github.com/neatio-net/neatio@v1.7.3-0.20231114194659-f4d7a2226baa/utilities/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ 8 #define _SECP256K1_ECMULT_GEN_IMPL_H_ 9 10 #include "scalar.h" 11 #include "group.h" 12 #include "ecmult_gen.h" 13 #include "hash_impl.h" 14 #ifdef USE_ECMULT_STATIC_PRECOMPUTATION 15 #include "ecmult_static_context.h" 16 #endif 17 static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { 18 ctx->prec = NULL; 19 } 20 21 static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { 22 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 23 secp256k1_ge prec[1024]; 24 secp256k1_gej gj; 25 secp256k1_gej nums_gej; 26 int i, j; 27 #endif 28 29 if (ctx->prec != NULL) { 30 return; 31 } 32 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 33 ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); 34 35 /* get the generator */ 36 secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); 37 38 /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ 39 { 40 static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; 41 secp256k1_fe nums_x; 42 secp256k1_ge nums_ge; 43 int r; 44 r = secp256k1_fe_set_b32(&nums_x, nums_b32); 45 (void)r; 46 VERIFY_CHECK(r); 47 r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0); 48 (void)r; 49 VERIFY_CHECK(r); 50 secp256k1_gej_set_ge(&nums_gej, &nums_ge); 51 /* Add G to make the bits in x uniformly distributed. */ 52 secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); 53 } 54 55 /* compute prec. */ 56 { 57 secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ 58 secp256k1_gej gbase; 59 secp256k1_gej numsbase; 60 gbase = gj; /* 16^j * G */ 61 numsbase = nums_gej; /* 2^j * nums. */ 62 for (j = 0; j < 64; j++) { 63 /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ 64 precj[j*16] = numsbase; 65 for (i = 1; i < 16; i++) { 66 secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); 67 } 68 /* Multiply gbase by 16. */ 69 for (i = 0; i < 4; i++) { 70 secp256k1_gej_double_var(&gbase, &gbase, NULL); 71 } 72 /* Multiply numbase by 2. */ 73 secp256k1_gej_double_var(&numsbase, &numsbase, NULL); 74 if (j == 62) { 75 /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ 76 secp256k1_gej_neg(&numsbase, &numsbase); 77 secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); 78 } 79 } 80 secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb); 81 } 82 for (j = 0; j < 64; j++) { 83 for (i = 0; i < 16; i++) { 84 secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); 85 } 86 } 87 #else 88 (void)cb; 89 ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; 90 #endif 91 secp256k1_ecmult_gen_blind(ctx, NULL); 92 } 93 94 static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { 95 return ctx->prec != NULL; 96 } 97 98 static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, 99 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { 100 if (src->prec == NULL) { 101 dst->prec = NULL; 102 } else { 103 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 104 dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); 105 memcpy(dst->prec, src->prec, sizeof(*dst->prec)); 106 #else 107 (void)cb; 108 dst->prec = src->prec; 109 #endif 110 dst->initial = src->initial; 111 dst->blind = src->blind; 112 } 113 } 114 115 static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { 116 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION 117 free(ctx->prec); 118 #endif 119 secp256k1_scalar_clear(&ctx->blind); 120 secp256k1_gej_clear(&ctx->initial); 121 ctx->prec = NULL; 122 } 123 124 static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { 125 secp256k1_ge add; 126 secp256k1_ge_storage adds; 127 secp256k1_scalar gnb; 128 int bits; 129 int i, j; 130 memset(&adds, 0, sizeof(adds)); 131 *r = ctx->initial; 132 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ 133 secp256k1_scalar_add(&gnb, gn, &ctx->blind); 134 add.infinity = 0; 135 for (j = 0; j < 64; j++) { 136 bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); 137 for (i = 0; i < 16; i++) { 138 /** This uses a conditional move to avoid any secret data in array indexes. 139 * _Any_ use of secret indexes has been demonstrated to result in timing 140 * sidechannels, even when the cache-line access patterns are uniform. 141 * See also: 142 * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe 143 * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and 144 * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, 145 * by Dag Arne Osvik, Adi Shamir, and Eran Tromer 146 * (http://www.tau.ac.il/~tromer/papers/cache.pdf) 147 */ 148 secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); 149 } 150 secp256k1_ge_from_storage(&add, &adds); 151 secp256k1_gej_add_ge(r, r, &add); 152 } 153 bits = 0; 154 secp256k1_ge_clear(&add); 155 secp256k1_scalar_clear(&gnb); 156 } 157 158 /* Setup blinding values for secp256k1_ecmult_gen. */ 159 static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { 160 secp256k1_scalar b; 161 secp256k1_gej gb; 162 secp256k1_fe s; 163 unsigned char nonce32[32]; 164 secp256k1_rfc6979_hmac_sha256_t rng; 165 int retry; 166 unsigned char keydata[64] = {0}; 167 if (seed32 == NULL) { 168 /* When seed is NULL, reset the initial point and blinding value. */ 169 secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); 170 secp256k1_gej_neg(&ctx->initial, &ctx->initial); 171 secp256k1_scalar_set_int(&ctx->blind, 1); 172 } 173 /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ 174 secp256k1_scalar_get_b32(nonce32, &ctx->blind); 175 /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, 176 * and guards against weak or adversarial seeds. This is a simpler and safer interface than 177 * asking the caller for blinding values directly and expecting them to retry on failure. 178 */ 179 memcpy(keydata, nonce32, 32); 180 if (seed32 != NULL) { 181 memcpy(keydata + 32, seed32, 32); 182 } 183 secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); 184 memset(keydata, 0, sizeof(keydata)); 185 /* Retry for out of range results to achieve uniformity. */ 186 do { 187 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); 188 retry = !secp256k1_fe_set_b32(&s, nonce32); 189 retry |= secp256k1_fe_is_zero(&s); 190 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */ 191 /* Randomize the projection to defend against multiplier sidechannels. */ 192 secp256k1_gej_rescale(&ctx->initial, &s); 193 secp256k1_fe_clear(&s); 194 do { 195 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); 196 secp256k1_scalar_set_b32(&b, nonce32, &retry); 197 /* A blinding value of 0 works, but would undermine the projection hardening. */ 198 retry |= secp256k1_scalar_is_zero(&b); 199 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */ 200 secp256k1_rfc6979_hmac_sha256_finalize(&rng); 201 memset(nonce32, 0, 32); 202 secp256k1_ecmult_gen(ctx, &gb, &b); 203 secp256k1_scalar_negate(&b, &b); 204 ctx->blind = b; 205 ctx->initial = gb; 206 secp256k1_scalar_clear(&b); 207 secp256k1_gej_clear(&gb); 208 } 209 210 #endif