github.com/murrekatt/go-ethereum@v1.5.8-0.20170123175102-fc52f2c007fb/p2p/discover/node.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package discover 18 19 import ( 20 "crypto/ecdsa" 21 "crypto/elliptic" 22 "encoding/hex" 23 "errors" 24 "fmt" 25 "math/big" 26 "math/rand" 27 "net" 28 "net/url" 29 "regexp" 30 "strconv" 31 "strings" 32 33 "github.com/ethereum/go-ethereum/common" 34 "github.com/ethereum/go-ethereum/crypto" 35 "github.com/ethereum/go-ethereum/crypto/secp256k1" 36 ) 37 38 const NodeIDBits = 512 39 40 // Node represents a host on the network. 41 // The fields of Node may not be modified. 42 type Node struct { 43 IP net.IP // len 4 for IPv4 or 16 for IPv6 44 UDP, TCP uint16 // port numbers 45 ID NodeID // the node's public key 46 47 // This is a cached copy of sha3(ID) which is used for node 48 // distance calculations. This is part of Node in order to make it 49 // possible to write tests that need a node at a certain distance. 50 // In those tests, the content of sha will not actually correspond 51 // with ID. 52 sha common.Hash 53 54 // whether this node is currently being pinged in order to replace 55 // it in a bucket 56 contested bool 57 } 58 59 // NewNode creates a new node. It is mostly meant to be used for 60 // testing purposes. 61 func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node { 62 if ipv4 := ip.To4(); ipv4 != nil { 63 ip = ipv4 64 } 65 return &Node{ 66 IP: ip, 67 UDP: udpPort, 68 TCP: tcpPort, 69 ID: id, 70 sha: crypto.Keccak256Hash(id[:]), 71 } 72 } 73 74 func (n *Node) addr() *net.UDPAddr { 75 return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)} 76 } 77 78 // Incomplete returns true for nodes with no IP address. 79 func (n *Node) Incomplete() bool { 80 return n.IP == nil 81 } 82 83 // checks whether n is a valid complete node. 84 func (n *Node) validateComplete() error { 85 if n.Incomplete() { 86 return errors.New("incomplete node") 87 } 88 if n.UDP == 0 { 89 return errors.New("missing UDP port") 90 } 91 if n.TCP == 0 { 92 return errors.New("missing TCP port") 93 } 94 if n.IP.IsMulticast() || n.IP.IsUnspecified() { 95 return errors.New("invalid IP (multicast/unspecified)") 96 } 97 _, err := n.ID.Pubkey() // validate the key (on curve, etc.) 98 return err 99 } 100 101 // The string representation of a Node is a URL. 102 // Please see ParseNode for a description of the format. 103 func (n *Node) String() string { 104 u := url.URL{Scheme: "enode"} 105 if n.Incomplete() { 106 u.Host = fmt.Sprintf("%x", n.ID[:]) 107 } else { 108 addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)} 109 u.User = url.User(fmt.Sprintf("%x", n.ID[:])) 110 u.Host = addr.String() 111 if n.UDP != n.TCP { 112 u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP)) 113 } 114 } 115 return u.String() 116 } 117 118 var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$") 119 120 // ParseNode parses a node designator. 121 // 122 // There are two basic forms of node designators 123 // - incomplete nodes, which only have the public key (node ID) 124 // - complete nodes, which contain the public key and IP/Port information 125 // 126 // For incomplete nodes, the designator must look like one of these 127 // 128 // enode://<hex node id> 129 // <hex node id> 130 // 131 // For complete nodes, the node ID is encoded in the username portion 132 // of the URL, separated from the host by an @ sign. The hostname can 133 // only be given as an IP address, DNS domain names are not allowed. 134 // The port in the host name section is the TCP listening port. If the 135 // TCP and UDP (discovery) ports differ, the UDP port is specified as 136 // query parameter "discport". 137 // 138 // In the following example, the node URL describes 139 // a node with IP address 10.3.58.6, TCP listening port 30303 140 // and UDP discovery port 30301. 141 // 142 // enode://<hex node id>@10.3.58.6:30303?discport=30301 143 func ParseNode(rawurl string) (*Node, error) { 144 if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil { 145 id, err := HexID(m[1]) 146 if err != nil { 147 return nil, fmt.Errorf("invalid node ID (%v)", err) 148 } 149 return NewNode(id, nil, 0, 0), nil 150 } 151 return parseComplete(rawurl) 152 } 153 154 func parseComplete(rawurl string) (*Node, error) { 155 var ( 156 id NodeID 157 ip net.IP 158 tcpPort, udpPort uint64 159 ) 160 u, err := url.Parse(rawurl) 161 if err != nil { 162 return nil, err 163 } 164 if u.Scheme != "enode" { 165 return nil, errors.New("invalid URL scheme, want \"enode\"") 166 } 167 // Parse the Node ID from the user portion. 168 if u.User == nil { 169 return nil, errors.New("does not contain node ID") 170 } 171 if id, err = HexID(u.User.String()); err != nil { 172 return nil, fmt.Errorf("invalid node ID (%v)", err) 173 } 174 // Parse the IP address. 175 host, port, err := net.SplitHostPort(u.Host) 176 if err != nil { 177 return nil, fmt.Errorf("invalid host: %v", err) 178 } 179 if ip = net.ParseIP(host); ip == nil { 180 return nil, errors.New("invalid IP address") 181 } 182 // Ensure the IP is 4 bytes long for IPv4 addresses. 183 if ipv4 := ip.To4(); ipv4 != nil { 184 ip = ipv4 185 } 186 // Parse the port numbers. 187 if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil { 188 return nil, errors.New("invalid port") 189 } 190 udpPort = tcpPort 191 qv := u.Query() 192 if qv.Get("discport") != "" { 193 udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16) 194 if err != nil { 195 return nil, errors.New("invalid discport in query") 196 } 197 } 198 return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil 199 } 200 201 // MustParseNode parses a node URL. It panics if the URL is not valid. 202 func MustParseNode(rawurl string) *Node { 203 n, err := ParseNode(rawurl) 204 if err != nil { 205 panic("invalid node URL: " + err.Error()) 206 } 207 return n 208 } 209 210 // NodeID is a unique identifier for each node. 211 // The node identifier is a marshaled elliptic curve public key. 212 type NodeID [NodeIDBits / 8]byte 213 214 // NodeID prints as a long hexadecimal number. 215 func (n NodeID) String() string { 216 return fmt.Sprintf("%x", n[:]) 217 } 218 219 // The Go syntax representation of a NodeID is a call to HexID. 220 func (n NodeID) GoString() string { 221 return fmt.Sprintf("discover.HexID(\"%x\")", n[:]) 222 } 223 224 // HexID converts a hex string to a NodeID. 225 // The string may be prefixed with 0x. 226 func HexID(in string) (NodeID, error) { 227 var id NodeID 228 b, err := hex.DecodeString(strings.TrimPrefix(in, "0x")) 229 if err != nil { 230 return id, err 231 } else if len(b) != len(id) { 232 return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2) 233 } 234 copy(id[:], b) 235 return id, nil 236 } 237 238 // MustHexID converts a hex string to a NodeID. 239 // It panics if the string is not a valid NodeID. 240 func MustHexID(in string) NodeID { 241 id, err := HexID(in) 242 if err != nil { 243 panic(err) 244 } 245 return id 246 } 247 248 // PubkeyID returns a marshaled representation of the given public key. 249 func PubkeyID(pub *ecdsa.PublicKey) NodeID { 250 var id NodeID 251 pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y) 252 if len(pbytes)-1 != len(id) { 253 panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes))) 254 } 255 copy(id[:], pbytes[1:]) 256 return id 257 } 258 259 // Pubkey returns the public key represented by the node ID. 260 // It returns an error if the ID is not a point on the curve. 261 func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) { 262 p := &ecdsa.PublicKey{Curve: secp256k1.S256(), X: new(big.Int), Y: new(big.Int)} 263 half := len(id) / 2 264 p.X.SetBytes(id[:half]) 265 p.Y.SetBytes(id[half:]) 266 if !p.Curve.IsOnCurve(p.X, p.Y) { 267 return nil, errors.New("id is invalid secp256k1 curve point") 268 } 269 return p, nil 270 } 271 272 // recoverNodeID computes the public key used to sign the 273 // given hash from the signature. 274 func recoverNodeID(hash, sig []byte) (id NodeID, err error) { 275 pubkey, err := secp256k1.RecoverPubkey(hash, sig) 276 if err != nil { 277 return id, err 278 } 279 if len(pubkey)-1 != len(id) { 280 return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8) 281 } 282 for i := range id { 283 id[i] = pubkey[i+1] 284 } 285 return id, nil 286 } 287 288 // distcmp compares the distances a->target and b->target. 289 // Returns -1 if a is closer to target, 1 if b is closer to target 290 // and 0 if they are equal. 291 func distcmp(target, a, b common.Hash) int { 292 for i := range target { 293 da := a[i] ^ target[i] 294 db := b[i] ^ target[i] 295 if da > db { 296 return 1 297 } else if da < db { 298 return -1 299 } 300 } 301 return 0 302 } 303 304 // table of leading zero counts for bytes [0..255] 305 var lzcount = [256]int{ 306 8, 7, 6, 6, 5, 5, 5, 5, 307 4, 4, 4, 4, 4, 4, 4, 4, 308 3, 3, 3, 3, 3, 3, 3, 3, 309 3, 3, 3, 3, 3, 3, 3, 3, 310 2, 2, 2, 2, 2, 2, 2, 2, 311 2, 2, 2, 2, 2, 2, 2, 2, 312 2, 2, 2, 2, 2, 2, 2, 2, 313 2, 2, 2, 2, 2, 2, 2, 2, 314 1, 1, 1, 1, 1, 1, 1, 1, 315 1, 1, 1, 1, 1, 1, 1, 1, 316 1, 1, 1, 1, 1, 1, 1, 1, 317 1, 1, 1, 1, 1, 1, 1, 1, 318 1, 1, 1, 1, 1, 1, 1, 1, 319 1, 1, 1, 1, 1, 1, 1, 1, 320 1, 1, 1, 1, 1, 1, 1, 1, 321 1, 1, 1, 1, 1, 1, 1, 1, 322 0, 0, 0, 0, 0, 0, 0, 0, 323 0, 0, 0, 0, 0, 0, 0, 0, 324 0, 0, 0, 0, 0, 0, 0, 0, 325 0, 0, 0, 0, 0, 0, 0, 0, 326 0, 0, 0, 0, 0, 0, 0, 0, 327 0, 0, 0, 0, 0, 0, 0, 0, 328 0, 0, 0, 0, 0, 0, 0, 0, 329 0, 0, 0, 0, 0, 0, 0, 0, 330 0, 0, 0, 0, 0, 0, 0, 0, 331 0, 0, 0, 0, 0, 0, 0, 0, 332 0, 0, 0, 0, 0, 0, 0, 0, 333 0, 0, 0, 0, 0, 0, 0, 0, 334 0, 0, 0, 0, 0, 0, 0, 0, 335 0, 0, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 337 0, 0, 0, 0, 0, 0, 0, 0, 338 } 339 340 // logdist returns the logarithmic distance between a and b, log2(a ^ b). 341 func logdist(a, b common.Hash) int { 342 lz := 0 343 for i := range a { 344 x := a[i] ^ b[i] 345 if x == 0 { 346 lz += 8 347 } else { 348 lz += lzcount[x] 349 break 350 } 351 } 352 return len(a)*8 - lz 353 } 354 355 // hashAtDistance returns a random hash such that logdist(a, b) == n 356 func hashAtDistance(a common.Hash, n int) (b common.Hash) { 357 if n == 0 { 358 return a 359 } 360 // flip bit at position n, fill the rest with random bits 361 b = a 362 pos := len(a) - n/8 - 1 363 bit := byte(0x01) << (byte(n%8) - 1) 364 if bit == 0 { 365 pos++ 366 bit = 0x80 367 } 368 b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits 369 for i := pos + 1; i < len(a); i++ { 370 b[i] = byte(rand.Intn(255)) 371 } 372 return b 373 }