github.com/murrekatt/go-ethereum@v1.5.8-0.20170123175102-fc52f2c007fb/p2p/discover/table.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package discover implements the Node Discovery Protocol.
    18  //
    19  // The Node Discovery protocol provides a way to find RLPx nodes that
    20  // can be connected to. It uses a Kademlia-like protocol to maintain a
    21  // distributed database of the IDs and endpoints of all listening
    22  // nodes.
    23  package discover
    24  
    25  import (
    26  	"crypto/rand"
    27  	"encoding/binary"
    28  	"errors"
    29  	"fmt"
    30  	"net"
    31  	"sort"
    32  	"sync"
    33  	"time"
    34  
    35  	"github.com/ethereum/go-ethereum/common"
    36  	"github.com/ethereum/go-ethereum/crypto"
    37  	"github.com/ethereum/go-ethereum/logger"
    38  	"github.com/ethereum/go-ethereum/logger/glog"
    39  )
    40  
    41  const (
    42  	alpha      = 3  // Kademlia concurrency factor
    43  	bucketSize = 16 // Kademlia bucket size
    44  	hashBits   = len(common.Hash{}) * 8
    45  	nBuckets   = hashBits + 1 // Number of buckets
    46  
    47  	maxBondingPingPongs = 16
    48  	maxFindnodeFailures = 5
    49  
    50  	autoRefreshInterval = 1 * time.Hour
    51  	seedCount           = 30
    52  	seedMaxAge          = 5 * 24 * time.Hour
    53  )
    54  
    55  type Table struct {
    56  	mutex   sync.Mutex        // protects buckets, their content, and nursery
    57  	buckets [nBuckets]*bucket // index of known nodes by distance
    58  	nursery []*Node           // bootstrap nodes
    59  	db      *nodeDB           // database of known nodes
    60  
    61  	refreshReq chan chan struct{}
    62  	closeReq   chan struct{}
    63  	closed     chan struct{}
    64  
    65  	bondmu    sync.Mutex
    66  	bonding   map[NodeID]*bondproc
    67  	bondslots chan struct{} // limits total number of active bonding processes
    68  
    69  	nodeAddedHook func(*Node) // for testing
    70  
    71  	net  transport
    72  	self *Node // metadata of the local node
    73  }
    74  
    75  type bondproc struct {
    76  	err  error
    77  	n    *Node
    78  	done chan struct{}
    79  }
    80  
    81  // transport is implemented by the UDP transport.
    82  // it is an interface so we can test without opening lots of UDP
    83  // sockets and without generating a private key.
    84  type transport interface {
    85  	ping(NodeID, *net.UDPAddr) error
    86  	waitping(NodeID) error
    87  	findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
    88  	close()
    89  }
    90  
    91  // bucket contains nodes, ordered by their last activity. the entry
    92  // that was most recently active is the first element in entries.
    93  type bucket struct{ entries []*Node }
    94  
    95  func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) (*Table, error) {
    96  	// If no node database was given, use an in-memory one
    97  	db, err := newNodeDB(nodeDBPath, Version, ourID)
    98  	if err != nil {
    99  		return nil, err
   100  	}
   101  	tab := &Table{
   102  		net:        t,
   103  		db:         db,
   104  		self:       NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
   105  		bonding:    make(map[NodeID]*bondproc),
   106  		bondslots:  make(chan struct{}, maxBondingPingPongs),
   107  		refreshReq: make(chan chan struct{}),
   108  		closeReq:   make(chan struct{}),
   109  		closed:     make(chan struct{}),
   110  	}
   111  	for i := 0; i < cap(tab.bondslots); i++ {
   112  		tab.bondslots <- struct{}{}
   113  	}
   114  	for i := range tab.buckets {
   115  		tab.buckets[i] = new(bucket)
   116  	}
   117  	go tab.refreshLoop()
   118  	return tab, nil
   119  }
   120  
   121  // Self returns the local node.
   122  // The returned node should not be modified by the caller.
   123  func (tab *Table) Self() *Node {
   124  	return tab.self
   125  }
   126  
   127  // ReadRandomNodes fills the given slice with random nodes from the
   128  // table. It will not write the same node more than once. The nodes in
   129  // the slice are copies and can be modified by the caller.
   130  func (tab *Table) ReadRandomNodes(buf []*Node) (n int) {
   131  	tab.mutex.Lock()
   132  	defer tab.mutex.Unlock()
   133  	// TODO: tree-based buckets would help here
   134  	// Find all non-empty buckets and get a fresh slice of their entries.
   135  	var buckets [][]*Node
   136  	for _, b := range tab.buckets {
   137  		if len(b.entries) > 0 {
   138  			buckets = append(buckets, b.entries[:])
   139  		}
   140  	}
   141  	if len(buckets) == 0 {
   142  		return 0
   143  	}
   144  	// Shuffle the buckets.
   145  	for i := uint32(len(buckets)) - 1; i > 0; i-- {
   146  		j := randUint(i)
   147  		buckets[i], buckets[j] = buckets[j], buckets[i]
   148  	}
   149  	// Move head of each bucket into buf, removing buckets that become empty.
   150  	var i, j int
   151  	for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
   152  		b := buckets[j]
   153  		buf[i] = &(*b[0])
   154  		buckets[j] = b[1:]
   155  		if len(b) == 1 {
   156  			buckets = append(buckets[:j], buckets[j+1:]...)
   157  		}
   158  		if len(buckets) == 0 {
   159  			break
   160  		}
   161  	}
   162  	return i + 1
   163  }
   164  
   165  func randUint(max uint32) uint32 {
   166  	if max == 0 {
   167  		return 0
   168  	}
   169  	var b [4]byte
   170  	rand.Read(b[:])
   171  	return binary.BigEndian.Uint32(b[:]) % max
   172  }
   173  
   174  // Close terminates the network listener and flushes the node database.
   175  func (tab *Table) Close() {
   176  	select {
   177  	case <-tab.closed:
   178  		// already closed.
   179  	case tab.closeReq <- struct{}{}:
   180  		<-tab.closed // wait for refreshLoop to end.
   181  	}
   182  }
   183  
   184  // SetFallbackNodes sets the initial points of contact. These nodes
   185  // are used to connect to the network if the table is empty and there
   186  // are no known nodes in the database.
   187  func (tab *Table) SetFallbackNodes(nodes []*Node) error {
   188  	for _, n := range nodes {
   189  		if err := n.validateComplete(); err != nil {
   190  			return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
   191  		}
   192  	}
   193  	tab.mutex.Lock()
   194  	tab.nursery = make([]*Node, 0, len(nodes))
   195  	for _, n := range nodes {
   196  		cpy := *n
   197  		// Recompute cpy.sha because the node might not have been
   198  		// created by NewNode or ParseNode.
   199  		cpy.sha = crypto.Keccak256Hash(n.ID[:])
   200  		tab.nursery = append(tab.nursery, &cpy)
   201  	}
   202  	tab.mutex.Unlock()
   203  	tab.refresh()
   204  	return nil
   205  }
   206  
   207  // Resolve searches for a specific node with the given ID.
   208  // It returns nil if the node could not be found.
   209  func (tab *Table) Resolve(targetID NodeID) *Node {
   210  	// If the node is present in the local table, no
   211  	// network interaction is required.
   212  	hash := crypto.Keccak256Hash(targetID[:])
   213  	tab.mutex.Lock()
   214  	cl := tab.closest(hash, 1)
   215  	tab.mutex.Unlock()
   216  	if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
   217  		return cl.entries[0]
   218  	}
   219  	// Otherwise, do a network lookup.
   220  	result := tab.Lookup(targetID)
   221  	for _, n := range result {
   222  		if n.ID == targetID {
   223  			return n
   224  		}
   225  	}
   226  	return nil
   227  }
   228  
   229  // Lookup performs a network search for nodes close
   230  // to the given target. It approaches the target by querying
   231  // nodes that are closer to it on each iteration.
   232  // The given target does not need to be an actual node
   233  // identifier.
   234  func (tab *Table) Lookup(targetID NodeID) []*Node {
   235  	return tab.lookup(targetID, true)
   236  }
   237  
   238  func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
   239  	var (
   240  		target         = crypto.Keccak256Hash(targetID[:])
   241  		asked          = make(map[NodeID]bool)
   242  		seen           = make(map[NodeID]bool)
   243  		reply          = make(chan []*Node, alpha)
   244  		pendingQueries = 0
   245  		result         *nodesByDistance
   246  	)
   247  	// don't query further if we hit ourself.
   248  	// unlikely to happen often in practice.
   249  	asked[tab.self.ID] = true
   250  
   251  	for {
   252  		tab.mutex.Lock()
   253  		// generate initial result set
   254  		result = tab.closest(target, bucketSize)
   255  		tab.mutex.Unlock()
   256  		if len(result.entries) > 0 || !refreshIfEmpty {
   257  			break
   258  		}
   259  		// The result set is empty, all nodes were dropped, refresh.
   260  		// We actually wait for the refresh to complete here. The very
   261  		// first query will hit this case and run the bootstrapping
   262  		// logic.
   263  		<-tab.refresh()
   264  		refreshIfEmpty = false
   265  	}
   266  
   267  	for {
   268  		// ask the alpha closest nodes that we haven't asked yet
   269  		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
   270  			n := result.entries[i]
   271  			if !asked[n.ID] {
   272  				asked[n.ID] = true
   273  				pendingQueries++
   274  				go func() {
   275  					// Find potential neighbors to bond with
   276  					r, err := tab.net.findnode(n.ID, n.addr(), targetID)
   277  					if err != nil {
   278  						// Bump the failure counter to detect and evacuate non-bonded entries
   279  						fails := tab.db.findFails(n.ID) + 1
   280  						tab.db.updateFindFails(n.ID, fails)
   281  						glog.V(logger.Detail).Infof("Bumping failures for %x: %d", n.ID[:8], fails)
   282  
   283  						if fails >= maxFindnodeFailures {
   284  							glog.V(logger.Detail).Infof("Evacuating node %x: %d findnode failures", n.ID[:8], fails)
   285  							tab.delete(n)
   286  						}
   287  					}
   288  					reply <- tab.bondall(r)
   289  				}()
   290  			}
   291  		}
   292  		if pendingQueries == 0 {
   293  			// we have asked all closest nodes, stop the search
   294  			break
   295  		}
   296  		// wait for the next reply
   297  		for _, n := range <-reply {
   298  			if n != nil && !seen[n.ID] {
   299  				seen[n.ID] = true
   300  				result.push(n, bucketSize)
   301  			}
   302  		}
   303  		pendingQueries--
   304  	}
   305  	return result.entries
   306  }
   307  
   308  func (tab *Table) refresh() <-chan struct{} {
   309  	done := make(chan struct{})
   310  	select {
   311  	case tab.refreshReq <- done:
   312  	case <-tab.closed:
   313  		close(done)
   314  	}
   315  	return done
   316  }
   317  
   318  // refreshLoop schedules doRefresh runs and coordinates shutdown.
   319  func (tab *Table) refreshLoop() {
   320  	var (
   321  		timer   = time.NewTicker(autoRefreshInterval)
   322  		waiting []chan struct{} // accumulates waiting callers while doRefresh runs
   323  		done    chan struct{}   // where doRefresh reports completion
   324  	)
   325  loop:
   326  	for {
   327  		select {
   328  		case <-timer.C:
   329  			if done == nil {
   330  				done = make(chan struct{})
   331  				go tab.doRefresh(done)
   332  			}
   333  		case req := <-tab.refreshReq:
   334  			waiting = append(waiting, req)
   335  			if done == nil {
   336  				done = make(chan struct{})
   337  				go tab.doRefresh(done)
   338  			}
   339  		case <-done:
   340  			for _, ch := range waiting {
   341  				close(ch)
   342  			}
   343  			waiting = nil
   344  			done = nil
   345  		case <-tab.closeReq:
   346  			break loop
   347  		}
   348  	}
   349  
   350  	if tab.net != nil {
   351  		tab.net.close()
   352  	}
   353  	if done != nil {
   354  		<-done
   355  	}
   356  	for _, ch := range waiting {
   357  		close(ch)
   358  	}
   359  	tab.db.close()
   360  	close(tab.closed)
   361  }
   362  
   363  // doRefresh performs a lookup for a random target to keep buckets
   364  // full. seed nodes are inserted if the table is empty (initial
   365  // bootstrap or discarded faulty peers).
   366  func (tab *Table) doRefresh(done chan struct{}) {
   367  	defer close(done)
   368  
   369  	// The Kademlia paper specifies that the bucket refresh should
   370  	// perform a lookup in the least recently used bucket. We cannot
   371  	// adhere to this because the findnode target is a 512bit value
   372  	// (not hash-sized) and it is not easily possible to generate a
   373  	// sha3 preimage that falls into a chosen bucket.
   374  	// We perform a lookup with a random target instead.
   375  	var target NodeID
   376  	rand.Read(target[:])
   377  	result := tab.lookup(target, false)
   378  	if len(result) > 0 {
   379  		return
   380  	}
   381  
   382  	// The table is empty. Load nodes from the database and insert
   383  	// them. This should yield a few previously seen nodes that are
   384  	// (hopefully) still alive.
   385  	seeds := tab.db.querySeeds(seedCount, seedMaxAge)
   386  	seeds = tab.bondall(append(seeds, tab.nursery...))
   387  	if glog.V(logger.Debug) {
   388  		if len(seeds) == 0 {
   389  			glog.Infof("no seed nodes found")
   390  		}
   391  		for _, n := range seeds {
   392  			age := time.Since(tab.db.lastPong(n.ID))
   393  			glog.Infof("seed node (age %v): %v", age, n)
   394  		}
   395  	}
   396  	tab.mutex.Lock()
   397  	tab.stuff(seeds)
   398  	tab.mutex.Unlock()
   399  
   400  	// Finally, do a self lookup to fill up the buckets.
   401  	tab.lookup(tab.self.ID, false)
   402  }
   403  
   404  // closest returns the n nodes in the table that are closest to the
   405  // given id. The caller must hold tab.mutex.
   406  func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
   407  	// This is a very wasteful way to find the closest nodes but
   408  	// obviously correct. I believe that tree-based buckets would make
   409  	// this easier to implement efficiently.
   410  	close := &nodesByDistance{target: target}
   411  	for _, b := range tab.buckets {
   412  		for _, n := range b.entries {
   413  			close.push(n, nresults)
   414  		}
   415  	}
   416  	return close
   417  }
   418  
   419  func (tab *Table) len() (n int) {
   420  	for _, b := range tab.buckets {
   421  		n += len(b.entries)
   422  	}
   423  	return n
   424  }
   425  
   426  // bondall bonds with all given nodes concurrently and returns
   427  // those nodes for which bonding has probably succeeded.
   428  func (tab *Table) bondall(nodes []*Node) (result []*Node) {
   429  	rc := make(chan *Node, len(nodes))
   430  	for i := range nodes {
   431  		go func(n *Node) {
   432  			nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCP))
   433  			rc <- nn
   434  		}(nodes[i])
   435  	}
   436  	for range nodes {
   437  		if n := <-rc; n != nil {
   438  			result = append(result, n)
   439  		}
   440  	}
   441  	return result
   442  }
   443  
   444  // bond ensures the local node has a bond with the given remote node.
   445  // It also attempts to insert the node into the table if bonding succeeds.
   446  // The caller must not hold tab.mutex.
   447  //
   448  // A bond is must be established before sending findnode requests.
   449  // Both sides must have completed a ping/pong exchange for a bond to
   450  // exist. The total number of active bonding processes is limited in
   451  // order to restrain network use.
   452  //
   453  // bond is meant to operate idempotently in that bonding with a remote
   454  // node which still remembers a previously established bond will work.
   455  // The remote node will simply not send a ping back, causing waitping
   456  // to time out.
   457  //
   458  // If pinged is true, the remote node has just pinged us and one half
   459  // of the process can be skipped.
   460  func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
   461  	if id == tab.self.ID {
   462  		return nil, errors.New("is self")
   463  	}
   464  	// Retrieve a previously known node and any recent findnode failures
   465  	node, fails := tab.db.node(id), 0
   466  	if node != nil {
   467  		fails = tab.db.findFails(id)
   468  	}
   469  	// If the node is unknown (non-bonded) or failed (remotely unknown), bond from scratch
   470  	var result error
   471  	age := time.Since(tab.db.lastPong(id))
   472  	if node == nil || fails > 0 || age > nodeDBNodeExpiration {
   473  		glog.V(logger.Detail).Infof("Bonding %x: known=%t, fails=%d age=%v", id[:8], node != nil, fails, age)
   474  
   475  		tab.bondmu.Lock()
   476  		w := tab.bonding[id]
   477  		if w != nil {
   478  			// Wait for an existing bonding process to complete.
   479  			tab.bondmu.Unlock()
   480  			<-w.done
   481  		} else {
   482  			// Register a new bonding process.
   483  			w = &bondproc{done: make(chan struct{})}
   484  			tab.bonding[id] = w
   485  			tab.bondmu.Unlock()
   486  			// Do the ping/pong. The result goes into w.
   487  			tab.pingpong(w, pinged, id, addr, tcpPort)
   488  			// Unregister the process after it's done.
   489  			tab.bondmu.Lock()
   490  			delete(tab.bonding, id)
   491  			tab.bondmu.Unlock()
   492  		}
   493  		// Retrieve the bonding results
   494  		result = w.err
   495  		if result == nil {
   496  			node = w.n
   497  		}
   498  	}
   499  	if node != nil {
   500  		// Add the node to the table even if the bonding ping/pong
   501  		// fails. It will be relaced quickly if it continues to be
   502  		// unresponsive.
   503  		tab.add(node)
   504  		tab.db.updateFindFails(id, 0)
   505  	}
   506  	return node, result
   507  }
   508  
   509  func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
   510  	// Request a bonding slot to limit network usage
   511  	<-tab.bondslots
   512  	defer func() { tab.bondslots <- struct{}{} }()
   513  
   514  	// Ping the remote side and wait for a pong.
   515  	if w.err = tab.ping(id, addr); w.err != nil {
   516  		close(w.done)
   517  		return
   518  	}
   519  	if !pinged {
   520  		// Give the remote node a chance to ping us before we start
   521  		// sending findnode requests. If they still remember us,
   522  		// waitping will simply time out.
   523  		tab.net.waitping(id)
   524  	}
   525  	// Bonding succeeded, update the node database.
   526  	w.n = NewNode(id, addr.IP, uint16(addr.Port), tcpPort)
   527  	tab.db.updateNode(w.n)
   528  	close(w.done)
   529  }
   530  
   531  // ping a remote endpoint and wait for a reply, also updating the node
   532  // database accordingly.
   533  func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error {
   534  	tab.db.updateLastPing(id, time.Now())
   535  	if err := tab.net.ping(id, addr); err != nil {
   536  		return err
   537  	}
   538  	tab.db.updateLastPong(id, time.Now())
   539  
   540  	// Start the background expiration goroutine after the first
   541  	// successful communication. Subsequent calls have no effect if it
   542  	// is already running. We do this here instead of somewhere else
   543  	// so that the search for seed nodes also considers older nodes
   544  	// that would otherwise be removed by the expiration.
   545  	tab.db.ensureExpirer()
   546  	return nil
   547  }
   548  
   549  // add attempts to add the given node its corresponding bucket. If the
   550  // bucket has space available, adding the node succeeds immediately.
   551  // Otherwise, the node is added if the least recently active node in
   552  // the bucket does not respond to a ping packet.
   553  //
   554  // The caller must not hold tab.mutex.
   555  func (tab *Table) add(new *Node) {
   556  	b := tab.buckets[logdist(tab.self.sha, new.sha)]
   557  	tab.mutex.Lock()
   558  	defer tab.mutex.Unlock()
   559  	if b.bump(new) {
   560  		return
   561  	}
   562  	var oldest *Node
   563  	if len(b.entries) == bucketSize {
   564  		oldest = b.entries[bucketSize-1]
   565  		if oldest.contested {
   566  			// The node is already being replaced, don't attempt
   567  			// to replace it.
   568  			return
   569  		}
   570  		oldest.contested = true
   571  		// Let go of the mutex so other goroutines can access
   572  		// the table while we ping the least recently active node.
   573  		tab.mutex.Unlock()
   574  		err := tab.ping(oldest.ID, oldest.addr())
   575  		tab.mutex.Lock()
   576  		oldest.contested = false
   577  		if err == nil {
   578  			// The node responded, don't replace it.
   579  			return
   580  		}
   581  	}
   582  	added := b.replace(new, oldest)
   583  	if added && tab.nodeAddedHook != nil {
   584  		tab.nodeAddedHook(new)
   585  	}
   586  }
   587  
   588  // stuff adds nodes the table to the end of their corresponding bucket
   589  // if the bucket is not full. The caller must hold tab.mutex.
   590  func (tab *Table) stuff(nodes []*Node) {
   591  outer:
   592  	for _, n := range nodes {
   593  		if n.ID == tab.self.ID {
   594  			continue // don't add self
   595  		}
   596  		bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
   597  		for i := range bucket.entries {
   598  			if bucket.entries[i].ID == n.ID {
   599  				continue outer // already in bucket
   600  			}
   601  		}
   602  		if len(bucket.entries) < bucketSize {
   603  			bucket.entries = append(bucket.entries, n)
   604  			if tab.nodeAddedHook != nil {
   605  				tab.nodeAddedHook(n)
   606  			}
   607  		}
   608  	}
   609  }
   610  
   611  // delete removes an entry from the node table (used to evacuate
   612  // failed/non-bonded discovery peers).
   613  func (tab *Table) delete(node *Node) {
   614  	tab.mutex.Lock()
   615  	defer tab.mutex.Unlock()
   616  	bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
   617  	for i := range bucket.entries {
   618  		if bucket.entries[i].ID == node.ID {
   619  			bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
   620  			return
   621  		}
   622  	}
   623  }
   624  
   625  func (b *bucket) replace(n *Node, last *Node) bool {
   626  	// Don't add if b already contains n.
   627  	for i := range b.entries {
   628  		if b.entries[i].ID == n.ID {
   629  			return false
   630  		}
   631  	}
   632  	// Replace last if it is still the last entry or just add n if b
   633  	// isn't full. If is no longer the last entry, it has either been
   634  	// replaced with someone else or became active.
   635  	if len(b.entries) == bucketSize && (last == nil || b.entries[bucketSize-1].ID != last.ID) {
   636  		return false
   637  	}
   638  	if len(b.entries) < bucketSize {
   639  		b.entries = append(b.entries, nil)
   640  	}
   641  	copy(b.entries[1:], b.entries)
   642  	b.entries[0] = n
   643  	return true
   644  }
   645  
   646  func (b *bucket) bump(n *Node) bool {
   647  	for i := range b.entries {
   648  		if b.entries[i].ID == n.ID {
   649  			// move it to the front
   650  			copy(b.entries[1:], b.entries[:i])
   651  			b.entries[0] = n
   652  			return true
   653  		}
   654  	}
   655  	return false
   656  }
   657  
   658  // nodesByDistance is a list of nodes, ordered by
   659  // distance to target.
   660  type nodesByDistance struct {
   661  	entries []*Node
   662  	target  common.Hash
   663  }
   664  
   665  // push adds the given node to the list, keeping the total size below maxElems.
   666  func (h *nodesByDistance) push(n *Node, maxElems int) {
   667  	ix := sort.Search(len(h.entries), func(i int) bool {
   668  		return distcmp(h.target, h.entries[i].sha, n.sha) > 0
   669  	})
   670  	if len(h.entries) < maxElems {
   671  		h.entries = append(h.entries, n)
   672  	}
   673  	if ix == len(h.entries) {
   674  		// farther away than all nodes we already have.
   675  		// if there was room for it, the node is now the last element.
   676  	} else {
   677  		// slide existing entries down to make room
   678  		// this will overwrite the entry we just appended.
   679  		copy(h.entries[ix+1:], h.entries[ix:])
   680  		h.entries[ix] = n
   681  	}
   682  }