360  
  3361  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3362  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3363  add_op     = "+" | "-" | "|" | "^" .
  3364  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3365  
  3366  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3367  </pre>
  3368  
  3369  <p>
  3370  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3371  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3372  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3373  For operations involving constants only, see the section on
  3374  <a href="#Constant_expressions">constant expressions</a>.
  3375  </p>
  3376  
  3377  <p>
  3378  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3379  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3380  to the type of the other operand.
  3381  </p>
  3382  
  3383  <p>
  3384  The right operand in a shift expression must have unsigned integer type
  3385  or be an untyped constant that can be converted to unsigned integer type.
  3386  If the left operand of a non-constant shift expression is an untyped constant,
  3387  it is first converted to the type it would assume if the shift expression were
  3388  replaced by its left operand alone.
  3389  </p>
  3390  
  3391  <pre>
  3392  var s uint = 33
  3393  var i = 1&lt;&lt;s           // 1 has type int
  3394  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3395  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3396  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3397  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3398  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3399  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3400  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3401  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3402  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3403  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3404  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3405  </pre>
  3406  
  3407  
  3408  <h4 id="Operator_precedence">Operator precedence</h4>
  3409  <p>
  3410  Unary operators have the highest precedence.
  3411  As the  <code>++</code> and <code>--</code> operators form
  3412  statements, not expressions, they fall
  3413  outside the operator hierarchy.
  3414  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3415  <p>
  3416  There are five precedence levels for binary operators.
  3417  Multiplication operators bind strongest, followed by addition
  3418  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3419  and finally <code>||</code> (logical OR):
  3420  </p>
  3421  
  3422  <pre class="grammar">
  3423  Precedence    Operator
  3424      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3425      4             +  -  |  ^
  3426      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3427      2             &amp;&amp;
  3428      1             ||
  3429  </pre>
  3430  
  3431  <p>
  3432  Binary operators of the same precedence associate from left to right.
  3433  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3434  </p>
  3435  
  3436  <pre>
  3437  +x
  3438  23 + 3*x[i]
  3439  x &lt;= f()
  3440  ^a &gt;&gt; b
  3441  f() || g()
  3442  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3443  </pre>
  3444  
  3445  
  3446  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3447  <p>
  3448  Arithmetic operators apply to numeric values and yield a result of the same
  3449  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3450  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3451  floating-point, and complex types; <code>+</code> also applies to strings.
  3452  The bitwise logical and shift operators apply to integers only.
  3453  </p>
  3454  
  3455  <pre class="grammar">
  3456  +    sum                    integers, floats, complex values, strings
  3457  -    difference             integers, floats, complex values
  3458  *    product                integers, floats, complex values
  3459  /    quotient               integers, floats, complex values
  3460  %    remainder              integers
  3461  
  3462  &amp;    bitwise AND            integers
  3463  |    bitwise OR             integers
  3464  ^    bitwise XOR            integers
  3465  &amp;^   bit clear (AND NOT)    integers
  3466  
  3467  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3468  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3469  </pre>
  3470  
  3471  
  3472  <h4 id="Integer_operators">Integer operators</h4>
  3473  
  3474  <p>
  3475  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3476  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3477  relationships:
  3478  </p>
  3479  
  3480  <pre>
  3481  x = q*y + r  and  |r| &lt; |y|
  3482  </pre>
  3483  
  3484  <p>
  3485  with <code>x / y</code> truncated towards zero
  3486  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3487  </p>
  3488  
  3489  <pre>
  3490   x     y     x / y     x % y
  3491   5     3       1         2
  3492  -5     3      -1        -2
  3493   5    -3      -1         2
  3494  -5    -3       1        -2
  3495  </pre>
  3496  
  3497  <p>
  3498  As an exception to this rule, if the dividend <code>x</code> is the most
  3499  negative value for the int type of <code>x</code>, the quotient
  3500  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3501  </p>
  3502  
  3503  <pre>
  3504  			 x, q
  3505  int8                     -128
  3506  int16                  -32768
  3507  int32             -2147483648
  3508  int64    -9223372036854775808
  3509  </pre>
  3510  
  3511  <p>
  3512  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3513  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3514  If the dividend is non-negative and the divisor is a constant power of 2,
  3515  the division may be replaced by a right shift, and computing the remainder may
  3516  be replaced by a bitwise AND operation:
  3517  </p>
  3518  
  3519  <pre>
  3520   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3521   11      2         3         2          3
  3522  -11     -2        -3        -3          1
  3523  </pre>
  3524  
  3525  <p>
  3526  The shift operators shift the left operand by the shift count specified by the
  3527  right operand. They implement arithmetic shifts if the left operand is a signed
  3528  integer and logical shifts if it is an unsigned integer.
  3529  There is no upper limit on the shift count. Shifts behave
  3530  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3531  count of <code>n</code>.
  3532  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3533  and <code>x &gt;&gt; 1</code> is the same as
  3534  <code>x/2</code> but truncated towards negative infinity.
  3535  </p>
  3536  
  3537  <p>
  3538  For integer operands, the unary operators
  3539  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3540  follows:
  3541  </p>
  3542  
  3543  <pre class="grammar">
  3544  +x                          is 0 + x
  3545  -x    negation              is 0 - x
  3546  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3547                                        and  m = -1 for signed x
  3548  </pre>
  3549  
  3550  
  3551  <h4 id="Integer_overflow">Integer overflow</h4>
  3552  
  3553  <p>
  3554  For unsigned integer values, the operations <code>+</code>,
  3555  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3556  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3557  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3558  Loosely speaking, these unsigned integer operations
  3559  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3560  </p>
  3561  <p>
  3562  For signed integers, the operations <code>+</code>,
  3563  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3564  overflow and the resulting value exists and is deterministically defined
  3565  by the signed integer representation, the operation, and its operands.
  3566  No exception is raised as a result of overflow. A
  3567  compiler may not optimize code under the assumption that overflow does
  3568  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3569  </p>
  3570  
  3571  
  3572  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3573  
  3574  <p>
  3575  For floating-point and complex numbers,
  3576  <code>+x</code> is the same as <code>x</code>,
  3577  while <code>-x</code> is the negation of <code>x</code>.
  3578  The result of a floating-point or complex division by zero is not specified beyond the
  3579  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3580  occurs is implementation-specific.
  3581  </p>
  3582  
  3583  
  3584  <h4 id="String_concatenation">String concatenation</h4>
  3585  
  3586  <p>
  3587  Strings can be concatenated using the <code>+</code> operator
  3588  or the <code>+=</code> assignment operator:
  3589  </p>
  3590  
  3591  <pre>
  3592  s := "hi" + string(c)
  3593  s += " and good bye"
  3594  </pre>
  3595  
  3596  <p>
  3597  String addition creates a new string by concatenating the operands.
  3598  </p>
  3599  
  3600  
  3601  <h3 id="Comparison_operators">Comparison operators</h3>
  3602  
  3603  <p>
  3604  Comparison operators compare two operands and yield an untyped boolean value.
  3605  </p>
  3606  
  3607  <pre class="grammar">
  3608  ==    equal
  3609  !=    not equal
  3610  &lt;     less
  3611  &lt;=    less or equal
  3612  &gt;     greater
  3613  &gt;=    greater or equal
  3614  </pre>
  3615  
  3616  <p>
  3617  In any comparison, the first operand
  3618  must be <a href="#Assignability">assignable</a>
  3619  to the type of the second operand, or vice versa.
  3620  </p>
  3621  <p>
  3622  The equality operators <code>==</code> and <code>!=</code> apply
  3623  to operands that are <i>comparable</i>.
  3624  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3625  apply to operands that are <i>ordered</i>.
  3626  These terms and the result of the comparisons are defined as follows:
  3627  </p>
  3628  
  3629  <ul>
  3630  	<li>
  3631  	Boolean values are comparable.
  3632  	Two boolean values are equal if they are either both
  3633  	<code>true</code> or both <code>false</code>.
  3634  	</li>
  3635  
  3636  	<li>
  3637  	Integer values are comparable and ordered, in the usual way.
  3638  	</li>
  3639  
  3640  	<li>
  3641  	Floating point values are comparable and ordered,
  3642  	as defined by the IEEE-754 standard.
  3643  	</li>
  3644  
  3645  	<li>
  3646  	Complex values are comparable.
  3647  	Two complex values <code>u</code> and <code>v</code> are
  3648  	equal if both <code>real(u) == real(v)</code> and
  3649  	<code>imag(u) == imag(v)</code>.
  3650  	</li>
  3651  
  3652  	<li>
  3653  	String values are comparable and ordered, lexically byte-wise.
  3654  	</li>
  3655  
  3656  	<li>
  3657  	Pointer values are comparable.
  3658  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3659  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3660  	</li>
  3661  
  3662  	<li>
  3663  	Channel values are comparable.
  3664  	Two channel values are equal if they were created by the same call to
  3665  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3666  	or if both have value <code>nil</code>.
  3667  	</li>
  3668  
  3669  	<li>
  3670  	Interface values are comparable.
  3671  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3672  	and equal dynamic values or if both have value <code>nil</code>.
  3673  	</li>
  3674  
  3675  	<li>
  3676  	A value <code>x</code> of non-interface type <code>X</code> and
  3677  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3678  	of type <code>X</code> are comparable and
  3679  	<code>X</code> implements <code>T</code>.
  3680  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3681  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3682  	</li>
  3683  
  3684  	<li>
  3685  	Struct values are comparable if all their fields are comparable.
  3686  	Two struct values are equal if their corresponding
  3687  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3688  	</li>
  3689  
  3690  	<li>
  3691  	Array values are comparable if values of the array element type are comparable.
  3692  	Two array values are equal if their corresponding elements are equal.
  3693  	</li>
  3694  </ul>
  3695  
  3696  <p>
  3697  A comparison of two interface values with identical dynamic types
  3698  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3699  of that type are not comparable.  This behavior applies not only to direct interface
  3700  value comparisons but also when comparing arrays of interface values
  3701  or structs with interface-valued fields.
  3702  </p>
  3703  
  3704  <p>
  3705  Slice, map, and function values are not comparable.
  3706  However, as a special case, a slice, map, or function value may
  3707  be compared to the predeclared identifier <code>nil</code>.
  3708  Comparison of pointer, channel, and interface values to <code>nil</code>
  3709  is also allowed and follows from the general rules above.
  3710  </p>
  3711  
  3712  <pre>
  3713  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3714  
  3715  type MyBool bool
  3716  var x, y int
  3717  var (
  3718  	// The result of a comparison is an untyped boolean.
  3719  	// The usual assignment rules apply.
  3720  	b3        = x == y // b3 has type bool
  3721  	b4 bool   = x == y // b4 has type bool
  3722  	b5 MyBool = x == y // b5 has type MyBool
  3723  )
  3724  </pre>
  3725  
  3726  <h3 id="Logical_operators">Logical operators</h3>
  3727  
  3728  <p>
  3729  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3730  and yield a result of the same type as the operands.
  3731  The right operand is evaluated conditionally.
  3732  </p>
  3733  
  3734  <pre class="grammar">
  3735  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3736  ||    conditional OR     p || q  is  "if p then true else q"
  3737  !     NOT                !p      is  "not p"
  3738  </pre>
  3739  
  3740  
  3741  <h3 id="Address_operators">Address operators</h3>
  3742  
  3743  <p>
  3744  For an operand <code>x</code> of type <code>T</code>, the address operation
  3745  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3746  The operand must be <i>addressable</i>,
  3747  that is, either a variable, pointer indirection, or slice indexing
  3748  operation; or a field selector of an addressable struct operand;
  3749  or an array indexing operation of an addressable array.
  3750  As an exception to the addressability requirement, <code>x</code> may also be a
  3751  (possibly parenthesized)
  3752  <a href="#Composite_literals">composite literal</a>.
  3753  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3754  then the evaluation of <code>&amp;x</code> does too.
  3755  </p>
  3756  
  3757  <p>
  3758  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3759  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3760  to by <code>x</code>.
  3761  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3762  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3763  </p>
  3764  
  3765  <pre>
  3766  &amp;x
  3767  &amp;a[f(2)]
  3768  &amp;Point{2, 3}
  3769  *p
  3770  *pf(x)
  3771  
  3772  var x *int = nil
  3773  *x   // causes a run-time panic
  3774  &amp;*x  // causes a run-time panic
  3775  </pre>
  3776  
  3777  
  3778  <h3 id="Receive_operator">Receive operator</h3>
  3779  
  3780  <p>
  3781  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3782  the value of the receive operation <code>&lt;-ch</code> is the value received
  3783  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3784  and the type of the receive operation is the element type of the channel.
  3785  The expression blocks until a value is available.
  3786  Receiving from a <code>nil</code> channel blocks forever.
  3787  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3788  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3789  after any previously sent values have been received.
  3790  </p>
  3791  
  3792  <pre>
  3793  v1 := &lt;-ch
  3794  v2 = &lt;-ch
  3795  f(&lt;-ch)
  3796  &lt;-strobe  // wait until clock pulse and discard received value
  3797  </pre>
  3798  
  3799  <p>
  3800  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3801  </p>
  3802  
  3803  <pre>
  3804  x, ok = &lt;-ch
  3805  x, ok := &lt;-ch
  3806  var x, ok = &lt;-ch
  3807  var x, ok T = &lt;-ch
  3808  </pre>
  3809  
  3810  <p>
  3811  yields an additional untyped boolean result reporting whether the
  3812  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3813  if the value received was delivered by a successful send operation to the
  3814  channel, or <code>false</code> if it is a zero value generated because the
  3815  channel is closed and empty.
  3816  </p>
  3817  
  3818  
  3819  <h3 id="Conversions">Conversions</h3>
  3820  
  3821  <p>
  3822  Conversions are expressions of the form <code>T(x)</code>
  3823  where <code>T</code> is a type and <code>x</code> is an expression
  3824  that can be converted to type <code>T</code>.
  3825  </p>
  3826  
  3827  <pre class="ebnf">
  3828  Conversion = Type "(" Expression [ "," ] ")" .
  3829  </pre>
  3830  
  3831  <p>
  3832  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3833  or if the type starts with the keyword <code>func</code>
  3834  and has no result list, it must be parenthesized when
  3835  necessary to avoid ambiguity:
  3836  </p>
  3837  
  3838  <pre>
  3839  *Point(p)        // same as *(Point(p))
  3840  (*Point)(p)      // p is converted to *Point
  3841  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3842  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3843  func()(x)        // function signature func() x
  3844  (func())(x)      // x is converted to func()
  3845  (func() int)(x)  // x is converted to func() int
  3846  func() int(x)    // x is converted to func() int (unambiguous)
  3847  </pre>
  3848  
  3849  <p>
  3850  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3851  type <code>T</code> in any of these cases:
  3852  </p>
  3853  
  3854  <ul>
  3855  	<li>
  3856  	<code>x</code> is representable by a value of type <code>T</code>.
  3857  	</li>
  3858  	<li>
  3859  	<code>x</code> is a floating-point constant,
  3860  	<code>T</code> is a floating-point type,
  3861  	and <code>x</code> is representable by a value
  3862  	of type <code>T</code> after rounding using
  3863  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3864  	further rounded to an unsigned <code>0.0</code>.
  3865  	The constant <code>T(x)</code> is the rounded value.
  3866  	</li>
  3867  	<li>
  3868  	<code>x</code> is an integer constant and <code>T</code> is a
  3869  	<a href="#String_types">string type</a>.
  3870  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3871  	as for non-constant <code>x</code> applies in this case.
  3872  	</li>
  3873  </ul>
  3874  
  3875  <p>
  3876  Converting a constant yields a typed constant as result.
  3877  </p>
  3878  
  3879  <pre>
  3880  uint(iota)               // iota value of type uint
  3881  float32(2.718281828)     // 2.718281828 of type float32
  3882  complex128(1)            // 1.0 + 0.0i of type complex128
  3883  float32(0.49999999)      // 0.5 of type float32
  3884  float64(-1e-1000)        // 0.0 of type float64
  3885  string('x')              // "x" of type string
  3886  string(0x266c)           // "♬" of type string
  3887  MyString("foo" + "bar")  // "foobar" of type MyString
  3888  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3889  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3890  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3891  string(65.0)             // illegal: 65.0 is not an integer constant
  3892  </pre>
  3893  
  3894  <p>
  3895  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3896  in any of these cases:
  3897  </p>
  3898  
  3899  <ul>
  3900  	<li>
  3901  	<code>x</code> is <a href="#Assignability">assignable</a>
  3902  	to <code>T</code>.
  3903  	</li>
  3904  	<li>
  3905  	ignoring struct tags (see below),
  3906  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3907  	<a href="#Types">underlying types</a>.
  3908  	</li>
  3909  	<li>
  3910  	ignoring struct tags (see below),
  3911  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3912  	and their pointer base types have identical underlying types.
  3913  	</li>
  3914  	<li>
  3915  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3916  	point types.
  3917  	</li>
  3918  	<li>
  3919  	<code>x</code>'s type and <code>T</code> are both complex types.
  3920  	</li>
  3921  	<li>
  3922  	<code>x</code> is an integer or a slice of bytes or runes
  3923  	and <code>T</code> is a string type.
  3924  	</li>
  3925  	<li>
  3926  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3927  	</li>
  3928  </ul>
  3929  
  3930  <p>
  3931  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3932  for identity for the purpose of conversion:
  3933  </p>
  3934  
  3935  <pre>
  3936  type Person struct {
  3937  	Name    string
  3938  	Address *struct {
  3939  		Street string
  3940  		City   string
  3941  	}
  3942  }
  3943  
  3944  var data *struct {
  3945  	Name    string `json:"name"`
  3946  	Address *struct {
  3947  		Street string `json:"street"`
  3948  		City   string `json:"city"`
  3949  	} `json:"address"`
  3950  }
  3951  
  3952  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3953  </pre>
  3954  
  3955  <p>
  3956  Specific rules apply to (non-constant) conversions between numeric types or
  3957  to and from a string type.
  3958  These conversions may change the representation of <code>x</code>
  3959  and incur a run-time cost.
  3960  All other conversions only change the type but not the representation
  3961  of <code>x</code>.
  3962  </p>
  3963  
  3964  <p>
  3965  There is no linguistic mechanism to convert between pointers and integers.
  3966  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3967  implements this functionality under
  3968  restricted circumstances.
  3969  </p>
  3970  
  3971  <h4>Conversions between numeric types</h4>
  3972  
  3973  <p>
  3974  For the conversion of non-constant numeric values, the following rules apply:
  3975  </p>
  3976  
  3977  <ol>
  3978  <li>
  3979  When converting between integer types, if the value is a signed integer, it is
  3980  sign extended to implicit infinite precision; otherwise it is zero extended.
  3981  It is then truncated to fit in the result type's size.
  3982  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3983  The conversion always yields a valid value; there is no indication of overflow.
  3984  </li>
  3985  <li>
  3986  When converting a floating-point number to an integer, the fraction is discarded
  3987  (truncation towards zero).
  3988  </li>
  3989  <li>
  3990  When converting an integer or floating-point number to a floating-point type,
  3991  or a complex number to another complex type, the result value is rounded
  3992  to the precision specified by the destination type.
  3993  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3994  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3995  but float32(x) represents the result of rounding <code>x</code>'s value to
  3996  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3997  of precision, but <code>float32(x + 0.1)</code> does not.
  3998  </li>
  3999  </ol>
  4000  
  4001  <p>
  4002  In all non-constant conversions involving floating-point or complex values,
  4003  if the result type cannot represent the value the conversion
  4004  succeeds but the result value is implementation-dependent.
  4005  </p>
  4006  
  4007  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4008  
  4009  <ol>
  4010  <li>
  4011  Converting a signed or unsigned integer value to a string type yields a
  4012  string containing the UTF-8 representation of the integer. Values outside
  4013  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4014  
  4015  <pre>
  4016  string('a')       // "a"
  4017  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4018  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4019  type MyString string
  4020  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4021  </pre>
  4022  </li>
  4023  
  4024  <li>
  4025  Converting a slice of bytes to a string type yields
  4026  a string whose successive bytes are the elements of the slice.
  4027  
  4028  <pre>
  4029  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4030  string([]byte{})                                     // ""
  4031  string([]byte(nil))                                  // ""
  4032  
  4033  type MyBytes []byte
  4034  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4035  </pre>
  4036  </li>
  4037  
  4038  <li>
  4039  Converting a slice of runes to a string type yields
  4040  a string that is the concatenation of the individual rune values
  4041  converted to strings.
  4042  
  4043  <pre>
  4044  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4045  string([]rune{})                         // ""
  4046  string([]rune(nil))                      // ""
  4047  
  4048  type MyRunes []rune
  4049  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4050  </pre>
  4051  </li>
  4052  
  4053  <li>
  4054  Converting a value of a string type to a slice of bytes type
  4055  yields a slice whose successive elements are the bytes of the string.
  4056  
  4057  <pre>
  4058  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4059  []byte("")        // []byte{}
  4060  
  4061  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4062  </pre>
  4063  </li>
  4064  
  4065  <li>
  4066  Converting a value of a string type to a slice of runes type
  4067  yields a slice containing the individual Unicode code points of the string.
  4068  
  4069  <pre>
  4070  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4071  []rune("")                 // []rune{}
  4072  
  4073  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4074  </pre>
  4075  </li>
  4076  </ol>
  4077  
  4078  
  4079  <h3 id="Constant_expressions">Constant expressions</h3>
  4080  
  4081  <p>
  4082  Constant expressions may contain only <a href="#Constants">constant</a>
  4083  operands and are evaluated at compile time.
  4084  </p>
  4085  
  4086  <p>
  4087  Untyped boolean, numeric, and string constants may be used as operands
  4088  wherever it is legal to use an operand of boolean, numeric, or string type,
  4089  respectively.
  4090  Except for shift operations, if the operands of a binary operation are
  4091  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4092  the kind that appears later in this list: integer, rune, floating-point, complex.
  4093  For example, an untyped integer constant divided by an
  4094  untyped complex constant yields an untyped complex constant.
  4095  </p>
  4096  
  4097  <p>
  4098  A constant <a href="#Comparison_operators">comparison</a> always yields
  4099  an untyped boolean constant.  If the left operand of a constant
  4100  <a href="#Operators">shift expression</a> is an untyped constant, the
  4101  result is an integer constant; otherwise it is a constant of the same
  4102  type as the left operand, which must be of
  4103  <a href="#Numeric_types">integer type</a>.
  4104  Applying all other operators to untyped constants results in an untyped
  4105  constant of the same kind (that is, a boolean, integer, floating-point,
  4106  complex, or string constant).
  4107  </p>
  4108  
  4109  <pre>
  4110  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4111  const b = 15 / 4           // b == 3     (untyped integer constant)
  4112  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4113  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4114  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4115  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4116  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4117  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4118  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4119  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4120  const j = true             // j == true  (untyped boolean constant)
  4121  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4122  const l = "hi"             // l == "hi"  (untyped string constant)
  4123  const m = string(k)        // m == "x"   (type string)
  4124  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4125  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4126  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4127  </pre>
  4128  
  4129  <p>
  4130  Applying the built-in function <code>complex</code> to untyped
  4131  integer, rune, or floating-point constants yields
  4132  an untyped complex constant.
  4133  </p>
  4134  
  4135  <pre>
  4136  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4137  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4138  </pre>
  4139  
  4140  <p>
  4141  Constant expressions are always evaluated exactly; intermediate values and the
  4142  constants themselves may require precision significantly larger than supported
  4143  by any predeclared type in the language. The following are legal declarations:
  4144  </p>
  4145  
  4146  <pre>
  4147  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4148  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4149  </pre>
  4150  
  4151  <p>
  4152  The divisor of a constant division or remainder operation must not be zero:
  4153  </p>
  4154  
  4155  <pre>
  4156  3.14 / 0.0   // illegal: division by zero
  4157  </pre>
  4158  
  4159  <p>
  4160  The values of <i>typed</i> constants must always be accurately representable as values
  4161  of the constant type. The following constant expressions are illegal:
  4162  </p>
  4163  
  4164  <pre>
  4165  uint(-1)     // -1 cannot be represented as a uint
  4166  int(3.14)    // 3.14 cannot be represented as an int
  4167  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4168  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4169  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4170  </pre>
  4171  
  4172  <p>
  4173  The mask used by the unary bitwise complement operator <code>^</code> matches
  4174  the rule for non-constants: the mask is all 1s for unsigned constants
  4175  and -1 for signed and untyped constants.
  4176  </p>
  4177  
  4178  <pre>
  4179  ^1         // untyped integer constant, equal to -2
  4180  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4181  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4182  int8(^1)   // same as int8(-2)
  4183  ^int8(1)   // same as -1 ^ int8(1) = -2
  4184  </pre>
  4185  
  4186  <p>
  4187  Implementation restriction: A compiler may use rounding while
  4188  computing untyped floating-point or complex constant expressions; see
  4189  the implementation restriction in the section
  4190  on <a href="#Constants">constants</a>.  This rounding may cause a
  4191  floating-point constant expression to be invalid in an integer
  4192  context, even if it would be integral when calculated using infinite
  4193  precision, and vice versa.
  4194  </p>
  4195  
  4196  
  4197  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4198  
  4199  <p>
  4200  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4201  determine the evaluation order of individual initialization expressions in
  4202  <a href="#Variable_declarations">variable declarations</a>.
  4203  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4204  expression, assignment, or
  4205  <a href="#Return_statements">return statement</a>,
  4206  all function calls, method calls, and
  4207  communication operations are evaluated in lexical left-to-right
  4208  order.
  4209  </p>
  4210  
  4211  <p>
  4212  For example, in the (function-local) assignment
  4213  </p>
  4214  <pre>
  4215  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4216  </pre>
  4217  <p>
  4218  the function calls and communication happen in the order
  4219  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4220  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4221  However, the order of those events compared to the evaluation
  4222  and indexing of <code>x</code> and the evaluation
  4223  of <code>y</code> is not specified.
  4224  </p>
  4225  
  4226  <pre>
  4227  a := 1
  4228  f := func() int { a++; return a }
  4229  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4230  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4231  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4232  </pre>
  4233  
  4234  <p>
  4235  At package level, initialization dependencies override the left-to-right rule
  4236  for individual initialization expressions, but not for operands within each
  4237  expression:
  4238  </p>
  4239  
  4240  <pre>
  4241  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4242  
  4243  func f() int        { return c }
  4244  func g() int        { return a }
  4245  func sqr(x int) int { return x*x }
  4246  
  4247  // functions u and v are independent of all other variables and functions
  4248  </pre>
  4249  
  4250  <p>
  4251  The function calls happen in the order
  4252  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4253  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4254  </p>
  4255  
  4256  <p>
  4257  Floating-point operations within a single expression are evaluated according to
  4258  the associativity of the operators.  Explicit parentheses affect the evaluation
  4259  by overriding the default associativity.
  4260  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4261  is performed before adding <code>x</code>.
  4262  </p>
  4263  
  4264  <h2 id="Statements">Statements</h2>
  4265  
  4266  <p>
  4267  Statements control execution.
  4268  </p>
  4269  
  4270  <pre class="ebnf">
  4271  Statement =
  4272  	Declaration | LabeledStmt | SimpleStmt |
  4273  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4274  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4275  	DeferStmt .
  4276  
  4277  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4278  </pre>
  4279  
  4280  <h3 id="Terminating_statements">Terminating statements</h3>
  4281  
  4282  <p>
  4283  A terminating statement is one of the following:
  4284  </p>
  4285  
  4286  <ol>
  4287  <li>
  4288  	A <a href="#Return_statements">"return"</a> or
  4289      	<a href="#Goto_statements">"goto"</a> statement.
  4290  	<!-- ul below only for regular layout -->
  4291  	<ul> </ul>
  4292  </li>
  4293  
  4294  <li>
  4295  	A call to the built-in function
  4296  	<a href="#Handling_panics"><code>panic</code></a>.
  4297  	<!-- ul below only for regular layout -->
  4298  	<ul> </ul>
  4299  </li>
  4300  
  4301  <li>
  4302  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4303  	<!-- ul below only for regular layout -->
  4304  	<ul> </ul>
  4305  </li>
  4306  
  4307  <li>
  4308  	An <a href="#If_statements">"if" statement</a> in which:
  4309  	<ul>
  4310  	<li>the "else" branch is present, and</li>
  4311  	<li>both branches are terminating statements.</li>
  4312  	</ul>
  4313  </li>
  4314  
  4315  <li>
  4316  	A <a href="#For_statements">"for" statement</a> in which:
  4317  	<ul>
  4318  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4319  	<li>the loop condition is absent.</li>
  4320  	</ul>
  4321  </li>
  4322  
  4323  <li>
  4324  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4325  	<ul>
  4326  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4327  	<li>there is a default case, and</li>
  4328  	<li>the statement lists in each case, including the default, end in a terminating
  4329  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4330  	    statement</a>.</li>
  4331  	</ul>
  4332  </li>
  4333  
  4334  <li>
  4335  	A <a href="#Select_statements">"select" statement</a> in which:
  4336  	<ul>
  4337  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4338  	<li>the statement lists in each case, including the default if present,
  4339  	    end in a terminating statement.</li>
  4340  	</ul>
  4341  </li>
  4342  
  4343  <li>
  4344  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4345  	a terminating statement.
  4346  </li>
  4347  </ol>
  4348  
  4349  <p>
  4350  All other statements are not terminating.
  4351  </p>
  4352  
  4353  <p>
  4354  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4355  is not empty and its final non-empty statement is terminating.
  4356  </p>
  4357  
  4358  
  4359  <h3 id="Empty_statements">Empty statements</h3>
  4360  
  4361  <p>
  4362  The empty statement does nothing.
  4363  </p>
  4364  
  4365  <pre class="ebnf">
  4366  EmptyStmt = .
  4367  </pre>
  4368  
  4369  
  4370  <h3 id="Labeled_statements">Labeled statements</h3>
  4371  
  4372  <p>
  4373  A labeled statement may be the target of a <code>goto</code>,
  4374  <code>break</code> or <code>continue</code> statement.
  4375  </p>
  4376  
  4377  <pre class="ebnf">
  4378  LabeledStmt = Label ":" Statement .
  4379  Label       = identifier .
  4380  </pre>
  4381  
  4382  <pre>
  4383  Error: log.Panic("error encountered")
  4384  </pre>
  4385  
  4386  
  4387  <h3 id="Expression_statements">Expression statements</h3>
  4388  
  4389  <p>
  4390  With the exception of specific built-in functions,
  4391  function and method <a href="#Calls">calls</a> and
  4392  <a href="#Receive_operator">receive operations</a>
  4393  can appear in statement context. Such statements may be parenthesized.
  4394  </p>
  4395  
  4396  <pre class="ebnf">
  4397  ExpressionStmt = Expression .
  4398  </pre>
  4399  
  4400  <p>
  4401  The following built-in functions are not permitted in statement context:
  4402  </p>
  4403  
  4404  <pre>
  4405  append cap complex imag len make new real
  4406  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4407  </pre>
  4408  
  4409  <pre>
  4410  h(x+y)
  4411  f.Close()
  4412  &lt;-ch
  4413  (&lt;-ch)
  4414  len("foo")  // illegal if len is the built-in function
  4415  </pre>
  4416  
  4417  
  4418  <h3 id="Send_statements">Send statements</h3>
  4419  
  4420  <p>
  4421  A send statement sends a value on a channel.
  4422  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4423  the channel direction must permit send operations,
  4424  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4425  to the channel's element type.
  4426  </p>
  4427  
  4428  <pre class="ebnf">
  4429  SendStmt = Channel "&lt;-" Expression .
  4430  Channel  = Expression .
  4431  </pre>
  4432  
  4433  <p>
  4434  Both the channel and the value expression are evaluated before communication
  4435  begins. Communication blocks until the send can proceed.
  4436  A send on an unbuffered channel can proceed if a receiver is ready.
  4437  A send on a buffered channel can proceed if there is room in the buffer.
  4438  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4439  A send on a <code>nil</code> channel blocks forever.
  4440  </p>
  4441  
  4442  <pre>
  4443  ch &lt;- 3  // send value 3 to channel ch
  4444  </pre>
  4445  
  4446  
  4447  <h3 id="IncDec_statements">IncDec statements</h3>
  4448  
  4449  <p>
  4450  The "++" and "--" statements increment or decrement their operands
  4451  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4452  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4453  or a map index expression.
  4454  </p>
  4455  
  4456  <pre class="ebnf">
  4457  IncDecStmt = Expression ( "++" | "--" ) .
  4458  </pre>
  4459  
  4460  <p>
  4461  The following <a href="#Assignments">assignment statements</a> are semantically
  4462  equivalent:
  4463  </p>
  4464  
  4465  <pre class="grammar">
  4466  IncDec statement    Assignment
  4467  x++                 x += 1
  4468  x--                 x -= 1
  4469  </pre>
  4470  
  4471  
  4472  <h3 id="Assignments">Assignments</h3>
  4473  
  4474  <pre class="ebnf">
  4475  Assignment = ExpressionList assign_op ExpressionList .
  4476  
  4477  assign_op = [ add_op | mul_op ] "=" .
  4478  </pre>
  4479  
  4480  <p>
  4481  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4482  a map index expression, or (for <code>=</code> assignments only) the
  4483  <a href="#Blank_identifier">blank identifier</a>.
  4484  Operands may be parenthesized.
  4485  </p>
  4486  
  4487  <pre>
  4488  x = 1
  4489  *p = f()
  4490  a[i] = 23
  4491  (k) = &lt;-ch  // same as: k = &lt;-ch
  4492  </pre>
  4493  
  4494  <p>
  4495  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4496  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4497  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4498  <code>(y)</code> but evaluates <code>x</code>
  4499  only once.  The <i>op</i><code>=</code> construct is a single token.
  4500  In assignment operations, both the left- and right-hand expression lists
  4501  must contain exactly one single-valued expression, and the left-hand
  4502  expression must not be the blank identifier.
  4503  </p>
  4504  
  4505  <pre>
  4506  a[i] &lt;&lt;= 2
  4507  i &amp;^= 1&lt;&lt;n
  4508  </pre>
  4509  
  4510  <p>
  4511  A tuple assignment assigns the individual elements of a multi-valued
  4512  operation to a list of variables.  There are two forms.  In the
  4513  first, the right hand operand is a single multi-valued expression
  4514  such as a function call, a <a href="#Channel_types">channel</a> or
  4515  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4516  The number of operands on the left
  4517  hand side must match the number of values.  For instance, if
  4518  <code>f</code> is a function returning two values,
  4519  </p>
  4520  
  4521  <pre>
  4522  x, y = f()
  4523  </pre>
  4524  
  4525  <p>
  4526  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4527  In the second form, the number of operands on the left must equal the number
  4528  of expressions on the right, each of which must be single-valued, and the
  4529  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4530  operand on the left:
  4531  </p>
  4532  
  4533  <pre>
  4534  one, two, three = '一', '二', '三'
  4535  </pre>
  4536  
  4537  <p>
  4538  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4539  ignore right-hand side values in an assignment:
  4540  </p>
  4541  
  4542  <pre>
  4543  _ = x       // evaluate x but ignore it
  4544  x, _ = f()  // evaluate f() but ignore second result value
  4545  </pre>
  4546  
  4547  <p>
  4548  The assignment proceeds in two phases.
  4549  First, the operands of <a href="#Index_expressions">index expressions</a>
  4550  and <a href="#Address_operators">pointer indirections</a>
  4551  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4552  on the left and the expressions on the right are all
  4553  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4554  Second, the assignments are carried out in left-to-right order.
  4555  </p>
  4556  
  4557  <pre>
  4558  a, b = b, a  // exchange a and b
  4559  
  4560  x := []int{1, 2, 3}
  4561  i := 0
  4562  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4563  
  4564  i = 0
  4565  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4566  
  4567  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4568  
  4569  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4570  
  4571  type Point struct { x, y int }
  4572  var p *Point
  4573  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4574  
  4575  i = 2
  4576  x = []int{3, 5, 7}
  4577  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4578  	break
  4579  }
  4580  // after this loop, i == 0 and x == []int{3, 5, 3}
  4581  </pre>
  4582  
  4583  <p>
  4584  In assignments, each value must be <a href="#Assignability">assignable</a>
  4585  to the type of the operand to which it is assigned, with the following special cases:
  4586  </p>
  4587  
  4588  <ol>
  4589  <li>
  4590  	Any typed value may be assigned to the blank identifier.
  4591  </li>
  4592  
  4593  <li>
  4594  	If an untyped constant
  4595  	is assigned to a variable of interface type or the blank identifier,
  4596  	the constant is first <a href="#Conversions">converted</a> to its
  4597  	 <a href="#Constants">default type</a>.
  4598  </li>
  4599  
  4600  <li>
  4601  	If an untyped boolean value is assigned to a variable of interface type or
  4602  	the blank identifier, it is first converted to type <code>bool</code>.
  4603  </li>
  4604  </ol>
  4605  
  4606  <h3 id="If_statements">If statements</h3>
  4607  
  4608  <p>
  4609  "If" statements specify the conditional execution of two branches
  4610  according to the value of a boolean expression.  If the expression
  4611  evaluates to true, the "if" branch is executed, otherwise, if
  4612  present, the "else" branch is executed.
  4613  </p>
  4614  
  4615  <pre class="ebnf">
  4616  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4617  </pre>
  4618  
  4619  <pre>
  4620  if x &gt; max {
  4621  	x = max
  4622  }
  4623  </pre>
  4624  
  4625  <p>
  4626  The expression may be preceded by a simple statement, which
  4627  executes before the expression is evaluated.
  4628  </p>
  4629  
  4630  <pre>
  4631  if x := f(); x &lt; y {
  4632  	return x
  4633  } else if x &gt; z {
  4634  	return z
  4635  } else {
  4636  	return y
  4637  }
  4638  </pre>
  4639  
  4640  
  4641  <h3 id="Switch_statements">Switch statements</h3>
  4642  
  4643  <p>
  4644  "Switch" statements provide multi-way execution.
  4645  An expression or type specifier is compared to the "cases"
  4646  inside the "switch" to determine which branch
  4647  to execute.
  4648  </p>
  4649  
  4650  <pre class="ebnf">
  4651  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4652  </pre>
  4653  
  4654  <p>
  4655  There are two forms: expression switches and type switches.
  4656  In an expression switch, the cases contain expressions that are compared
  4657  against the value of the switch expression.
  4658  In a type switch, the cases contain types that are compared against the
  4659  type of a specially annotated switch expression.
  4660  The switch expression is evaluated exactly once in a switch statement.
  4661  </p>
  4662  
  4663  <h4 id="Expression_switches">Expression switches</h4>
  4664  
  4665  <p>
  4666  In an expression switch,
  4667  the switch expression is evaluated and
  4668  the case expressions, which need not be constants,
  4669  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4670  switch expression
  4671  triggers execution of the statements of the associated case;
  4672  the other cases are skipped.
  4673  If no case matches and there is a "default" case,
  4674  its statements are executed.
  4675  There can be at most one default case and it may appear anywhere in the
  4676  "switch" statement.
  4677  A missing switch expression is equivalent to the boolean value
  4678  <code>true</code>.
  4679  </p>
  4680  
  4681  <pre class="ebnf">
  4682  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4683  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4684  ExprSwitchCase = "case" ExpressionList | "default" .
  4685  </pre>
  4686  
  4687  <p>
  4688  If the switch expression evaluates to an untyped constant, it is first
  4689  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4690  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4691  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4692  </p>
  4693  
  4694  <p>
  4695  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4696  to the type of the switch expression.
  4697  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4698  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4699  </p>
  4700  
  4701  <p>
  4702  In other words, the switch expression is treated as if it were used to declare and
  4703  initialize a temporary variable <code>t</code> without explicit type; it is that
  4704  value of <code>t</code> against which each case expression <code>x</code> is tested
  4705  for equality.
  4706  </p>
  4707  
  4708  <p>
  4709  In a case or default clause, the last non-empty statement
  4710  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4711  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4712  indicate that control should flow from the end of this clause to
  4713  the first statement of the next clause.
  4714  Otherwise control flows to the end of the "switch" statement.
  4715  A "fallthrough" statement may appear as the last statement of all
  4716  but the last clause of an expression switch.
  4717  </p>
  4718  
  4719  <p>
  4720  The switch expression may be preceded by a simple statement, which
  4721  executes before the expression is evaluated.
  4722  </p>
  4723  
  4724  <pre>
  4725  switch tag {
  4726  default: s3()
  4727  case 0, 1, 2, 3: s1()
  4728  case 4, 5, 6, 7: s2()
  4729  }
  4730  
  4731  switch x := f(); {  // missing switch expression means "true"
  4732  case x &lt; 0: return -x
  4733  default: return x
  4734  }
  4735  
  4736  switch {
  4737  case x &lt; y: f1()
  4738  case x &lt; z: f2()
  4739  case x == 4: f3()
  4740  }
  4741  </pre>
  4742  
  4743  <p>
  4744  Implementation restriction: A compiler may disallow multiple case
  4745  expressions evaluating to the same constant.
  4746  For instance, the current compilers disallow duplicate integer,
  4747  floating point, or string constants in case expressions.
  4748  </p>
  4749  
  4750  <h4 id="Type_switches">Type switches</h4>
  4751  
  4752  <p>
  4753  A type switch compares types rather than values. It is otherwise similar
  4754  to an expression switch. It is marked by a special switch expression that
  4755  has the form of a <a href="#Type_assertions">type assertion</a>
  4756  using the reserved word <code>type</code> rather than an actual type:
  4757  </p>
  4758  
  4759  <pre>
  4760  switch x.(type) {
  4761  // cases
  4762  }
  4763  </pre>
  4764  
  4765  <p>
  4766  Cases then match actual types <code>T</code> against the dynamic type of the
  4767  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4768  <a href="#Interface_types">interface type</a>, and each non-interface type
  4769  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4770  The types listed in the cases of a type switch must all be
  4771  <a href="#Type_identity">different</a>.
  4772  </p>
  4773  
  4774  <pre class="ebnf">
  4775  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4776  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4777  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4778  TypeSwitchCase  = "case" TypeList | "default" .
  4779  TypeList        = Type { "," Type } .
  4780  </pre>
  4781  
  4782  <p>
  4783  The TypeSwitchGuard may include a
  4784  <a href="#Short_variable_declarations">short variable declaration</a>.
  4785  When that form is used, the variable is declared at the end of the
  4786  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4787  In clauses with a case listing exactly one type, the variable
  4788  has that type; otherwise, the variable has the type of the expression
  4789  in the TypeSwitchGuard.
  4790  </p>
  4791  
  4792  <p>
  4793  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4794  that case is used when the expression in the TypeSwitchGuard
  4795  is a <code>nil</code> interface value.
  4796  There may be at most one <code>nil</code> case.
  4797  </p>
  4798  
  4799  <p>
  4800  Given an expression <code>x</code> of type <code>interface{}</code>,
  4801  the following type switch:
  4802  </p>
  4803  
  4804  <pre>
  4805  switch i := x.(type) {
  4806  case nil:
  4807  	printString("x is nil")                // type of i is type of x (interface{})
  4808  case int:
  4809  	printInt(i)                            // type of i is int
  4810  case float64:
  4811  	printFloat64(i)                        // type of i is float64
  4812  case func(int) float64:
  4813  	printFunction(i)                       // type of i is func(int) float64
  4814  case bool, string:
  4815  	printString("type is bool or string")  // type of i is type of x (interface{})
  4816  default:
  4817  	printString("don't know the type")     // type of i is type of x (interface{})
  4818  }
  4819  </pre>
  4820  
  4821  <p>
  4822  could be rewritten:
  4823  </p>
  4824  
  4825  <pre>
  4826  v := x  // x is evaluated exactly once
  4827  if v == nil {
  4828  	i := v                                 // type of i is type of x (interface{})
  4829  	printString("x is nil")
  4830  } else if i, isInt := v.(int); isInt {
  4831  	printInt(i)                            // type of i is int
  4832  } else if i, isFloat64 := v.(float64); isFloat64 {
  4833  	printFloat64(i)                        // type of i is float64
  4834  } else if i, isFunc := v.(func(int) float64); isFunc {
  4835  	printFunction(i)                       // type of i is func(int) float64
  4836  } else {
  4837  	_, isBool := v.(bool)
  4838  	_, isString := v.(string)
  4839  	if isBool || isString {
  4840  		i := v                         // type of i is type of x (interface{})
  4841  		printString("type is bool or string")
  4842  	} else {
  4843  		i := v                         // type of i is type of x (interface{})
  4844  		printString("don't know the type")
  4845  	}
  4846  }
  4847  </pre>
  4848  
  4849  <p>
  4850  The type switch guard may be preceded by a simple statement, which
  4851  executes before the guard is evaluated.
  4852  </p>
  4853  
  4854  <p>
  4855  The "fallthrough" statement is not permitted in a type switch.
  4856  </p>
  4857  
  4858  <h3 id="For_statements">For statements</h3>
  4859  
  4860  <p>
  4861  A "for" statement specifies repeated execution of a block. There are three forms:
  4862  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4863  </p>
  4864  
  4865  <pre class="ebnf">
  4866  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4867  Condition = Expression .
  4868  </pre>
  4869  
  4870  <h4 id="For_condition">For statements with single condition</h4>
  4871  
  4872  <p>
  4873  In its simplest form, a "for" statement specifies the repeated execution of
  4874  a block as long as a boolean condition evaluates to true.
  4875  The condition is evaluated before each iteration.
  4876  If the condition is absent, it is equivalent to the boolean value
  4877  <code>true</code>.
  4878  </p>
  4879  
  4880  <pre>
  4881  for a &lt; b {
  4882  	a *= 2
  4883  }
  4884  </pre>
  4885  
  4886  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4887  
  4888  <p>
  4889  A "for" statement with a ForClause is also controlled by its condition, but
  4890  additionally it may specify an <i>init</i>
  4891  and a <i>post</i> statement, such as an assignment,
  4892  an increment or decrement statement. The init statement may be a
  4893  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4894  Variables declared by the init statement are re-used in each iteration.
  4895  </p>
  4896  
  4897  <pre class="ebnf">
  4898  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4899  InitStmt = SimpleStmt .
  4900  PostStmt = SimpleStmt .
  4901  </pre>
  4902  
  4903  <pre>
  4904  for i := 0; i &lt; 10; i++ {
  4905  	f(i)
  4906  }
  4907  </pre>
  4908  
  4909  <p>
  4910  If non-empty, the init statement is executed once before evaluating the
  4911  condition for the first iteration;
  4912  the post statement is executed after each execution of the block (and
  4913  only if the block was executed).
  4914  Any element of the ForClause may be empty but the
  4915  <a href="#Semicolons">semicolons</a> are
  4916  required unless there is only a condition.
  4917  If the condition is absent, it is equivalent to the boolean value
  4918  <code>true</code>.
  4919  </p>
  4920  
  4921  <pre>
  4922  for cond { S() }    is the same as    for ; cond ; { S() }
  4923  for      { S() }    is the same as    for true     { S() }
  4924  </pre>
  4925  
  4926  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  4927  
  4928  <p>
  4929  A "for" statement with a "range" clause
  4930  iterates through all entries of an array, slice, string or map,
  4931  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4932  to corresponding <i>iteration variables</i> if present and then executes the block.
  4933  </p>
  4934  
  4935  <pre class="ebnf">
  4936  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4937  </pre>
  4938  
  4939  <p>
  4940  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4941  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4942  <a href="#Receive_operator">receive operations</a>.
  4943  As with an assignment, if present the operands on the left must be
  4944  <a href="#Address_operators">addressable</a> or map index expressions; they
  4945  denote the iteration variables. If the range expression is a channel, at most
  4946  one iteration variable is permitted, otherwise there may be up to two.
  4947  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4948  the range clause is equivalent to the same clause without that identifier.
  4949  </p>
  4950  
  4951  <p>
  4952  The range expression is evaluated once before beginning the loop,
  4953  with one exception: if the range expression is an array or a pointer to an array
  4954  and at most one iteration variable is present, only the range expression's
  4955  length is evaluated; if that length is constant,
  4956  <a href="#Length_and_capacity">by definition</a>
  4957  the range expression itself will not be evaluated.
  4958  </p>
  4959  
  4960  <p>
  4961  Function calls on the left are evaluated once per iteration.
  4962  For each iteration, iteration values are produced as follows
  4963  if the respective iteration variables are present:
  4964  </p>
  4965  
  4966  <pre class="grammar">
  4967  Range expression                          1st value          2nd value
  4968  
  4969  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4970  string          s  string type            index    i  int    see below  rune
  4971  map             m  map[K]V                key      k  K      m[k]       V
  4972  channel         c  chan E, &lt;-chan E       element  e  E
  4973  </pre>
  4974  
  4975  <ol>
  4976  <li>
  4977  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4978  values are produced in increasing order, starting at element index 0.
  4979  If at most one iteration variable is present, the range loop produces
  4980  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4981  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4982  </li>
  4983  
  4984  <li>
  4985  For a string value, the "range" clause iterates over the Unicode code points
  4986  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4987  index of the first byte of successive UTF-8-encoded code points in the string,
  4988  and the second value, of type <code>rune</code>, will be the value of
  4989  the corresponding code point.  If the iteration encounters an invalid
  4990  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4991  the Unicode replacement character, and the next iteration will advance
  4992  a single byte in the string.
  4993  </li>
  4994  
  4995  <li>
  4996  The iteration order over maps is not specified
  4997  and is not guaranteed to be the same from one iteration to the next.
  4998  If map entries that have not yet been reached are removed during iteration,
  4999  the corresponding iteration values will not be produced. If map entries are
  5000  created during iteration, that entry may be produced during the iteration or
  5001  may be skipped. The choice may vary for each entry created and from one
  5002  iteration to the next.
  5003  If the map is <code>nil</code>, the number of iterations is 0.
  5004  </li>
  5005  
  5006  <li>
  5007  For channels, the iteration values produced are the successive values sent on
  5008  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5009  is <code>nil</code>, the range expression blocks forever.
  5010  </li>
  5011  </ol>
  5012  
  5013  <p>
  5014  The iteration values are assigned to the respective
  5015  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5016  </p>
  5017  
  5018  <p>
  5019  The iteration variables may be declared by the "range" clause using a form of
  5020  <a href="#Short_variable_declarations">short variable declaration</a>
  5021  (<code>:=</code>).
  5022  In this case their types are set to the types of the respective iteration values
  5023  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5024  statement; they are re-used in each iteration.
  5025  If the iteration variables are declared outside the "for" statement,
  5026  after execution their values will be those of the last iteration.
  5027  </p>
  5028  
  5029  <pre>
  5030  var testdata *struct {
  5031  	a *[7]int
  5032  }
  5033  for i, _ := range testdata.a {
  5034  	// testdata.a is never evaluated; len(testdata.a) is constant
  5035  	// i ranges from 0 to 6
  5036  	f(i)
  5037  }
  5038  
  5039  var a [10]string
  5040  for i, s := range a {
  5041  	// type of i is int
  5042  	// type of s is string
  5043  	// s == a[i]
  5044  	g(i, s)
  5045  }
  5046  
  5047  var key string
  5048  var val interface {}  // value type of m is assignable to val
  5049  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5050  for key, val = range m {
  5051  	h(key, val)
  5052  }
  5053  // key == last map key encountered in iteration
  5054  // val == map[key]
  5055  
  5056  var ch chan Work = producer()
  5057  for w := range ch {
  5058  	doWork(w)
  5059  }
  5060  
  5061  // empty a channel
  5062  for range ch {}
  5063  </pre>
  5064  
  5065  
  5066  <h3 id="Go_statements">Go statements</h3>
  5067  
  5068  <p>
  5069  A "go" statement starts the execution of a function call
  5070  as an independent concurrent thread of control, or <i>goroutine</i>,
  5071  within the same address space.
  5072  </p>
  5073  
  5074  <pre class="ebnf">
  5075  GoStmt = "go" Expression .
  5076  </pre>
  5077  
  5078  <p>
  5079  The expression must be a function or method call; it cannot be parenthesized.
  5080  Calls of built-in functions are restricted as for
  5081  <a href="#Expression_statements">expression statements</a>.
  5082  </p>
  5083  
  5084  <p>
  5085  The function value and parameters are
  5086  <a href="#Calls">evaluated as usual</a>
  5087  in the calling goroutine, but
  5088  unlike with a regular call, program execution does not wait
  5089  for the invoked function to complete.
  5090  Instead, the function begins executing independently
  5091  in a new goroutine.
  5092  When the function terminates, its goroutine also terminates.
  5093  If the function has any return values, they are discarded when the
  5094  function completes.
  5095  </p>
  5096  
  5097  <pre>
  5098  go Server()
  5099  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  5100  </pre>
  5101  
  5102  
  5103  <h3 id="Select_statements">Select statements</h3>
  5104  
  5105  <p>
  5106  A "select" statement chooses which of a set of possible
  5107  <a href="#Send_statements">send</a> or
  5108  <a href="#Receive_operator">receive</a>
  5109  operations will proceed.
  5110  It looks similar to a
  5111  <a href="#Switch_statements">"switch"</a> statement but with the
  5112  cases all referring to communication operations.
  5113  </p>
  5114  
  5115  <pre class="ebnf">
  5116  SelectStmt = "select" "{" { CommClause } "}" .
  5117  CommClause = CommCase ":" StatementList .
  5118  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5119  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5120  RecvExpr   = Expression .
  5121  </pre>
  5122  
  5123  <p>
  5124  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5125  two variables, which may be declared using a
  5126  <a href="#Short_variable_declarations">short variable declaration</a>.
  5127  The RecvExpr must be a (possibly parenthesized) receive operation.
  5128  There can be at most one default case and it may appear anywhere
  5129  in the list of cases.
  5130  </p>
  5131  
  5132  <p>
  5133  Execution of a "select" statement proceeds in several steps:
  5134  </p>
  5135  
  5136  <ol>
  5137  <li>
  5138  For all the cases in the statement, the channel operands of receive operations
  5139  and the channel and right-hand-side expressions of send statements are
  5140  evaluated exactly once, in source order, upon entering the "select" statement.
  5141  The result is a set of channels to receive from or send to,
  5142  and the corresponding values to send.
  5143  Any side effects in that evaluation will occur irrespective of which (if any)
  5144  communication operation is selected to proceed.
  5145  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5146  or assignment are not yet evaluated.
  5147  </li>
  5148  
  5149  <li>
  5150  If one or more of the communications can proceed,
  5151  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5152  Otherwise, if there is a default case, that case is chosen.
  5153  If there is no default case, the "select" statement blocks until
  5154  at least one of the communications can proceed.
  5155  </li>
  5156  
  5157  <li>
  5158  Unless the selected case is the default case, the respective communication
  5159  operation is executed.
  5160  </li>
  5161  
  5162  <li>
  5163  If the selected case is a RecvStmt with a short variable declaration or
  5164  an assignment, the left-hand side expressions are evaluated and the
  5165  received value (or values) are assigned.
  5166  </li>
  5167  
  5168  <li>
  5169  The statement list of the selected case is executed.
  5170  </li>
  5171  </ol>
  5172  
  5173  <p>
  5174  Since communication on <code>nil</code> channels can never proceed,
  5175  a select with only <code>nil</code> channels and no default case blocks forever.
  5176  </p>
  5177  
  5178  <pre>
  5179  var a []int
  5180  var c, c1, c2, c3, c4 chan int
  5181  var i1, i2 int
  5182  select {
  5183  case i1 = &lt;-c1:
  5184  	print("received ", i1, " from c1\n")
  5185  case c2 &lt;- i2:
  5186  	print("sent ", i2, " to c2\n")
  5187  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5188  	if ok {
  5189  		print("received ", i3, " from c3\n")
  5190  	} else {
  5191  		print("c3 is closed\n")
  5192  	}
  5193  case a[f()] = &lt;-c4:
  5194  	// same as:
  5195  	// case t := &lt;-c4
  5196  	//	a[f()] = t
  5197  default:
  5198  	print("no communication\n")
  5199  }
  5200  
  5201  for {  // send random sequence of bits to c
  5202  	select {
  5203  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5204  	case c &lt;- 1:
  5205  	}
  5206  }
  5207  
  5208  select {}  // block forever
  5209  </pre>
  5210  
  5211  
  5212  <h3 id="Return_statements">Return statements</h3>
  5213  
  5214  <p>
  5215  A "return" statement in a function <code>F</code> terminates the execution
  5216  of <code>F</code>, and optionally provides one or more result values.
  5217  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5218  are executed before <code>F</code> returns to its caller.
  5219  </p>
  5220  
  5221  <pre class="ebnf">
  5222  ReturnStmt = "return" [ ExpressionList ] .
  5223  </pre>
  5224  
  5225  <p>
  5226  In a function without a result type, a "return" statement must not
  5227  specify any result values.
  5228  </p>
  5229  <pre>
  5230  func noResult() {
  5231  	return
  5232  }
  5233  </pre>
  5234  
  5235  <p>
  5236  There are three ways to return values from a function with a result
  5237  type:
  5238  </p>
  5239  
  5240  <ol>
  5241  	<li>The return value or values may be explicitly listed
  5242  		in the "return" statement. Each expression must be single-valued
  5243  		and <a href="#Assignability">assignable</a>
  5244  		to the corresponding element of the function's result type.
  5245  <pre>
  5246  func simpleF() int {
  5247  	return 2
  5248  }
  5249  
  5250  func complexF1() (re float64, im float64) {
  5251  	return -7.0, -4.0
  5252  }
  5253  </pre>
  5254  	</li>
  5255  	<li>The expression list in the "return" statement may be a single
  5256  		call to a multi-valued function. The effect is as if each value
  5257  		returned from that function were assigned to a temporary
  5258  		variable with the type of the respective value, followed by a
  5259  		"return" statement listing these variables, at which point the
  5260  		rules of the previous case apply.
  5261  <pre>
  5262  func complexF2() (re float64, im float64) {
  5263  	return complexF1()
  5264  }
  5265  </pre>
  5266  	</li>
  5267  	<li>The expression list may be empty if the function's result
  5268  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5269  		The result parameters act as ordinary local variables
  5270  		and the function may assign values to them as necessary.
  5271  		The "return" statement returns the values of these variables.
  5272  <pre>
  5273  func complexF3() (re float64, im float64) {
  5274  	re = 7.0
  5275  	im = 4.0
  5276  	return
  5277  }
  5278  
  5279  func (devnull) Write(p []byte) (n int, _ error) {
  5280  	n = len(p)
  5281  	return
  5282  }
  5283  </pre>
  5284  	</li>
  5285  </ol>
  5286  
  5287  <p>
  5288  Regardless of how they are declared, all the result values are initialized to
  5289  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5290  function. A "return" statement that specifies results sets the result parameters before
  5291  any deferred functions are executed.
  5292  </p>
  5293  
  5294  <p>
  5295  Implementation restriction: A compiler may disallow an empty expression list
  5296  in a "return" statement if a different entity (constant, type, or variable)
  5297  with the same name as a result parameter is in
  5298  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5299  </p>
  5300  
  5301  <pre>
  5302  func f(n int) (res int, err error) {
  5303  	if _, err := f(n-1); err != nil {
  5304  		return  // invalid return statement: err is shadowed
  5305  	}
  5306  	return
  5307  }
  5308  </pre>
  5309  
  5310  <h3 id="Break_statements">Break statements</h3>
  5311  
  5312  <p>
  5313  A "break" statement terminates execution of the innermost
  5314  <a href="#For_statements">"for"</a>,
  5315  <a href="#Switch_statements">"switch"</a>, or
  5316  <a href="#Select_statements">"select"</a> statement
  5317  within the same function.
  5318  </p>
  5319  
  5320  <pre class="ebnf">
  5321  BreakStmt = "break" [ Label ] .
  5322  </pre>
  5323  
  5324  <p>
  5325  If there is a label, it must be that of an enclosing
  5326  "for", "switch", or "select" statement,
  5327  and that is the one whose execution terminates.
  5328  </p>
  5329  
  5330  <pre>
  5331  OuterLoop:
  5332  	for i = 0; i &lt; n; i++ {
  5333  		for j = 0; j &lt; m; j++ {
  5334  			switch a[i][j] {
  5335  			case nil:
  5336  				state = Error
  5337  				break OuterLoop
  5338  			case item:
  5339  				state = Found
  5340  				break OuterLoop
  5341  			}
  5342  		}
  5343  	}
  5344  </pre>
  5345  
  5346  <h3 id="Continue_statements">Continue statements</h3>
  5347  
  5348  <p>
  5349  A "continue" statement begins the next iteration of the
  5350  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5351  The "for" loop must be within the same function.
  5352  </p>
  5353  
  5354  <pre class="ebnf">
  5355  ContinueStmt = "continue" [ Label ] .
  5356  </pre>
  5357  
  5358  <p>
  5359  If there is a label, it must be that of an enclosing
  5360  "for" statement, and that is the one whose execution
  5361  advances.
  5362  </p>
  5363  
  5364  <pre>
  5365  RowLoop:
  5366  	for y, row := range rows {
  5367  		for x, data := range row {
  5368  			if data == endOfRow {
  5369  				continue RowLoop
  5370  			}
  5371  			row[x] = data + bias(x, y)
  5372  		}
  5373  	}
  5374  </pre>
  5375  
  5376  <h3 id="Goto_statements">Goto statements</h3>
  5377  
  5378  <p>
  5379  A "goto" statement transfers control to the statement with the corresponding label
  5380  within the same function.
  5381  </p>
  5382  
  5383  <pre class="ebnf">
  5384  GotoStmt = "goto" Label .
  5385  </pre>
  5386  
  5387  <pre>
  5388  goto Error
  5389  </pre>
  5390  
  5391  <p>
  5392  Executing the "goto" statement must not cause any variables to come into
  5393  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5394  For instance, this example:
  5395  </p>
  5396  
  5397  <pre>
  5398  	goto L  // BAD
  5399  	v := 3
  5400  L:
  5401  </pre>
  5402  
  5403  <p>
  5404  is erroneous because the jump to label <code>L</code> skips
  5405  the creation of <code>v</code>.
  5406  </p>
  5407  
  5408  <p>
  5409  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5410  For instance, this example:
  5411  </p>
  5412  
  5413  <pre>
  5414  if n%2 == 1 {
  5415  	goto L1
  5416  }
  5417  for n &gt; 0 {
  5418  	f()
  5419  	n--
  5420  L1:
  5421  	f()
  5422  	n--
  5423  }
  5424  </pre>
  5425  
  5426  <p>
  5427  is erroneous because the label <code>L1</code> is inside
  5428  the "for" statement's block but the <code>goto</code> is not.
  5429  </p>
  5430  
  5431  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5432  
  5433  <p>
  5434  A "fallthrough" statement transfers control to the first statement of the
  5435  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5436  It may be used only as the final non-empty statement in such a clause.
  5437  </p>
  5438  
  5439  <pre class="ebnf">
  5440  FallthroughStmt = "fallthrough" .
  5441  </pre>
  5442  
  5443  
  5444  <h3 id="Defer_statements">Defer statements</h3>
  5445  
  5446  <p>
  5447  A "defer" statement invokes a function whose execution is deferred
  5448  to the moment the surrounding function returns, either because the
  5449  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5450  reached the end of its <a href="#Function_declarations">function body</a>,
  5451  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5452  </p>
  5453  
  5454  <pre class="ebnf">
  5455  DeferStmt = "defer" Expression .
  5456  </pre>
  5457  
  5458  <p>
  5459  The expression must be a function or method call; it cannot be parenthesized.
  5460  Calls of built-in functions are restricted as for
  5461  <a href="#Expression_statements">expression statements</a>.
  5462  </p>
  5463  
  5464  <p>
  5465  Each time a "defer" statement
  5466  executes, the function value and parameters to the call are
  5467  <a href="#Calls">evaluated as usual</a>
  5468  and saved anew but the actual function is not invoked.
  5469  Instead, deferred functions are invoked immediately before
  5470  the surrounding function returns, in the reverse order
  5471  they were deferred.
  5472  If a deferred function value evaluates
  5473  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5474  when the function is invoked, not when the "defer" statement is executed.
  5475  </p>
  5476  
  5477  <p>
  5478  For instance, if the deferred function is
  5479  a <a href="#Function_literals">function literal</a> and the surrounding
  5480  function has <a href="#Function_types">named result parameters</a> that
  5481  are in scope within the literal, the deferred function may access and modify
  5482  the result parameters before they are returned.
  5483  If the deferred function has any return values, they are discarded when
  5484  the function completes.
  5485  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5486  </p>
  5487  
  5488  <pre>
  5489  lock(l)
  5490  defer unlock(l)  // unlocking happens before surrounding function returns
  5491  
  5492  // prints 3 2 1 0 before surrounding function returns
  5493  for i := 0; i &lt;= 3; i++ {
  5494  	defer fmt.Print(i)
  5495  }
  5496  
  5497  // f returns 1
  5498  func f() (result int) {
  5499  	defer func() {
  5500  		result++
  5501  	}()
  5502  	return 0
  5503  }
  5504  </pre>
  5505  
  5506  <h2 id="Built-in_functions">Built-in functions</h2>
  5507  
  5508  <p>
  5509  Built-in functions are
  5510  <a href="#Predeclared_identifiers">predeclared</a>.
  5511  They are called like any other function but some of them
  5512  accept a type instead of an expression as the first argument.
  5513  </p>
  5514  
  5515  <p>
  5516  The built-in functions do not have standard Go types,
  5517  so they can only appear in <a href="#Calls">call expressions</a>;
  5518  they cannot be used as function values.
  5519  </p>
  5520  
  5521  <h3 id="Close">Close</h3>
  5522  
  5523  <p>
  5524  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5525  records that no more values will be sent on the channel.
  5526  It is an error if <code>c</code> is a receive-only channel.
  5527  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5528  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5529  After calling <code>close</code>, and after any previously
  5530  sent values have been received, receive operations will return
  5531  the zero value for the channel's type without blocking.
  5532  The multi-valued <a href="#Receive_operator">receive operation</a>
  5533  returns a received value along with an indication of whether the channel is closed.
  5534  </p>
  5535  
  5536  
  5537  <h3 id="Length_and_capacity">Length and capacity</h3>
  5538  
  5539  <p>
  5540  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5541  of various types and return a result of type <code>int</code>.
  5542  The implementation guarantees that the result always fits into an <code>int</code>.
  5543  </p>
  5544  
  5545  <pre class="grammar">
  5546  Call      Argument type    Result
  5547  
  5548  len(s)    string type      string length in bytes
  5549            [n]T, *[n]T      array length (== n)
  5550            []T              slice length
  5551            map[K]T          map length (number of defined keys)
  5552            chan T           number of elements queued in channel buffer
  5553  
  5554  cap(s)    [n]T, *[n]T      array length (== n)
  5555            []T              slice capacity
  5556            chan T           channel buffer capacity
  5557  </pre>
  5558  
  5559  <p>
  5560  The capacity of a slice is the number of elements for which there is
  5561  space allocated in the underlying array.
  5562  At any time the following relationship holds:
  5563  </p>
  5564  
  5565  <pre>
  5566  0 &lt;= len(s) &lt;= cap(s)
  5567  </pre>
  5568  
  5569  <p>
  5570  The length of a <code>nil</code> slice, map or channel is 0.
  5571  The capacity of a <code>nil</code> slice or channel is 0.
  5572  </p>
  5573  
  5574  <p>
  5575  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5576  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5577  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5578  or pointer to an array and the expression <code>s</code> does not contain
  5579  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5580  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5581  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5582  constant and <code>s</code> is evaluated.
  5583  </p>
  5584  
  5585  <pre>
  5586  const (
  5587  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5588  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5589  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5590  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5591  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5592  )
  5593  var z complex128
  5594  </pre>
  5595  
  5596  <h3 id="Allocation">Allocation</h3>
  5597  
  5598  <p>
  5599  The built-in function <code>new</code> takes a type <code>T</code>,
  5600  allocates storage for a <a href="#Variables">variable</a> of that type
  5601  at run time, and returns a value of type <code>*T</code>
  5602  <a href="#Pointer_types">pointing</a> to it.
  5603  The variable is initialized as described in the section on
  5604  <a href="#The_zero_value">initial values</a>.
  5605  </p>
  5606  
  5607  <pre class="grammar">
  5608  new(T)
  5609  </pre>
  5610  
  5611  <p>
  5612  For instance
  5613  </p>
  5614  
  5615  <pre>
  5616  type S struct { a int; b float64 }
  5617  new(S)
  5618  </pre>
  5619  
  5620  <p>
  5621  allocates storage for a variable of type <code>S</code>,
  5622  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5623  and returns a value of type <code>*S</code> containing the address
  5624  of the location.
  5625  </p>
  5626  
  5627  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5628  
  5629  <p>
  5630  The built-in function <code>make</code> takes a type <code>T</code>,
  5631  which must be a slice, map or channel type,
  5632  optionally followed by a type-specific list of expressions.
  5633  It returns a value of type <code>T</code> (not <code>*T</code>).
  5634  The memory is initialized as described in the section on
  5635  <a href="#The_zero_value">initial values</a>.
  5636  </p>
  5637  
  5638  <pre class="grammar">
  5639  Call             Type T     Result
  5640  
  5641  make(T, n)       slice      slice of type T with length n and capacity n
  5642  make(T, n, m)    slice      slice of type T with length n and capacity m
  5643  
  5644  make(T)          map        map of type T
  5645  make(T, n)       map        map of type T with initial space for n elements
  5646  
  5647  make(T)          channel    unbuffered channel of type T
  5648  make(T, n)       channel    buffered channel of type T, buffer size n
  5649  </pre>
  5650  
  5651  
  5652  <p>
  5653  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5654  A <a href="#Constants">constant</a> size argument must be non-negative and
  5655  representable by a value of type <code>int</code>.
  5656  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5657  <code>n</code> must be no larger than <code>m</code>.
  5658  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5659  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5660  </p>
  5661  
  5662  <pre>
  5663  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5664  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5665  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5666  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5667  c := make(chan int, 10)         // channel with a buffer size of 10
  5668  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5669  </pre>
  5670  
  5671  
  5672  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5673  
  5674  <p>
  5675  The built-in functions <code>append</code> and <code>copy</code> assist in
  5676  common slice operations.
  5677  For both functions, the result is independent of whether the memory referenced
  5678  by the arguments overlaps.
  5679  </p>
  5680  
  5681  <p>
  5682  The <a href="#Function_types">variadic</a> function <code>append</code>
  5683  appends zero or more values <code>x</code>
  5684  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5685  returns the resulting slice, also of type <code>S</code>.
  5686  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5687  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5688  <code>S</code> and the respective
  5689  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5690  As a special case, <code>append</code> also accepts a first argument
  5691  assignable to type <code>[]byte</code> with a second argument of
  5692  string type followed by <code>...</code>. This form appends the
  5693  bytes of the string.
  5694  </p>
  5695  
  5696  <pre class="grammar">
  5697  append(s S, x ...T) S  // T is the element type of S
  5698  </pre>
  5699  
  5700  <p>
  5701  If the capacity of <code>s</code> is not large enough to fit the additional
  5702  values, <code>append</code> allocates a new, sufficiently large underlying
  5703  array that fits both the existing slice elements and the additional values.
  5704  Otherwise, <code>append</code> re-uses the underlying array.
  5705  </p>
  5706  
  5707  <pre>
  5708  s0 := []int{0, 0}
  5709  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5710  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5711  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5712  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5713  
  5714  var t []interface{}
  5715  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5716  
  5717  var b []byte
  5718  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5719  </pre>
  5720  
  5721  <p>
  5722  The function <code>copy</code> copies slice elements from
  5723  a source <code>src</code> to a destination <code>dst</code> and returns the
  5724  number of elements copied.
  5725  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5726  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5727  The number of elements copied is the minimum of
  5728  <code>len(src)</code> and <code>len(dst)</code>.
  5729  As a special case, <code>copy</code> also accepts a destination argument assignable
  5730  to type <code>[]byte</code> with a source argument of a string type.
  5731  This form copies the bytes from the string into the byte slice.
  5732  </p>
  5733  
  5734  <pre class="grammar">
  5735  copy(dst, src []T) int
  5736  copy(dst []byte, src string) int
  5737  </pre>
  5738  
  5739  <p>
  5740  Examples:
  5741  </p>
  5742  
  5743  <pre>
  5744  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5745  var s = make([]int, 6)
  5746  var b = make([]byte, 5)
  5747  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5748  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5749  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5750  </pre>
  5751  
  5752  
  5753  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5754  
  5755  <p>
  5756  The built-in function <code>delete</code> removes the element with key
  5757  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5758  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5759  to the key type of <code>m</code>.
  5760  </p>
  5761  
  5762  <pre class="grammar">
  5763  delete(m, k)  // remove element m[k] from map m
  5764  </pre>
  5765  
  5766  <p>
  5767  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5768  does not exist, <code>delete</code> is a no-op.
  5769  </p>
  5770  
  5771  
  5772  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5773  
  5774  <p>
  5775  Three functions assemble and disassemble complex numbers.
  5776  The built-in function <code>complex</code> constructs a complex
  5777  value from a floating-point real and imaginary part, while
  5778  <code>real</code> and <code>imag</code>
  5779  extract the real and imaginary parts of a complex value.
  5780  </p>
  5781  
  5782  <pre class="grammar">
  5783  complex(realPart, imaginaryPart floatT) complexT
  5784  real(complexT) floatT
  5785  imag(complexT) floatT
  5786  </pre>
  5787  
  5788  <p>
  5789  The type of the arguments and return value correspond.
  5790  For <code>complex</code>, the two arguments must be of the same
  5791  floating-point type and the return type is the complex type
  5792  with the corresponding floating-point constituents:
  5793  <code>complex64</code> for <code>float32</code> arguments, and
  5794  <code>complex128</code> for <code>float64</code> arguments.
  5795  If one of the arguments evaluates to an untyped constant, it is first
  5796  <a href="#Conversions">converted</a> to the type of the other argument.
  5797  If both arguments evaluate to untyped constants, they must be non-complex
  5798  numbers or their imaginary parts must be zero, and the return value of
  5799  the function is an untyped complex constant.
  5800  </p>
  5801  
  5802  <p>
  5803  For <code>real</code> and <code>imag</code>, the argument must be
  5804  of complex type, and the return type is the corresponding floating-point
  5805  type: <code>float32</code> for a <code>complex64</code> argument, and
  5806  <code>float64</code> for a <code>complex128</code> argument.
  5807  If the argument evaluates to an untyped constant, it must be a number,
  5808  and the return value of the function is an untyped floating-point constant.
  5809  </p>
  5810  
  5811  <p>
  5812  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5813  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5814  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5815  </p>
  5816  
  5817  <p>
  5818  If the operands of these functions are all constants, the return
  5819  value is a constant.
  5820  </p>
  5821  
  5822  <pre>
  5823  var a = complex(2, -2)             // complex128
  5824  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5825  x := float32(math.Cos(math.Pi/2))  // float32
  5826  var c64 = complex(5, -x)           // complex64
  5827  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5828  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5829  var rl = real(c64)                 // float32
  5830  var im = imag(a)                   // float64
  5831  const c = imag(b)                  // untyped constant -1.4
  5832  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5833  </pre>
  5834  
  5835  <h3 id="Handling_panics">Handling panics</h3>
  5836  
  5837  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5838  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5839  and program-defined error conditions.
  5840  </p>
  5841  
  5842  <pre class="grammar">
  5843  func panic(interface{})
  5844  func recover() interface{}
  5845  </pre>
  5846  
  5847  <p>
  5848  While executing a function <code>F</code>,
  5849  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5850  terminates the execution of <code>F</code>.
  5851  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5852  are then executed as usual.
  5853  Next, any deferred functions run by <code>F's</code> caller are run,
  5854  and so on up to any deferred by the top-level function in the executing goroutine.
  5855  At that point, the program is terminated and the error
  5856  condition is reported, including the value of the argument to <code>panic</code>.
  5857  This termination sequence is called <i>panicking</i>.
  5858  </p>
  5859  
  5860  <pre>
  5861  panic(42)
  5862  panic("unreachable")
  5863  panic(Error("cannot parse"))
  5864  </pre>
  5865  
  5866  <p>
  5867  The <code>recover</code> function allows a program to manage behavior
  5868  of a panicking goroutine.
  5869  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5870  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5871  is executing.
  5872  When the running of deferred functions reaches <code>D</code>,
  5873  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5874  If <code>D</code> returns normally, without starting a new
  5875  <code>panic</code>, the panicking sequence stops. In that case,
  5876  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5877  is discarded, and normal execution resumes.
  5878  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5879  execution terminates by returning to its caller.
  5880  </p>
  5881  
  5882  <p>
  5883  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5884  </p>
  5885  <ul>
  5886  <li>
  5887  <code>panic</code>'s argument was <code>nil</code>;
  5888  </li>
  5889  <li>
  5890  the goroutine is not panicking;
  5891  </li>
  5892  <li>
  5893  <code>recover</code> was not called directly by a deferred function.
  5894  </li>
  5895  </ul>
  5896  
  5897  <p>
  5898  The <code>protect</code> function in the example below invokes
  5899  the function argument <code>g</code> and protects callers from
  5900  run-time panics raised by <code>g</code>.
  5901  </p>
  5902  
  5903  <pre>
  5904  func protect(g func()) {
  5905  	defer func() {
  5906  		log.Println("done")  // Println executes normally even if there is a panic
  5907  		if x := recover(); x != nil {
  5908  			log.Printf("run time panic: %v", x)
  5909  		}
  5910  	}()
  5911  	log.Println("start")
  5912  	g()
  5913  }
  5914  </pre>
  5915  
  5916  
  5917  <h3 id="Bootstrapping">Bootstrapping</h3>
  5918  
  5919  <p>
  5920  Current implementations provide several built-in functions useful during
  5921  bootstrapping. These functions are documented for completeness but are not
  5922  guaranteed to stay in the language. They do not return a result.
  5923  </p>
  5924  
  5925  <pre class="grammar">
  5926  Function   Behavior
  5927  
  5928  print      prints all arguments; formatting of arguments is implementation-specific
  5929  println    like print but prints spaces between arguments and a newline at the end
  5930  </pre>
  5931  
  5932  
  5933  <h2 id="Packages">Packages</h2>
  5934  
  5935  <p>
  5936  Go programs are constructed by linking together <i>packages</i>.
  5937  A package in turn is constructed from one or more source files
  5938  that together declare constants, types, variables and functions
  5939  belonging to the package and which are accessible in all files
  5940  of the same package. Those elements may be
  5941  <a href="#Exported_identifiers">exported</a> and used in another package.
  5942  </p>
  5943  
  5944  <h3 id="Source_file_organization">Source file organization</h3>
  5945  
  5946  <p>
  5947  Each source file consists of a package clause defining the package
  5948  to which it belongs, followed by a possibly empty set of import
  5949  declarations that declare packages whose contents it wishes to use,
  5950  followed by a possibly empty set of declarations of functions,
  5951  types, variables, and constants.
  5952  </p>
  5953  
  5954  <pre class="ebnf">
  5955  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5956  </pre>
  5957  
  5958  <h3 id="Package_clause">Package clause</h3>
  5959  
  5960  <p>
  5961  A package clause begins each source file and defines the package
  5962  to which the file belongs.
  5963  </p>
  5964  
  5965  <pre class="ebnf">
  5966  PackageClause  = "package" PackageName .
  5967  PackageName    = identifier .
  5968  </pre>
  5969  
  5970  <p>
  5971  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5972  </p>
  5973  
  5974  <pre>
  5975  package math
  5976  </pre>
  5977  
  5978  <p>
  5979  A set of files sharing the same PackageName form the implementation of a package.
  5980  An implementation may require that all source files for a package inhabit the same directory.
  5981  </p>
  5982  
  5983  <h3 id="Import_declarations">Import declarations</h3>
  5984  
  5985  <p>
  5986  An import declaration states that the source file containing the declaration
  5987  depends on functionality of the <i>imported</i> package
  5988  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5989  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5990  of that package.
  5991  The import names an identifier (PackageName) to be used for access and an ImportPath
  5992  that specifies the package to be imported.
  5993  </p>
  5994  
  5995  <pre class="ebnf">
  5996  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5997  ImportSpec       = [ "." | PackageName ] ImportPath .
  5998  ImportPath       = string_lit .
  5999  </pre>
  6000  
  6001  <p>
  6002  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6003  to access exported identifiers of the package within the importing source file.
  6004  It is declared in the <a href="#Blocks">file block</a>.
  6005  If the PackageName is omitted, it defaults to the identifier specified in the
  6006  <a href="#Package_clause">package clause</a> of the imported package.
  6007  If an explicit period (<code>.</code>) appears instead of a name, all the
  6008  package's exported identifiers declared in that package's
  6009  <a href="#Blocks">package block</a> will be declared in the importing source
  6010  file's file block and must be accessed without a qualifier.
  6011  </p>
  6012  
  6013  <p>
  6014  The interpretation of the ImportPath is implementation-dependent but
  6015  it is typically a substring of the full file name of the compiled
  6016  package and may be relative to a repository of installed packages.
  6017  </p>
  6018  
  6019  <p>
  6020  Implementation restriction: A compiler may restrict ImportPaths to
  6021  non-empty strings using only characters belonging to
  6022  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6023  L, M, N, P, and S general categories (the Graphic characters without
  6024  spaces) and may also exclude the characters
  6025  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6026  and the Unicode replacement character U+FFFD.
  6027  </p>
  6028  
  6029  <p>
  6030  Assume we have compiled a package containing the package clause
  6031  <code>package math</code>, which exports function <code>Sin</code>, and
  6032  installed the compiled package in the file identified by
  6033  <code>"lib/math"</code>.
  6034  This table illustrates how <code>Sin</code> is accessed in files
  6035  that import the package after the
  6036  various types of import declaration.
  6037  </p>
  6038  
  6039  <pre class="grammar">
  6040  Import declaration          Local name of Sin
  6041  
  6042  import   "lib/math"         math.Sin
  6043  import m "lib/math"         m.Sin
  6044  import . "lib/math"         Sin
  6045  </pre>
  6046  
  6047  <p>
  6048  An import declaration declares a dependency relation between
  6049  the importing and imported package.
  6050  It is illegal for a package to import itself, directly or indirectly,
  6051  or to directly import a package without
  6052  referring to any of its exported identifiers. To import a package solely for
  6053  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6054  identifier as explicit package name:
  6055  </p>
  6056  
  6057  <pre>
  6058  import _ "lib/math"
  6059  </pre>
  6060  
  6061  
  6062  <h3 id="An_example_package">An example package</h3>
  6063  
  6064  <p>
  6065  Here is a complete Go package that implements a concurrent prime sieve.
  6066  </p>
  6067  
  6068  <pre>
  6069  package main
  6070  
  6071  import "fmt"
  6072  
  6073  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6074  func generate(ch chan&lt;- int) {
  6075  	for i := 2; ; i++ {
  6076  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6077  	}
  6078  }
  6079  
  6080  // Copy the values from channel 'src' to channel 'dst',
  6081  // removing those divisible by 'prime'.
  6082  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6083  	for i := range src {  // Loop over values received from 'src'.
  6084  		if i%prime != 0 {
  6085  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6086  		}
  6087  	}
  6088  }
  6089  
  6090  // The prime sieve: Daisy-chain filter processes together.
  6091  func sieve() {
  6092  	ch := make(chan int)  // Create a new channel.
  6093  	go generate(ch)       // Start generate() as a subprocess.
  6094  	for {
  6095  		prime := &lt;-ch
  6096  		fmt.Print(prime, "\n")
  6097  		ch1 := make(chan int)
  6098  		go filter(ch, ch1, prime)
  6099  		ch = ch1
  6100  	}
  6101  }
  6102  
  6103  func main() {
  6104  	sieve()
  6105  }
  6106  </pre>
  6107  
  6108  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6109  
  6110  <h3 id="The_zero_value">The zero value</h3>
  6111  <p>
  6112  When storage is allocated for a <a href="#Variables">variable</a>,
  6113  either through a declaration or a call of <code>new</code>, or when
  6114  a new value is created, either through a composite literal or a call
  6115  of <code>make</code>,
  6116  and no explicit initialization is provided, the variable or value is
  6117  given a default value.  Each element of such a variable or value is
  6118  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6119  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6120  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6121  This initialization is done recursively, so for instance each element of an
  6122  array of structs will have its fields zeroed if no value is specified.
  6123  </p>
  6124  <p>
  6125  These two simple declarations are equivalent:
  6126  </p>
  6127  
  6128  <pre>
  6129  var i int
  6130  var i int = 0
  6131  </pre>
  6132  
  6133  <p>
  6134  After
  6135  </p>
  6136  
  6137  <pre>
  6138  type T struct { i int; f float64; next *T }
  6139  t := new(T)
  6140  </pre>
  6141  
  6142  <p>
  6143  the following holds:
  6144  </p>
  6145  
  6146  <pre>
  6147  t.i == 0
  6148  t.f == 0.0
  6149  t.next == nil
  6150  </pre>
  6151  
  6152  <p>
  6153  The same would also be true after
  6154  </p>
  6155  
  6156  <pre>
  6157  var t T
  6158  </pre>
  6159  
  6160  <h3 id="Package_initialization">Package initialization</h3>
  6161  
  6162  <p>
  6163  Within a package, package-level variables are initialized in
  6164  <i>declaration order</i> but after any of the variables
  6165  they <i>depend</i> on.
  6166  </p>
  6167  
  6168  <p>
  6169  More precisely, a package-level variable is considered <i>ready for
  6170  initialization</i> if it is not yet initialized and either has
  6171  no <a href="#Variable_declarations">initialization expression</a> or
  6172  its initialization expression has no dependencies on uninitialized variables.
  6173  Initialization proceeds by repeatedly initializing the next package-level
  6174  variable that is earliest in declaration order and ready for initialization,
  6175  until there are no variables ready for initialization.
  6176  </p>
  6177  
  6178  <p>
  6179  If any variables are still uninitialized when this
  6180  process ends, those variables are part of one or more initialization cycles,
  6181  and the program is not valid.
  6182  </p>
  6183  
  6184  <p>
  6185  The declaration order of variables declared in multiple files is determined
  6186  by the order in which the files are presented to the compiler: Variables
  6187  declared in the first file are declared before any of the variables declared
  6188  in the second file, and so on.
  6189  </p>
  6190  
  6191  <p>
  6192  Dependency analysis does not rely on the actual values of the
  6193  variables, only on lexical <i>references</i> to them in the source,
  6194  analyzed transitively. For instance, if a variable <code>x</code>'s
  6195  initialization expression refers to a function whose body refers to
  6196  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6197  Specifically:
  6198  </p>
  6199  
  6200  <ul>
  6201  <li>
  6202  A reference to a variable or function is an identifier denoting that
  6203  variable or function.
  6204  </li>
  6205  
  6206  <li>
  6207  A reference to a method <code>m</code> is a
  6208  <a href="#Method_values">method value</a> or
  6209  <a href="#Method_expressions">method expression</a> of the form
  6210  <code>t.m</code>, where the (static) type of <code>t</code> is
  6211  not an interface type, and the method <code>m</code> is in the
  6212  <a href="#Method_sets">method set</a> of <code>t</code>.
  6213  It is immaterial whether the resulting function value
  6214  <code>t.m</code> is invoked.
  6215  </li>
  6216  
  6217  <li>
  6218  A variable, function, or method <code>x</code> depends on a variable
  6219  <code>y</code> if <code>x</code>'s initialization expression or body
  6220  (for functions and methods) contains a reference to <code>y</code>
  6221  or to a function or method that depends on <code>y</code>.
  6222  </li>
  6223  </ul>
  6224  
  6225  <p>
  6226  Dependency analysis is performed per package; only references referring
  6227  to variables, functions, and methods declared in the current package
  6228  are considered.
  6229  </p>
  6230  
  6231  <p>
  6232  For example, given the declarations
  6233  </p>
  6234  
  6235  <pre>
  6236  var (
  6237  	a = c + b
  6238  	b = f()
  6239  	c = f()
  6240  	d = 3
  6241  )
  6242  
  6243  func f() int {
  6244  	d++
  6245  	return d
  6246  }
  6247  </pre>
  6248  
  6249  <p>
  6250  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6251  </p>
  6252  
  6253  <p>
  6254  Variables may also be initialized using functions named <code>init</code>
  6255  declared in the package block, with no arguments and no result parameters.
  6256  </p>
  6257  
  6258  <pre>
  6259  func init() { … }
  6260  </pre>
  6261  
  6262  <p>
  6263  Multiple such functions may be defined per package, even within a single
  6264  source file. In the package block, the <code>init</code> identifier can
  6265  be used only to declare <code>init</code> functions, yet the identifier
  6266  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6267  <code>init</code> functions cannot be referred to from anywhere
  6268  in a program.
  6269  </p>
  6270  
  6271  <p>
  6272  A package with no imports is initialized by assigning initial values
  6273  to all its package-level variables followed by calling all <code>init</code>
  6274  functions in the order they appear in the source, possibly in multiple files,
  6275  as presented to the compiler.
  6276  If a package has imports, the imported packages are initialized
  6277  before initializing the package itself. If multiple packages import
  6278  a package, the imported package will be initialized only once.
  6279  The importing of packages, by construction, guarantees that there
  6280  can be no cyclic initialization dependencies.
  6281  </p>
  6282  
  6283  <p>
  6284  Package initialization&mdash;variable initialization and the invocation of
  6285  <code>init</code> functions&mdash;happens in a single goroutine,
  6286  sequentially, one package at a time.
  6287  An <code>init</code> function may launch other goroutines, which can run
  6288  concurrently with the initialization code. However, initialization
  6289  always sequences
  6290  the <code>init</code> functions: it will not invoke the next one
  6291  until the previous one has returned.
  6292  </p>
  6293  
  6294  <p>
  6295  To ensure reproducible initialization behavior, build systems are encouraged
  6296  to present multiple files belonging to the same package in lexical file name
  6297  order to a compiler.
  6298  </p>
  6299  
  6300  
  6301  <h3 id="Program_execution">Program execution</h3>
  6302  <p>
  6303  A complete program is created by linking a single, unimported package
  6304  called the <i>main package</i> with all the packages it imports, transitively.
  6305  The main package must
  6306  have package name <code>main</code> and
  6307  declare a function <code>main</code> that takes no
  6308  arguments and returns no value.
  6309  </p>
  6310  
  6311  <pre>
  6312  func main() { … }
  6313  </pre>
  6314  
  6315  <p>
  6316  Program execution begins by initializing the main package and then
  6317  invoking the function <code>main</code>.
  6318  When that function invocation returns, the program exits.
  6319  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6320  </p>
  6321  
  6322  <h2 id="Errors">Errors</h2>
  6323  
  6324  <p>
  6325  The predeclared type <code>error</code> is defined as
  6326  </p>
  6327  
  6328  <pre>
  6329  type error interface {
  6330  	Error() string
  6331  }
  6332  </pre>
  6333  
  6334  <p>
  6335  It is the conventional interface for representing an error condition,
  6336  with the nil value representing no error.
  6337  For instance, a function to read data from a file might be defined:
  6338  </p>
  6339  
  6340  <pre>
  6341  func Read(f *File, b []byte) (n int, err error)
  6342  </pre>
  6343  
  6344  <h2 id="Run_time_panics">Run-time panics</h2>
  6345  
  6346  <p>
  6347  Execution errors such as attempting to index an array out
  6348  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6349  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6350  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6351  That type satisfies the predeclared interface type
  6352  <a href="#Errors"><code>error</code></a>.
  6353  The exact error values that
  6354  represent distinct run-time error conditions are unspecified.
  6355  </p>
  6356  
  6357  <pre>
  6358  package runtime
  6359  
  6360  type Error interface {
  6361  	error
  6362  	// and perhaps other methods
  6363  }
  6364  </pre>
  6365  
  6366  <h2 id="System_considerations">System considerations</h2>
  6367  
  6368  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6369  
  6370  <p>
  6371  The built-in package <code>unsafe</code>, known to the compiler,
  6372  provides facilities for low-level programming including operations
  6373  that violate the type system. A package using <code>unsafe</code>
  6374  must be vetted manually for type safety and may not be portable.
  6375  The package provides the following interface:
  6376  </p>
  6377  
  6378  <pre class="grammar">
  6379  package unsafe
  6380  
  6381  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6382  type Pointer *ArbitraryType
  6383  
  6384  func Alignof(variable ArbitraryType) uintptr
  6385  func Offsetof(selector ArbitraryType) uintptr
  6386  func Sizeof(variable ArbitraryType) uintptr
  6387  </pre>
  6388  
  6389  <p>
  6390  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6391  value may not be <a href="#Address_operators">dereferenced</a>.
  6392  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6393  a <code>Pointer</code> type and vice versa.
  6394  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6395  </p>
  6396  
  6397  <pre>
  6398  var f float64
  6399  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6400  
  6401  type ptr unsafe.Pointer
  6402  bits = *(*uint64)(ptr(&amp;f))
  6403  
  6404  var p ptr = nil
  6405  </pre>
  6406  
  6407  <p>
  6408  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6409  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6410  as if <code>v</code> was declared via <code>var v = x</code>.
  6411  </p>
  6412  <p>
  6413  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6414  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6415  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6416  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6417  without pointer indirections through fields of the struct.
  6418  For a struct <code>s</code> with field <code>f</code>:
  6419  </p>
  6420  
  6421  <pre>
  6422  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6423  </pre>
  6424  
  6425  <p>
  6426  Computer architectures may require memory addresses to be <i>aligned</i>;
  6427  that is, for addresses of a variable to be a multiple of a factor,
  6428  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6429  takes an expression denoting a variable of any type and returns the
  6430  alignment of the (type of the) variable in bytes.  For a variable
  6431  <code>x</code>:
  6432  </p>
  6433  
  6434  <pre>
  6435  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6436  </pre>
  6437  
  6438  <p>
  6439  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6440  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6441  </p>
  6442  
  6443  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6444  
  6445  <p>
  6446  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6447  </p>
  6448  
  6449  <pre class="grammar">
  6450  type                                 size in bytes
  6451  
  6452  byte, uint8, int8                     1
  6453  uint16, int16                         2
  6454  uint32, int32, float32                4
  6455  uint64, int64, float64, complex64     8
  6456  complex128                           16
  6457  </pre>
  6458  
  6459  <p>
  6460  The following minimal alignment properties are guaranteed:
  6461  </p>
  6462  <ol>
  6463  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6464  </li>
  6465  
  6466  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6467     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6468  </li>
  6469  
  6470  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6471  	the alignment of a variable of the array's element type.
  6472  </li>
  6473  </ol>
  6474  
  6475  <p>
  6476  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6477  </p>