github.com/muesli/go@v0.0.0-20170208044820-e410d2a81ef2/src/cmd/compile/internal/gc/order.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"cmd/internal/src"
     9  	"fmt"
    10  )
    11  
    12  // Rewrite tree to use separate statements to enforce
    13  // order of evaluation. Makes walk easier, because it
    14  // can (after this runs) reorder at will within an expression.
    15  //
    16  // Rewrite x op= y into x = x op y.
    17  //
    18  // Introduce temporaries as needed by runtime routines.
    19  // For example, the map runtime routines take the map key
    20  // by reference, so make sure all map keys are addressable
    21  // by copying them to temporaries as needed.
    22  // The same is true for channel operations.
    23  //
    24  // Arrange that map index expressions only appear in direct
    25  // assignments x = m[k] or m[k] = x, never in larger expressions.
    26  //
    27  // Arrange that receive expressions only appear in direct assignments
    28  // x = <-c or as standalone statements <-c, never in larger expressions.
    29  
    30  // TODO(rsc): The temporary introduction during multiple assignments
    31  // should be moved into this file, so that the temporaries can be cleaned
    32  // and so that conversions implicit in the OAS2FUNC and OAS2RECV
    33  // nodes can be made explicit and then have their temporaries cleaned.
    34  
    35  // TODO(rsc): Goto and multilevel break/continue can jump over
    36  // inserted VARKILL annotations. Work out a way to handle these.
    37  // The current implementation is safe, in that it will execute correctly.
    38  // But it won't reuse temporaries as aggressively as it might, and
    39  // it can result in unnecessary zeroing of those variables in the function
    40  // prologue.
    41  
    42  // Order holds state during the ordering process.
    43  type Order struct {
    44  	out  []*Node // list of generated statements
    45  	temp []*Node // stack of temporary variables
    46  }
    47  
    48  // Order rewrites fn->nbody to apply the ordering constraints
    49  // described in the comment at the top of the file.
    50  func order(fn *Node) {
    51  	if Debug['W'] > 1 {
    52  		s := fmt.Sprintf("\nbefore order %v", fn.Func.Nname.Sym)
    53  		dumplist(s, fn.Nbody)
    54  	}
    55  
    56  	orderblockNodes(&fn.Nbody)
    57  }
    58  
    59  // Ordertemp allocates a new temporary with the given type,
    60  // pushes it onto the temp stack, and returns it.
    61  // If clear is true, ordertemp emits code to zero the temporary.
    62  func ordertemp(t *Type, order *Order, clear bool) *Node {
    63  	var_ := temp(t)
    64  	if clear {
    65  		a := nod(OAS, var_, nil)
    66  		a = typecheck(a, Etop)
    67  		order.out = append(order.out, a)
    68  	}
    69  
    70  	order.temp = append(order.temp, var_)
    71  	return var_
    72  }
    73  
    74  // Ordercopyexpr behaves like ordertemp but also emits
    75  // code to initialize the temporary to the value n.
    76  //
    77  // The clear argument is provided for use when the evaluation
    78  // of tmp = n turns into a function call that is passed a pointer
    79  // to the temporary as the output space. If the call blocks before
    80  // tmp has been written, the garbage collector will still treat the
    81  // temporary as live, so we must zero it before entering that call.
    82  // Today, this only happens for channel receive operations.
    83  // (The other candidate would be map access, but map access
    84  // returns a pointer to the result data instead of taking a pointer
    85  // to be filled in.)
    86  func ordercopyexpr(n *Node, t *Type, order *Order, clear int) *Node {
    87  	var_ := ordertemp(t, order, clear != 0)
    88  	a := nod(OAS, var_, n)
    89  	a = typecheck(a, Etop)
    90  	order.out = append(order.out, a)
    91  	return var_
    92  }
    93  
    94  // Ordercheapexpr returns a cheap version of n.
    95  // The definition of cheap is that n is a variable or constant.
    96  // If not, ordercheapexpr allocates a new tmp, emits tmp = n,
    97  // and then returns tmp.
    98  func ordercheapexpr(n *Node, order *Order) *Node {
    99  	if n == nil {
   100  		return nil
   101  	}
   102  	switch n.Op {
   103  	case ONAME, OLITERAL:
   104  		return n
   105  	case OLEN, OCAP:
   106  		l := ordercheapexpr(n.Left, order)
   107  		if l == n.Left {
   108  			return n
   109  		}
   110  		a := *n
   111  		a.Orig = &a
   112  		a.Left = l
   113  		return typecheck(&a, Erv)
   114  	}
   115  
   116  	return ordercopyexpr(n, n.Type, order, 0)
   117  }
   118  
   119  // Ordersafeexpr returns a safe version of n.
   120  // The definition of safe is that n can appear multiple times
   121  // without violating the semantics of the original program,
   122  // and that assigning to the safe version has the same effect
   123  // as assigning to the original n.
   124  //
   125  // The intended use is to apply to x when rewriting x += y into x = x + y.
   126  func ordersafeexpr(n *Node, order *Order) *Node {
   127  	switch n.Op {
   128  	case ONAME, OLITERAL:
   129  		return n
   130  
   131  	case ODOT, OLEN, OCAP:
   132  		l := ordersafeexpr(n.Left, order)
   133  		if l == n.Left {
   134  			return n
   135  		}
   136  		a := *n
   137  		a.Orig = &a
   138  		a.Left = l
   139  		return typecheck(&a, Erv)
   140  
   141  	case ODOTPTR, OIND:
   142  		l := ordercheapexpr(n.Left, order)
   143  		if l == n.Left {
   144  			return n
   145  		}
   146  		a := *n
   147  		a.Orig = &a
   148  		a.Left = l
   149  		return typecheck(&a, Erv)
   150  
   151  	case OINDEX, OINDEXMAP:
   152  		var l *Node
   153  		if n.Left.Type.IsArray() {
   154  			l = ordersafeexpr(n.Left, order)
   155  		} else {
   156  			l = ordercheapexpr(n.Left, order)
   157  		}
   158  		r := ordercheapexpr(n.Right, order)
   159  		if l == n.Left && r == n.Right {
   160  			return n
   161  		}
   162  		a := *n
   163  		a.Orig = &a
   164  		a.Left = l
   165  		a.Right = r
   166  		return typecheck(&a, Erv)
   167  	default:
   168  		Fatalf("ordersafeexpr %v", n.Op)
   169  		return nil // not reached
   170  	}
   171  }
   172  
   173  // Isaddrokay reports whether it is okay to pass n's address to runtime routines.
   174  // Taking the address of a variable makes the liveness and optimization analyses
   175  // lose track of where the variable's lifetime ends. To avoid hurting the analyses
   176  // of ordinary stack variables, those are not 'isaddrokay'. Temporaries are okay,
   177  // because we emit explicit VARKILL instructions marking the end of those
   178  // temporaries' lifetimes.
   179  func isaddrokay(n *Node) bool {
   180  	return islvalue(n) && (n.Op != ONAME || n.Class == PEXTERN || n.IsAutoTmp())
   181  }
   182  
   183  // Orderaddrtemp ensures that n is okay to pass by address to runtime routines.
   184  // If the original argument n is not okay, orderaddrtemp creates a tmp, emits
   185  // tmp = n, and then returns tmp.
   186  // The result of orderaddrtemp MUST be assigned back to n, e.g.
   187  // 	n.Left = orderaddrtemp(n.Left, order)
   188  func orderaddrtemp(n *Node, order *Order) *Node {
   189  	if consttype(n) >= 0 {
   190  		// TODO: expand this to all static composite literal nodes?
   191  		n = defaultlit(n, nil)
   192  		dowidth(n.Type)
   193  		vstat := staticname(n.Type)
   194  		vstat.Name.Readonly = true
   195  		var out []*Node
   196  		staticassign(vstat, n, &out)
   197  		if out != nil {
   198  			Fatalf("staticassign of const generated code: %+v", n)
   199  		}
   200  		vstat = typecheck(vstat, Erv)
   201  		return vstat
   202  	}
   203  	if isaddrokay(n) {
   204  		return n
   205  	}
   206  	return ordercopyexpr(n, n.Type, order, 0)
   207  }
   208  
   209  type ordermarker int
   210  
   211  // Marktemp returns the top of the temporary variable stack.
   212  func marktemp(order *Order) ordermarker {
   213  	return ordermarker(len(order.temp))
   214  }
   215  
   216  // Poptemp pops temporaries off the stack until reaching the mark,
   217  // which must have been returned by marktemp.
   218  func poptemp(mark ordermarker, order *Order) {
   219  	order.temp = order.temp[:mark]
   220  }
   221  
   222  // Cleantempnopop emits to *out VARKILL instructions for each temporary
   223  // above the mark on the temporary stack, but it does not pop them
   224  // from the stack.
   225  func cleantempnopop(mark ordermarker, order *Order, out *[]*Node) {
   226  	var kill *Node
   227  
   228  	for i := len(order.temp) - 1; i >= int(mark); i-- {
   229  		n := order.temp[i]
   230  		if n.Name.Keepalive {
   231  			n.Name.Keepalive = false
   232  			n.Addrtaken = true // ensure SSA keeps the n variable
   233  			kill = nod(OVARLIVE, n, nil)
   234  			kill = typecheck(kill, Etop)
   235  			*out = append(*out, kill)
   236  		}
   237  		kill = nod(OVARKILL, n, nil)
   238  		kill = typecheck(kill, Etop)
   239  		*out = append(*out, kill)
   240  	}
   241  }
   242  
   243  // Cleantemp emits VARKILL instructions for each temporary above the
   244  // mark on the temporary stack and removes them from the stack.
   245  func cleantemp(top ordermarker, order *Order) {
   246  	cleantempnopop(top, order, &order.out)
   247  	poptemp(top, order)
   248  }
   249  
   250  // Orderstmtlist orders each of the statements in the list.
   251  func orderstmtlist(l Nodes, order *Order) {
   252  	for _, n := range l.Slice() {
   253  		orderstmt(n, order)
   254  	}
   255  }
   256  
   257  // Orderblock orders the block of statements l onto a new list,
   258  // and returns the ordered list.
   259  func orderblock(l Nodes) []*Node {
   260  	var order Order
   261  	mark := marktemp(&order)
   262  	orderstmtlist(l, &order)
   263  	cleantemp(mark, &order)
   264  	return order.out
   265  }
   266  
   267  // OrderblockNodes orders the block of statements in n into a new slice,
   268  // and then replaces the old slice in n with the new slice.
   269  func orderblockNodes(n *Nodes) {
   270  	var order Order
   271  	mark := marktemp(&order)
   272  	orderstmtlist(*n, &order)
   273  	cleantemp(mark, &order)
   274  	n.Set(order.out)
   275  }
   276  
   277  // Orderexprinplace orders the side effects in *np and
   278  // leaves them as the init list of the final *np.
   279  // The result of orderexprinplace MUST be assigned back to n, e.g.
   280  // 	n.Left = orderexprinplace(n.Left, outer)
   281  func orderexprinplace(n *Node, outer *Order) *Node {
   282  	var order Order
   283  	n = orderexpr(n, &order, nil)
   284  	n = addinit(n, order.out)
   285  
   286  	// insert new temporaries from order
   287  	// at head of outer list.
   288  	outer.temp = append(outer.temp, order.temp...)
   289  	return n
   290  }
   291  
   292  // Orderstmtinplace orders the side effects of the single statement *np
   293  // and replaces it with the resulting statement list.
   294  // The result of orderstmtinplace MUST be assigned back to n, e.g.
   295  // 	n.Left = orderstmtinplace(n.Left)
   296  func orderstmtinplace(n *Node) *Node {
   297  	var order Order
   298  	mark := marktemp(&order)
   299  	orderstmt(n, &order)
   300  	cleantemp(mark, &order)
   301  	return liststmt(order.out)
   302  }
   303  
   304  // Orderinit moves n's init list to order->out.
   305  func orderinit(n *Node, order *Order) {
   306  	orderstmtlist(n.Ninit, order)
   307  	n.Ninit.Set(nil)
   308  }
   309  
   310  // Ismulticall reports whether the list l is f() for a multi-value function.
   311  // Such an f() could appear as the lone argument to a multi-arg function.
   312  func ismulticall(l Nodes) bool {
   313  	// one arg only
   314  	if l.Len() != 1 {
   315  		return false
   316  	}
   317  	n := l.First()
   318  
   319  	// must be call
   320  	switch n.Op {
   321  	default:
   322  		return false
   323  
   324  	case OCALLFUNC, OCALLMETH, OCALLINTER:
   325  		break
   326  	}
   327  
   328  	// call must return multiple values
   329  	return n.Left.Type.Results().NumFields() > 1
   330  }
   331  
   332  // Copyret emits t1, t2, ... = n, where n is a function call,
   333  // and then returns the list t1, t2, ....
   334  func copyret(n *Node, order *Order) []*Node {
   335  	if !n.Type.IsFuncArgStruct() {
   336  		Fatalf("copyret %v %d", n.Type, n.Left.Type.Results().NumFields())
   337  	}
   338  
   339  	var l1 []*Node
   340  	var l2 []*Node
   341  	for _, t := range n.Type.Fields().Slice() {
   342  		tmp := temp(t.Type)
   343  		l1 = append(l1, tmp)
   344  		l2 = append(l2, tmp)
   345  	}
   346  
   347  	as := nod(OAS2, nil, nil)
   348  	as.List.Set(l1)
   349  	as.Rlist.Set1(n)
   350  	as = typecheck(as, Etop)
   351  	orderstmt(as, order)
   352  
   353  	return l2
   354  }
   355  
   356  // Ordercallargs orders the list of call arguments *l.
   357  func ordercallargs(l *Nodes, order *Order) {
   358  	if ismulticall(*l) {
   359  		// return f() where f() is multiple values.
   360  		l.Set(copyret(l.First(), order))
   361  	} else {
   362  		orderexprlist(*l, order)
   363  	}
   364  }
   365  
   366  // Ordercall orders the call expression n.
   367  // n->op is OCALLMETH/OCALLFUNC/OCALLINTER or a builtin like OCOPY.
   368  func ordercall(n *Node, order *Order) {
   369  	n.Left = orderexpr(n.Left, order, nil)
   370  	n.Right = orderexpr(n.Right, order, nil) // ODDDARG temp
   371  	ordercallargs(&n.List, order)
   372  
   373  	if n.Op == OCALLFUNC {
   374  		t, it := iterFields(n.Left.Type.Params())
   375  		for i := range n.List.Slice() {
   376  			// Check for "unsafe-uintptr" tag provided by escape analysis.
   377  			// If present and the argument is really a pointer being converted
   378  			// to uintptr, arrange for the pointer to be kept alive until the call
   379  			// returns, by copying it into a temp and marking that temp
   380  			// still alive when we pop the temp stack.
   381  			if t == nil {
   382  				break
   383  			}
   384  			if t.Note == unsafeUintptrTag || t.Note == uintptrEscapesTag {
   385  				xp := n.List.Addr(i)
   386  				for (*xp).Op == OCONVNOP && !(*xp).Type.IsPtr() {
   387  					xp = &(*xp).Left
   388  				}
   389  				x := *xp
   390  				if x.Type.IsPtr() {
   391  					x = ordercopyexpr(x, x.Type, order, 0)
   392  					x.Name.Keepalive = true
   393  					*xp = x
   394  				}
   395  			}
   396  			next := it.Next()
   397  			if next == nil && t.Isddd && t.Note == uintptrEscapesTag {
   398  				next = t
   399  			}
   400  			t = next
   401  		}
   402  	}
   403  }
   404  
   405  // Ordermapassign appends n to order->out, introducing temporaries
   406  // to make sure that all map assignments have the form m[k] = x.
   407  // (Note: orderexpr has already been called on n, so we know k is addressable.)
   408  //
   409  // If n is the multiple assignment form ..., m[k], ... = ..., the rewrite is
   410  //	t1 = m
   411  //	t2 = k
   412  //	...., t3, ... = x
   413  //	t1[t2] = t3
   414  //
   415  // The temporaries t1, t2 are needed in case the ... being assigned
   416  // contain m or k. They are usually unnecessary, but in the unnecessary
   417  // cases they are also typically registerizable, so not much harm done.
   418  // And this only applies to the multiple-assignment form.
   419  // We could do a more precise analysis if needed, like in walk.go.
   420  func ordermapassign(n *Node, order *Order) {
   421  	switch n.Op {
   422  	default:
   423  		Fatalf("ordermapassign %v", n.Op)
   424  
   425  	case OAS:
   426  		order.out = append(order.out, n)
   427  
   428  	case OAS2, OAS2DOTTYPE, OAS2MAPR, OAS2FUNC:
   429  		var post []*Node
   430  		var m *Node
   431  		var a *Node
   432  		for i1, n1 := range n.List.Slice() {
   433  			if n1.Op == OINDEXMAP {
   434  				m = n1
   435  				if !m.Left.IsAutoTmp() {
   436  					m.Left = ordercopyexpr(m.Left, m.Left.Type, order, 0)
   437  				}
   438  				if !m.Right.IsAutoTmp() {
   439  					m.Right = ordercopyexpr(m.Right, m.Right.Type, order, 0)
   440  				}
   441  				n.List.SetIndex(i1, ordertemp(m.Type, order, false))
   442  				a = nod(OAS, m, n.List.Index(i1))
   443  				a = typecheck(a, Etop)
   444  				post = append(post, a)
   445  			} else if instrumenting && n.Op == OAS2FUNC && !isblank(n.List.Index(i1)) {
   446  				m = n.List.Index(i1)
   447  				t := ordertemp(m.Type, order, false)
   448  				n.List.SetIndex(i1, t)
   449  				a = nod(OAS, m, t)
   450  				a = typecheck(a, Etop)
   451  				post = append(post, a)
   452  			}
   453  		}
   454  
   455  		order.out = append(order.out, n)
   456  		order.out = append(order.out, post...)
   457  	}
   458  }
   459  
   460  // Orderstmt orders the statement n, appending to order->out.
   461  // Temporaries created during the statement are cleaned
   462  // up using VARKILL instructions as possible.
   463  func orderstmt(n *Node, order *Order) {
   464  	if n == nil {
   465  		return
   466  	}
   467  
   468  	lno := setlineno(n)
   469  
   470  	orderinit(n, order)
   471  
   472  	switch n.Op {
   473  	default:
   474  		Fatalf("orderstmt %v", n.Op)
   475  
   476  	case OVARKILL, OVARLIVE:
   477  		order.out = append(order.out, n)
   478  
   479  	case OAS:
   480  		t := marktemp(order)
   481  		n.Left = orderexpr(n.Left, order, nil)
   482  		n.Right = orderexpr(n.Right, order, n.Left)
   483  		ordermapassign(n, order)
   484  		cleantemp(t, order)
   485  
   486  	case OAS2,
   487  		OCLOSE,
   488  		OCOPY,
   489  		OPRINT,
   490  		OPRINTN,
   491  		ORECOVER,
   492  		ORECV:
   493  		t := marktemp(order)
   494  		n.Left = orderexpr(n.Left, order, nil)
   495  		n.Right = orderexpr(n.Right, order, nil)
   496  		orderexprlist(n.List, order)
   497  		orderexprlist(n.Rlist, order)
   498  		switch n.Op {
   499  		case OAS2, OAS2DOTTYPE:
   500  			ordermapassign(n, order)
   501  		default:
   502  			order.out = append(order.out, n)
   503  		}
   504  		cleantemp(t, order)
   505  
   506  	case OASOP:
   507  		// Special: rewrite l op= r into l = l op r.
   508  		// This simplifies quite a few operations;
   509  		// most important is that it lets us separate
   510  		// out map read from map write when l is
   511  		// a map index expression.
   512  		t := marktemp(order)
   513  
   514  		n.Left = orderexpr(n.Left, order, nil)
   515  		n.Left = ordersafeexpr(n.Left, order)
   516  		tmp1 := treecopy(n.Left, src.NoXPos)
   517  		if tmp1.Op == OINDEXMAP {
   518  			tmp1.Etype = 0 // now an rvalue not an lvalue
   519  		}
   520  		tmp1 = ordercopyexpr(tmp1, n.Left.Type, order, 0)
   521  		// TODO(marvin): Fix Node.EType type union.
   522  		n.Right = nod(Op(n.Etype), tmp1, n.Right)
   523  		n.Right = typecheck(n.Right, Erv)
   524  		n.Right = orderexpr(n.Right, order, nil)
   525  		n.Etype = 0
   526  		n.Op = OAS
   527  		ordermapassign(n, order)
   528  		cleantemp(t, order)
   529  
   530  	// Special: make sure key is addressable,
   531  	// and make sure OINDEXMAP is not copied out.
   532  	case OAS2MAPR:
   533  		t := marktemp(order)
   534  
   535  		orderexprlist(n.List, order)
   536  		r := n.Rlist.First()
   537  		r.Left = orderexpr(r.Left, order, nil)
   538  		r.Right = orderexpr(r.Right, order, nil)
   539  
   540  		// See case OINDEXMAP below.
   541  		if r.Right.Op == OARRAYBYTESTR {
   542  			r.Right.Op = OARRAYBYTESTRTMP
   543  		}
   544  		r.Right = orderaddrtemp(r.Right, order)
   545  		ordermapassign(n, order)
   546  		cleantemp(t, order)
   547  
   548  	// Special: avoid copy of func call n->rlist->n.
   549  	case OAS2FUNC:
   550  		t := marktemp(order)
   551  
   552  		orderexprlist(n.List, order)
   553  		ordercall(n.Rlist.First(), order)
   554  		ordermapassign(n, order)
   555  		cleantemp(t, order)
   556  
   557  	// Special: use temporary variables to hold result,
   558  	// so that assertI2Tetc can take address of temporary.
   559  	// No temporary for blank assignment.
   560  	case OAS2DOTTYPE:
   561  		t := marktemp(order)
   562  
   563  		orderexprlist(n.List, order)
   564  		n.Rlist.First().Left = orderexpr(n.Rlist.First().Left, order, nil) // i in i.(T)
   565  
   566  		var tmp1, tmp2 *Node
   567  		if !isblank(n.List.First()) {
   568  			typ := n.Rlist.First().Type
   569  			tmp1 = ordertemp(typ, order, haspointers(typ))
   570  		}
   571  		if !isblank(n.List.Second()) && !n.List.Second().Type.IsBoolean() {
   572  			tmp2 = ordertemp(Types[TBOOL], order, false)
   573  		}
   574  
   575  		order.out = append(order.out, n)
   576  
   577  		if tmp1 != nil {
   578  			r := nod(OAS, n.List.First(), tmp1)
   579  			r = typecheck(r, Etop)
   580  			ordermapassign(r, order)
   581  			n.List.SetIndex(0, tmp1)
   582  		}
   583  		if tmp2 != nil {
   584  			r := okas(n.List.Second(), tmp2)
   585  			r = typecheck(r, Etop)
   586  			ordermapassign(r, order)
   587  			n.List.SetIndex(1, tmp2)
   588  		}
   589  
   590  		cleantemp(t, order)
   591  
   592  	// Special: use temporary variables to hold result,
   593  	// so that chanrecv can take address of temporary.
   594  	case OAS2RECV:
   595  		t := marktemp(order)
   596  
   597  		orderexprlist(n.List, order)
   598  		n.Rlist.First().Left = orderexpr(n.Rlist.First().Left, order, nil) // arg to recv
   599  		ch := n.Rlist.First().Left.Type
   600  		tmp1 := ordertemp(ch.Elem(), order, haspointers(ch.Elem()))
   601  		tmp2 := ordertemp(Types[TBOOL], order, false)
   602  		order.out = append(order.out, n)
   603  		r := nod(OAS, n.List.First(), tmp1)
   604  		r = typecheck(r, Etop)
   605  		ordermapassign(r, order)
   606  		r = okas(n.List.Second(), tmp2)
   607  		r = typecheck(r, Etop)
   608  		ordermapassign(r, order)
   609  		n.List.Set([]*Node{tmp1, tmp2})
   610  		cleantemp(t, order)
   611  
   612  	// Special: does not save n onto out.
   613  	case OBLOCK, OEMPTY:
   614  		orderstmtlist(n.List, order)
   615  
   616  	// Special: n->left is not an expression; save as is.
   617  	case OBREAK,
   618  		OCONTINUE,
   619  		ODCL,
   620  		ODCLCONST,
   621  		ODCLTYPE,
   622  		OFALL,
   623  		OXFALL,
   624  		OGOTO,
   625  		OLABEL,
   626  		ORETJMP:
   627  		order.out = append(order.out, n)
   628  
   629  	// Special: handle call arguments.
   630  	case OCALLFUNC, OCALLINTER, OCALLMETH:
   631  		t := marktemp(order)
   632  
   633  		ordercall(n, order)
   634  		order.out = append(order.out, n)
   635  		cleantemp(t, order)
   636  
   637  	// Special: order arguments to inner call but not call itself.
   638  	case ODEFER, OPROC:
   639  		t := marktemp(order)
   640  
   641  		switch n.Left.Op {
   642  		// Delete will take the address of the key.
   643  		// Copy key into new temp and do not clean it
   644  		// (it persists beyond the statement).
   645  		case ODELETE:
   646  			orderexprlist(n.Left.List, order)
   647  
   648  			t1 := marktemp(order)
   649  			np := n.Left.List.Addr(1) // map key
   650  			*np = ordercopyexpr(*np, (*np).Type, order, 0)
   651  			poptemp(t1, order)
   652  
   653  		default:
   654  			ordercall(n.Left, order)
   655  		}
   656  
   657  		order.out = append(order.out, n)
   658  		cleantemp(t, order)
   659  
   660  	case ODELETE:
   661  		t := marktemp(order)
   662  		n.List.SetIndex(0, orderexpr(n.List.Index(0), order, nil))
   663  		n.List.SetIndex(1, orderexpr(n.List.Index(1), order, nil))
   664  		n.List.SetIndex(1, orderaddrtemp(n.List.Index(1), order)) // map key
   665  		order.out = append(order.out, n)
   666  		cleantemp(t, order)
   667  
   668  	// Clean temporaries from condition evaluation at
   669  	// beginning of loop body and after for statement.
   670  	case OFOR:
   671  		t := marktemp(order)
   672  
   673  		n.Left = orderexprinplace(n.Left, order)
   674  		var l []*Node
   675  		cleantempnopop(t, order, &l)
   676  		n.Nbody.Prepend(l...)
   677  		orderblockNodes(&n.Nbody)
   678  		n.Right = orderstmtinplace(n.Right)
   679  		order.out = append(order.out, n)
   680  		cleantemp(t, order)
   681  
   682  	// Clean temporaries from condition at
   683  	// beginning of both branches.
   684  	case OIF:
   685  		t := marktemp(order)
   686  
   687  		n.Left = orderexprinplace(n.Left, order)
   688  		var l []*Node
   689  		cleantempnopop(t, order, &l)
   690  		n.Nbody.Prepend(l...)
   691  		l = nil
   692  		cleantempnopop(t, order, &l)
   693  		n.Rlist.Prepend(l...)
   694  		poptemp(t, order)
   695  		orderblockNodes(&n.Nbody)
   696  		n.Rlist.Set(orderblock(n.Rlist))
   697  		order.out = append(order.out, n)
   698  
   699  	// Special: argument will be converted to interface using convT2E
   700  	// so make sure it is an addressable temporary.
   701  	case OPANIC:
   702  		t := marktemp(order)
   703  
   704  		n.Left = orderexpr(n.Left, order, nil)
   705  		if !n.Left.Type.IsInterface() {
   706  			n.Left = orderaddrtemp(n.Left, order)
   707  		}
   708  		order.out = append(order.out, n)
   709  		cleantemp(t, order)
   710  
   711  	case ORANGE:
   712  		// n.Right is the expression being ranged over.
   713  		// order it, and then make a copy if we need one.
   714  		// We almost always do, to ensure that we don't
   715  		// see any value changes made during the loop.
   716  		// Usually the copy is cheap (e.g., array pointer,
   717  		// chan, slice, string are all tiny).
   718  		// The exception is ranging over an array value
   719  		// (not a slice, not a pointer to array),
   720  		// which must make a copy to avoid seeing updates made during
   721  		// the range body. Ranging over an array value is uncommon though.
   722  
   723  		// Mark []byte(str) range expression to reuse string backing storage.
   724  		// It is safe because the storage cannot be mutated.
   725  		if n.Right.Op == OSTRARRAYBYTE {
   726  			n.Right.Op = OSTRARRAYBYTETMP
   727  		}
   728  
   729  		t := marktemp(order)
   730  		n.Right = orderexpr(n.Right, order, nil)
   731  		switch n.Type.Etype {
   732  		default:
   733  			Fatalf("orderstmt range %v", n.Type)
   734  
   735  		case TARRAY, TSLICE:
   736  			if n.List.Len() < 2 || isblank(n.List.Second()) {
   737  				// for i := range x will only use x once, to compute len(x).
   738  				// No need to copy it.
   739  				break
   740  			}
   741  			fallthrough
   742  
   743  		case TCHAN, TSTRING:
   744  			// chan, string, slice, array ranges use value multiple times.
   745  			// make copy.
   746  			r := n.Right
   747  
   748  			if r.Type.IsString() && r.Type != Types[TSTRING] {
   749  				r = nod(OCONV, r, nil)
   750  				r.Type = Types[TSTRING]
   751  				r = typecheck(r, Erv)
   752  			}
   753  
   754  			n.Right = ordercopyexpr(r, r.Type, order, 0)
   755  
   756  		case TMAP:
   757  			// copy the map value in case it is a map literal.
   758  			// TODO(rsc): Make tmp = literal expressions reuse tmp.
   759  			// For maps tmp is just one word so it hardly matters.
   760  			r := n.Right
   761  			n.Right = ordercopyexpr(r, r.Type, order, 0)
   762  
   763  			// n->alloc is the temp for the iterator.
   764  			prealloc[n] = ordertemp(Types[TUINT8], order, true)
   765  		}
   766  		for i := range n.List.Slice() {
   767  			n.List.SetIndex(i, orderexprinplace(n.List.Index(i), order))
   768  		}
   769  		orderblockNodes(&n.Nbody)
   770  		order.out = append(order.out, n)
   771  		cleantemp(t, order)
   772  
   773  	case ORETURN:
   774  		ordercallargs(&n.List, order)
   775  		order.out = append(order.out, n)
   776  
   777  	// Special: clean case temporaries in each block entry.
   778  	// Select must enter one of its blocks, so there is no
   779  	// need for a cleaning at the end.
   780  	// Doubly special: evaluation order for select is stricter
   781  	// than ordinary expressions. Even something like p.c
   782  	// has to be hoisted into a temporary, so that it cannot be
   783  	// reordered after the channel evaluation for a different
   784  	// case (if p were nil, then the timing of the fault would
   785  	// give this away).
   786  	case OSELECT:
   787  		t := marktemp(order)
   788  
   789  		var tmp1 *Node
   790  		var tmp2 *Node
   791  		var r *Node
   792  		for _, n2 := range n.List.Slice() {
   793  			if n2.Op != OXCASE {
   794  				Fatalf("order select case %v", n2.Op)
   795  			}
   796  			r = n2.Left
   797  			setlineno(n2)
   798  
   799  			// Append any new body prologue to ninit.
   800  			// The next loop will insert ninit into nbody.
   801  			if n2.Ninit.Len() != 0 {
   802  				Fatalf("order select ninit")
   803  			}
   804  			if r != nil {
   805  				switch r.Op {
   806  				default:
   807  					yyerror("unknown op in select %v", r.Op)
   808  					Dump("select case", r)
   809  
   810  				// If this is case x := <-ch or case x, y := <-ch, the case has
   811  				// the ODCL nodes to declare x and y. We want to delay that
   812  				// declaration (and possible allocation) until inside the case body.
   813  				// Delete the ODCL nodes here and recreate them inside the body below.
   814  				case OSELRECV, OSELRECV2:
   815  					if r.Colas {
   816  						i := 0
   817  						if r.Ninit.Len() != 0 && r.Ninit.First().Op == ODCL && r.Ninit.First().Left == r.Left {
   818  							i++
   819  						}
   820  						if i < r.Ninit.Len() && r.Ninit.Index(i).Op == ODCL && r.List.Len() != 0 && r.Ninit.Index(i).Left == r.List.First() {
   821  							i++
   822  						}
   823  						if i >= r.Ninit.Len() {
   824  							r.Ninit.Set(nil)
   825  						}
   826  					}
   827  
   828  					if r.Ninit.Len() != 0 {
   829  						yyerror("ninit on select recv")
   830  						dumplist("ninit", r.Ninit)
   831  					}
   832  
   833  					// case x = <-c
   834  					// case x, ok = <-c
   835  					// r->left is x, r->ntest is ok, r->right is ORECV, r->right->left is c.
   836  					// r->left == N means 'case <-c'.
   837  					// c is always evaluated; x and ok are only evaluated when assigned.
   838  					r.Right.Left = orderexpr(r.Right.Left, order, nil)
   839  
   840  					if r.Right.Left.Op != ONAME {
   841  						r.Right.Left = ordercopyexpr(r.Right.Left, r.Right.Left.Type, order, 0)
   842  					}
   843  
   844  					// Introduce temporary for receive and move actual copy into case body.
   845  					// avoids problems with target being addressed, as usual.
   846  					// NOTE: If we wanted to be clever, we could arrange for just one
   847  					// temporary per distinct type, sharing the temp among all receives
   848  					// with that temp. Similarly one ok bool could be shared among all
   849  					// the x,ok receives. Not worth doing until there's a clear need.
   850  					if r.Left != nil && isblank(r.Left) {
   851  						r.Left = nil
   852  					}
   853  					if r.Left != nil {
   854  						// use channel element type for temporary to avoid conversions,
   855  						// such as in case interfacevalue = <-intchan.
   856  						// the conversion happens in the OAS instead.
   857  						tmp1 = r.Left
   858  
   859  						if r.Colas {
   860  							tmp2 = nod(ODCL, tmp1, nil)
   861  							tmp2 = typecheck(tmp2, Etop)
   862  							n2.Ninit.Append(tmp2)
   863  						}
   864  
   865  						r.Left = ordertemp(r.Right.Left.Type.Elem(), order, haspointers(r.Right.Left.Type.Elem()))
   866  						tmp2 = nod(OAS, tmp1, r.Left)
   867  						tmp2 = typecheck(tmp2, Etop)
   868  						n2.Ninit.Append(tmp2)
   869  					}
   870  
   871  					if r.List.Len() != 0 && isblank(r.List.First()) {
   872  						r.List.Set(nil)
   873  					}
   874  					if r.List.Len() != 0 {
   875  						tmp1 = r.List.First()
   876  						if r.Colas {
   877  							tmp2 = nod(ODCL, tmp1, nil)
   878  							tmp2 = typecheck(tmp2, Etop)
   879  							n2.Ninit.Append(tmp2)
   880  						}
   881  
   882  						r.List.Set1(ordertemp(Types[TBOOL], order, false))
   883  						tmp2 = okas(tmp1, r.List.First())
   884  						tmp2 = typecheck(tmp2, Etop)
   885  						n2.Ninit.Append(tmp2)
   886  					}
   887  					n2.Ninit.Set(orderblock(n2.Ninit))
   888  
   889  				case OSEND:
   890  					if r.Ninit.Len() != 0 {
   891  						yyerror("ninit on select send")
   892  						dumplist("ninit", r.Ninit)
   893  					}
   894  
   895  					// case c <- x
   896  					// r->left is c, r->right is x, both are always evaluated.
   897  					r.Left = orderexpr(r.Left, order, nil)
   898  
   899  					if !r.Left.IsAutoTmp() {
   900  						r.Left = ordercopyexpr(r.Left, r.Left.Type, order, 0)
   901  					}
   902  					r.Right = orderexpr(r.Right, order, nil)
   903  					if !r.Right.IsAutoTmp() {
   904  						r.Right = ordercopyexpr(r.Right, r.Right.Type, order, 0)
   905  					}
   906  				}
   907  			}
   908  
   909  			orderblockNodes(&n2.Nbody)
   910  		}
   911  		// Now that we have accumulated all the temporaries, clean them.
   912  		// Also insert any ninit queued during the previous loop.
   913  		// (The temporary cleaning must follow that ninit work.)
   914  		for _, n3 := range n.List.Slice() {
   915  			s := n3.Ninit.Slice()
   916  			cleantempnopop(t, order, &s)
   917  			n3.Nbody.Prepend(s...)
   918  			n3.Ninit.Set(nil)
   919  		}
   920  
   921  		order.out = append(order.out, n)
   922  		poptemp(t, order)
   923  
   924  	// Special: value being sent is passed as a pointer; make it addressable.
   925  	case OSEND:
   926  		t := marktemp(order)
   927  
   928  		n.Left = orderexpr(n.Left, order, nil)
   929  		n.Right = orderexpr(n.Right, order, nil)
   930  		n.Right = orderaddrtemp(n.Right, order)
   931  		order.out = append(order.out, n)
   932  		cleantemp(t, order)
   933  
   934  	// TODO(rsc): Clean temporaries more aggressively.
   935  	// Note that because walkswitch will rewrite some of the
   936  	// switch into a binary search, this is not as easy as it looks.
   937  	// (If we ran that code here we could invoke orderstmt on
   938  	// the if-else chain instead.)
   939  	// For now just clean all the temporaries at the end.
   940  	// In practice that's fine.
   941  	case OSWITCH:
   942  		t := marktemp(order)
   943  
   944  		n.Left = orderexpr(n.Left, order, nil)
   945  		for _, n4 := range n.List.Slice() {
   946  			if n4.Op != OXCASE {
   947  				Fatalf("order switch case %v", n4.Op)
   948  			}
   949  			orderexprlistinplace(n4.List, order)
   950  			orderblockNodes(&n4.Nbody)
   951  		}
   952  
   953  		order.out = append(order.out, n)
   954  		cleantemp(t, order)
   955  	}
   956  
   957  	lineno = lno
   958  }
   959  
   960  // Orderexprlist orders the expression list l into order.
   961  func orderexprlist(l Nodes, order *Order) {
   962  	s := l.Slice()
   963  	for i := range s {
   964  		s[i] = orderexpr(s[i], order, nil)
   965  	}
   966  }
   967  
   968  // Orderexprlist orders the expression list l but saves
   969  // the side effects on the individual expression ninit lists.
   970  func orderexprlistinplace(l Nodes, order *Order) {
   971  	s := l.Slice()
   972  	for i := range s {
   973  		s[i] = orderexprinplace(s[i], order)
   974  	}
   975  }
   976  
   977  // prealloc[x] records the allocation to use for x.
   978  var prealloc = map[*Node]*Node{}
   979  
   980  // Orderexpr orders a single expression, appending side
   981  // effects to order->out as needed.
   982  // If this is part of an assignment lhs = *np, lhs is given.
   983  // Otherwise lhs == nil. (When lhs != nil it may be possible
   984  // to avoid copying the result of the expression to a temporary.)
   985  // The result of orderexpr MUST be assigned back to n, e.g.
   986  // 	n.Left = orderexpr(n.Left, order, lhs)
   987  func orderexpr(n *Node, order *Order, lhs *Node) *Node {
   988  	if n == nil {
   989  		return n
   990  	}
   991  
   992  	lno := setlineno(n)
   993  	orderinit(n, order)
   994  
   995  	switch n.Op {
   996  	default:
   997  		n.Left = orderexpr(n.Left, order, nil)
   998  		n.Right = orderexpr(n.Right, order, nil)
   999  		orderexprlist(n.List, order)
  1000  		orderexprlist(n.Rlist, order)
  1001  
  1002  	// Addition of strings turns into a function call.
  1003  	// Allocate a temporary to hold the strings.
  1004  	// Fewer than 5 strings use direct runtime helpers.
  1005  	case OADDSTR:
  1006  		orderexprlist(n.List, order)
  1007  
  1008  		if n.List.Len() > 5 {
  1009  			t := typArray(Types[TSTRING], int64(n.List.Len()))
  1010  			prealloc[n] = ordertemp(t, order, false)
  1011  		}
  1012  
  1013  		// Mark string(byteSlice) arguments to reuse byteSlice backing
  1014  		// buffer during conversion. String concatenation does not
  1015  		// memorize the strings for later use, so it is safe.
  1016  		// However, we can do it only if there is at least one non-empty string literal.
  1017  		// Otherwise if all other arguments are empty strings,
  1018  		// concatstrings will return the reference to the temp string
  1019  		// to the caller.
  1020  		hasbyte := false
  1021  
  1022  		haslit := false
  1023  		for _, n1 := range n.List.Slice() {
  1024  			hasbyte = hasbyte || n1.Op == OARRAYBYTESTR
  1025  			haslit = haslit || n1.Op == OLITERAL && len(n1.Val().U.(string)) != 0
  1026  		}
  1027  
  1028  		if haslit && hasbyte {
  1029  			for _, n2 := range n.List.Slice() {
  1030  				if n2.Op == OARRAYBYTESTR {
  1031  					n2.Op = OARRAYBYTESTRTMP
  1032  				}
  1033  			}
  1034  		}
  1035  
  1036  	case OCMPSTR:
  1037  		n.Left = orderexpr(n.Left, order, nil)
  1038  		n.Right = orderexpr(n.Right, order, nil)
  1039  
  1040  		// Mark string(byteSlice) arguments to reuse byteSlice backing
  1041  		// buffer during conversion. String comparison does not
  1042  		// memorize the strings for later use, so it is safe.
  1043  		if n.Left.Op == OARRAYBYTESTR {
  1044  			n.Left.Op = OARRAYBYTESTRTMP
  1045  		}
  1046  		if n.Right.Op == OARRAYBYTESTR {
  1047  			n.Right.Op = OARRAYBYTESTRTMP
  1048  		}
  1049  
  1050  		// key must be addressable
  1051  	case OINDEXMAP:
  1052  		n.Left = orderexpr(n.Left, order, nil)
  1053  		n.Right = orderexpr(n.Right, order, nil)
  1054  		needCopy := false
  1055  
  1056  		if n.Etype == 0 && instrumenting {
  1057  			// Race detector needs the copy so it can
  1058  			// call treecopy on the result.
  1059  			needCopy = true
  1060  		}
  1061  
  1062  		// For x = m[string(k)] where k is []byte, the allocation of
  1063  		// backing bytes for the string can be avoided by reusing
  1064  		// the []byte backing array. This is a special case that it
  1065  		// would be nice to handle more generally, but because
  1066  		// there are no []byte-keyed maps, this specific case comes
  1067  		// up in important cases in practice. See issue 3512.
  1068  		// Nothing can change the []byte we are not copying before
  1069  		// the map index, because the map access is going to
  1070  		// be forced to happen immediately following this
  1071  		// conversion (by the ordercopyexpr a few lines below).
  1072  		if n.Etype == 0 && n.Right.Op == OARRAYBYTESTR {
  1073  			n.Right.Op = OARRAYBYTESTRTMP
  1074  			needCopy = true
  1075  		}
  1076  
  1077  		// Map calls need to take the address of the key.
  1078  		n.Right = orderaddrtemp(n.Right, order)
  1079  
  1080  		if needCopy {
  1081  			n = ordercopyexpr(n, n.Type, order, 0)
  1082  		}
  1083  
  1084  	// concrete type (not interface) argument must be addressable
  1085  	// temporary to pass to runtime.
  1086  	case OCONVIFACE:
  1087  		n.Left = orderexpr(n.Left, order, nil)
  1088  
  1089  		if !n.Left.Type.IsInterface() {
  1090  			n.Left = orderaddrtemp(n.Left, order)
  1091  		}
  1092  
  1093  	case OCONVNOP:
  1094  		if n.Type.IsKind(TUNSAFEPTR) && n.Left.Type.IsKind(TUINTPTR) && (n.Left.Op == OCALLFUNC || n.Left.Op == OCALLINTER || n.Left.Op == OCALLMETH) {
  1095  			// When reordering unsafe.Pointer(f()) into a separate
  1096  			// statement, the conversion and function call must stay
  1097  			// together. See golang.org/issue/15329.
  1098  			orderinit(n.Left, order)
  1099  			ordercall(n.Left, order)
  1100  			if lhs == nil || lhs.Op != ONAME || instrumenting {
  1101  				n = ordercopyexpr(n, n.Type, order, 0)
  1102  			}
  1103  		} else {
  1104  			n.Left = orderexpr(n.Left, order, nil)
  1105  		}
  1106  
  1107  	case OANDAND, OOROR:
  1108  		mark := marktemp(order)
  1109  		n.Left = orderexpr(n.Left, order, nil)
  1110  
  1111  		// Clean temporaries from first branch at beginning of second.
  1112  		// Leave them on the stack so that they can be killed in the outer
  1113  		// context in case the short circuit is taken.
  1114  		var s []*Node
  1115  
  1116  		cleantempnopop(mark, order, &s)
  1117  		n.Right.Ninit.Prepend(s...)
  1118  		n.Right = orderexprinplace(n.Right, order)
  1119  
  1120  	case OCALLFUNC,
  1121  		OCALLINTER,
  1122  		OCALLMETH,
  1123  		OCAP,
  1124  		OCOMPLEX,
  1125  		OCOPY,
  1126  		OIMAG,
  1127  		OLEN,
  1128  		OMAKECHAN,
  1129  		OMAKEMAP,
  1130  		OMAKESLICE,
  1131  		ONEW,
  1132  		OREAL,
  1133  		ORECOVER,
  1134  		OSTRARRAYBYTE,
  1135  		OSTRARRAYBYTETMP,
  1136  		OSTRARRAYRUNE:
  1137  		ordercall(n, order)
  1138  		if lhs == nil || lhs.Op != ONAME || instrumenting {
  1139  			n = ordercopyexpr(n, n.Type, order, 0)
  1140  		}
  1141  
  1142  	case OAPPEND:
  1143  		ordercallargs(&n.List, order)
  1144  		if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.List.First()) {
  1145  			n = ordercopyexpr(n, n.Type, order, 0)
  1146  		}
  1147  
  1148  	case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
  1149  		n.Left = orderexpr(n.Left, order, nil)
  1150  		low, high, max := n.SliceBounds()
  1151  		low = orderexpr(low, order, nil)
  1152  		low = ordercheapexpr(low, order)
  1153  		high = orderexpr(high, order, nil)
  1154  		high = ordercheapexpr(high, order)
  1155  		max = orderexpr(max, order, nil)
  1156  		max = ordercheapexpr(max, order)
  1157  		n.SetSliceBounds(low, high, max)
  1158  		if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.Left) {
  1159  			n = ordercopyexpr(n, n.Type, order, 0)
  1160  		}
  1161  
  1162  	case OCLOSURE:
  1163  		if n.Noescape && n.Func.Cvars.Len() > 0 {
  1164  			prealloc[n] = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type
  1165  		}
  1166  
  1167  	case OARRAYLIT, OSLICELIT, OCALLPART:
  1168  		n.Left = orderexpr(n.Left, order, nil)
  1169  		n.Right = orderexpr(n.Right, order, nil)
  1170  		orderexprlist(n.List, order)
  1171  		orderexprlist(n.Rlist, order)
  1172  		if n.Noescape {
  1173  			prealloc[n] = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type
  1174  		}
  1175  
  1176  	case ODDDARG:
  1177  		if n.Noescape {
  1178  			// The ddd argument does not live beyond the call it is created for.
  1179  			// Allocate a temporary that will be cleaned up when this statement
  1180  			// completes. We could be more aggressive and try to arrange for it
  1181  			// to be cleaned up when the call completes.
  1182  			prealloc[n] = ordertemp(n.Type.Elem(), order, false)
  1183  		}
  1184  
  1185  	case ODOTTYPE, ODOTTYPE2:
  1186  		n.Left = orderexpr(n.Left, order, nil)
  1187  		// TODO(rsc): The isfat is for consistency with componentgen and walkexpr.
  1188  		// It needs to be removed in all three places.
  1189  		// That would allow inlining x.(struct{*int}) the same as x.(*int).
  1190  		if !isdirectiface(n.Type) || isfat(n.Type) || instrumenting {
  1191  			n = ordercopyexpr(n, n.Type, order, 1)
  1192  		}
  1193  
  1194  	case ORECV:
  1195  		n.Left = orderexpr(n.Left, order, nil)
  1196  		n = ordercopyexpr(n, n.Type, order, 1)
  1197  
  1198  	case OEQ, ONE:
  1199  		n.Left = orderexpr(n.Left, order, nil)
  1200  		n.Right = orderexpr(n.Right, order, nil)
  1201  		t := n.Left.Type
  1202  		if t.IsStruct() || t.IsArray() {
  1203  			// for complex comparisons, we need both args to be
  1204  			// addressable so we can pass them to the runtime.
  1205  			n.Left = orderaddrtemp(n.Left, order)
  1206  			n.Right = orderaddrtemp(n.Right, order)
  1207  		}
  1208  	}
  1209  
  1210  	lineno = lno
  1211  	return n
  1212  }
  1213  
  1214  // okas creates and returns an assignment of val to ok,
  1215  // including an explicit conversion if necessary.
  1216  func okas(ok, val *Node) *Node {
  1217  	if !isblank(ok) {
  1218  		val = conv(val, ok.Type)
  1219  	}
  1220  	return nod(OAS, ok, val)
  1221  }