github.com/murrekatt/go-ethereum@v1.5.8-0.20170123175102-fc52f2c007fb/trie/iterator.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import "github.com/ethereum/go-ethereum/common"
    20  
    21  // Iterator is a key-value trie iterator that traverses a Trie.
    22  type Iterator struct {
    23  	trie   *Trie
    24  	nodeIt *NodeIterator
    25  	keyBuf []byte
    26  
    27  	Key   []byte // Current data key on which the iterator is positioned on
    28  	Value []byte // Current data value on which the iterator is positioned on
    29  }
    30  
    31  // NewIterator creates a new key-value iterator.
    32  func NewIterator(trie *Trie) *Iterator {
    33  	return &Iterator{
    34  		trie:   trie,
    35  		nodeIt: NewNodeIterator(trie),
    36  		keyBuf: make([]byte, 0, 64),
    37  		Key:    nil,
    38  	}
    39  }
    40  
    41  // Next moves the iterator forward one key-value entry.
    42  func (it *Iterator) Next() bool {
    43  	for it.nodeIt.Next() {
    44  		if it.nodeIt.Leaf {
    45  			it.Key = it.makeKey()
    46  			it.Value = it.nodeIt.LeafBlob
    47  			return true
    48  		}
    49  	}
    50  	it.Key = nil
    51  	it.Value = nil
    52  	return false
    53  }
    54  
    55  func (it *Iterator) makeKey() []byte {
    56  	key := it.keyBuf[:0]
    57  	for _, se := range it.nodeIt.stack {
    58  		switch node := se.node.(type) {
    59  		case *fullNode:
    60  			if se.child <= 16 {
    61  				key = append(key, byte(se.child))
    62  			}
    63  		case *shortNode:
    64  			if hasTerm(node.Key) {
    65  				key = append(key, node.Key[:len(node.Key)-1]...)
    66  			} else {
    67  				key = append(key, node.Key...)
    68  			}
    69  		}
    70  	}
    71  	return decodeCompact(key)
    72  }
    73  
    74  // nodeIteratorState represents the iteration state at one particular node of the
    75  // trie, which can be resumed at a later invocation.
    76  type nodeIteratorState struct {
    77  	hash   common.Hash // Hash of the node being iterated (nil if not standalone)
    78  	node   node        // Trie node being iterated
    79  	parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
    80  	child  int         // Child to be processed next
    81  }
    82  
    83  // NodeIterator is an iterator to traverse the trie post-order.
    84  type NodeIterator struct {
    85  	trie  *Trie                // Trie being iterated
    86  	stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
    87  
    88  	Hash     common.Hash // Hash of the current node being iterated (nil if not standalone)
    89  	Node     node        // Current node being iterated (internal representation)
    90  	Parent   common.Hash // Hash of the first full ancestor node (nil if current is the root)
    91  	Leaf     bool        // Flag whether the current node is a value (data) node
    92  	LeafBlob []byte      // Data blob contained within a leaf (otherwise nil)
    93  
    94  	Error error // Failure set in case of an internal error in the iterator
    95  }
    96  
    97  // NewNodeIterator creates an post-order trie iterator.
    98  func NewNodeIterator(trie *Trie) *NodeIterator {
    99  	if trie.Hash() == emptyState {
   100  		return new(NodeIterator)
   101  	}
   102  	return &NodeIterator{trie: trie}
   103  }
   104  
   105  // Next moves the iterator to the next node, returning whether there are any
   106  // further nodes. In case of an internal error this method returns false and
   107  // sets the Error field to the encountered failure.
   108  func (it *NodeIterator) Next() bool {
   109  	// If the iterator failed previously, don't do anything
   110  	if it.Error != nil {
   111  		return false
   112  	}
   113  	// Otherwise step forward with the iterator and report any errors
   114  	if err := it.step(); err != nil {
   115  		it.Error = err
   116  		return false
   117  	}
   118  	return it.retrieve()
   119  }
   120  
   121  // step moves the iterator to the next node of the trie.
   122  func (it *NodeIterator) step() error {
   123  	if it.trie == nil {
   124  		// Abort if we reached the end of the iteration
   125  		return nil
   126  	}
   127  	if len(it.stack) == 0 {
   128  		// Initialize the iterator if we've just started.
   129  		root := it.trie.Hash()
   130  		state := &nodeIteratorState{node: it.trie.root, child: -1}
   131  		if root != emptyRoot {
   132  			state.hash = root
   133  		}
   134  		it.stack = append(it.stack, state)
   135  	} else {
   136  		// Continue iterating at the previous node otherwise.
   137  		it.stack = it.stack[:len(it.stack)-1]
   138  		if len(it.stack) == 0 {
   139  			it.trie = nil
   140  			return nil
   141  		}
   142  	}
   143  
   144  	// Continue iteration to the next child
   145  	for {
   146  		parent := it.stack[len(it.stack)-1]
   147  		ancestor := parent.hash
   148  		if (ancestor == common.Hash{}) {
   149  			ancestor = parent.parent
   150  		}
   151  		if node, ok := parent.node.(*fullNode); ok {
   152  			// Full node, traverse all children, then the node itself
   153  			if parent.child >= len(node.Children) {
   154  				break
   155  			}
   156  			for parent.child++; parent.child < len(node.Children); parent.child++ {
   157  				if current := node.Children[parent.child]; current != nil {
   158  					it.stack = append(it.stack, &nodeIteratorState{
   159  						hash:   common.BytesToHash(node.flags.hash),
   160  						node:   current,
   161  						parent: ancestor,
   162  						child:  -1,
   163  					})
   164  					break
   165  				}
   166  			}
   167  		} else if node, ok := parent.node.(*shortNode); ok {
   168  			// Short node, traverse the pointer singleton child, then the node itself
   169  			if parent.child >= 0 {
   170  				break
   171  			}
   172  			parent.child++
   173  			it.stack = append(it.stack, &nodeIteratorState{
   174  				hash:   common.BytesToHash(node.flags.hash),
   175  				node:   node.Val,
   176  				parent: ancestor,
   177  				child:  -1,
   178  			})
   179  		} else if hash, ok := parent.node.(hashNode); ok {
   180  			// Hash node, resolve the hash child from the database, then the node itself
   181  			if parent.child >= 0 {
   182  				break
   183  			}
   184  			parent.child++
   185  
   186  			node, err := it.trie.resolveHash(hash, nil, nil)
   187  			if err != nil {
   188  				return err
   189  			}
   190  			it.stack = append(it.stack, &nodeIteratorState{
   191  				hash:   common.BytesToHash(hash),
   192  				node:   node,
   193  				parent: ancestor,
   194  				child:  -1,
   195  			})
   196  		} else {
   197  			break
   198  		}
   199  	}
   200  	return nil
   201  }
   202  
   203  // retrieve pulls and caches the current trie node the iterator is traversing.
   204  // In case of a value node, the additional leaf blob is also populated with the
   205  // data contents for external interpretation.
   206  //
   207  // The method returns whether there are any more data left for inspection.
   208  func (it *NodeIterator) retrieve() bool {
   209  	// Clear out any previously set values
   210  	it.Hash, it.Node, it.Parent, it.Leaf, it.LeafBlob = common.Hash{}, nil, common.Hash{}, false, nil
   211  
   212  	// If the iteration's done, return no available data
   213  	if it.trie == nil {
   214  		return false
   215  	}
   216  	// Otherwise retrieve the current node and resolve leaf accessors
   217  	state := it.stack[len(it.stack)-1]
   218  
   219  	it.Hash, it.Node, it.Parent = state.hash, state.node, state.parent
   220  	if value, ok := it.Node.(valueNode); ok {
   221  		it.Leaf, it.LeafBlob = true, []byte(value)
   222  	}
   223  	return true
   224  }