github.com/neatio-net/neatio@v1.7.3-0.20231114194659-f4d7a2226baa/utilities/crypto/secp256k1/libsecp256k1/src/field_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_FIELD_IMPL_H_
     8  #define _SECP256K1_FIELD_IMPL_H_
     9  
    10  #if defined HAVE_CONFIG_H
    11  #include "libsecp256k1-config.h"
    12  #endif
    13  
    14  #include "util.h"
    15  
    16  #if defined(USE_FIELD_10X26)
    17  #include "field_10x26_impl.h"
    18  #elif defined(USE_FIELD_5X52)
    19  #include "field_5x52_impl.h"
    20  #else
    21  #error "Please select field implementation"
    22  #endif
    23  
    24  SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
    25      secp256k1_fe na;
    26      secp256k1_fe_negate(&na, a, 1);
    27      secp256k1_fe_add(&na, b);
    28      return secp256k1_fe_normalizes_to_zero(&na);
    29  }
    30  
    31  SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    32      secp256k1_fe na;
    33      secp256k1_fe_negate(&na, a, 1);
    34      secp256k1_fe_add(&na, b);
    35      return secp256k1_fe_normalizes_to_zero_var(&na);
    36  }
    37  
    38  static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
    39      /** Given that p is congruent to 3 mod 4, we can compute the square root of
    40       *  a mod p as the (p+1)/4'th power of a.
    41       *
    42       *  As (p+1)/4 is an even number, it will have the same result for a and for
    43       *  (-a). Only one of these two numbers actually has a square root however,
    44       *  so we test at the end by squaring and comparing to the input.
    45       *  Also because (p+1)/4 is an even number, the computed square root is
    46       *  itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
    47       */
    48      secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    49      int j;
    50  
    51      /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
    52       *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
    53       *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
    54       */
    55  
    56      secp256k1_fe_sqr(&x2, a);
    57      secp256k1_fe_mul(&x2, &x2, a);
    58  
    59      secp256k1_fe_sqr(&x3, &x2);
    60      secp256k1_fe_mul(&x3, &x3, a);
    61  
    62      x6 = x3;
    63      for (j=0; j<3; j++) {
    64          secp256k1_fe_sqr(&x6, &x6);
    65      }
    66      secp256k1_fe_mul(&x6, &x6, &x3);
    67  
    68      x9 = x6;
    69      for (j=0; j<3; j++) {
    70          secp256k1_fe_sqr(&x9, &x9);
    71      }
    72      secp256k1_fe_mul(&x9, &x9, &x3);
    73  
    74      x11 = x9;
    75      for (j=0; j<2; j++) {
    76          secp256k1_fe_sqr(&x11, &x11);
    77      }
    78      secp256k1_fe_mul(&x11, &x11, &x2);
    79  
    80      x22 = x11;
    81      for (j=0; j<11; j++) {
    82          secp256k1_fe_sqr(&x22, &x22);
    83      }
    84      secp256k1_fe_mul(&x22, &x22, &x11);
    85  
    86      x44 = x22;
    87      for (j=0; j<22; j++) {
    88          secp256k1_fe_sqr(&x44, &x44);
    89      }
    90      secp256k1_fe_mul(&x44, &x44, &x22);
    91  
    92      x88 = x44;
    93      for (j=0; j<44; j++) {
    94          secp256k1_fe_sqr(&x88, &x88);
    95      }
    96      secp256k1_fe_mul(&x88, &x88, &x44);
    97  
    98      x176 = x88;
    99      for (j=0; j<88; j++) {
   100          secp256k1_fe_sqr(&x176, &x176);
   101      }
   102      secp256k1_fe_mul(&x176, &x176, &x88);
   103  
   104      x220 = x176;
   105      for (j=0; j<44; j++) {
   106          secp256k1_fe_sqr(&x220, &x220);
   107      }
   108      secp256k1_fe_mul(&x220, &x220, &x44);
   109  
   110      x223 = x220;
   111      for (j=0; j<3; j++) {
   112          secp256k1_fe_sqr(&x223, &x223);
   113      }
   114      secp256k1_fe_mul(&x223, &x223, &x3);
   115  
   116      /* The final result is then assembled using a sliding window over the blocks. */
   117  
   118      t1 = x223;
   119      for (j=0; j<23; j++) {
   120          secp256k1_fe_sqr(&t1, &t1);
   121      }
   122      secp256k1_fe_mul(&t1, &t1, &x22);
   123      for (j=0; j<6; j++) {
   124          secp256k1_fe_sqr(&t1, &t1);
   125      }
   126      secp256k1_fe_mul(&t1, &t1, &x2);
   127      secp256k1_fe_sqr(&t1, &t1);
   128      secp256k1_fe_sqr(r, &t1);
   129  
   130      /* Check that a square root was actually calculated */
   131  
   132      secp256k1_fe_sqr(&t1, r);
   133      return secp256k1_fe_equal(&t1, a);
   134  }
   135  
   136  static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
   137      secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
   138      int j;
   139  
   140      /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
   141       *  { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
   142       *  [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
   143       */
   144  
   145      secp256k1_fe_sqr(&x2, a);
   146      secp256k1_fe_mul(&x2, &x2, a);
   147  
   148      secp256k1_fe_sqr(&x3, &x2);
   149      secp256k1_fe_mul(&x3, &x3, a);
   150  
   151      x6 = x3;
   152      for (j=0; j<3; j++) {
   153          secp256k1_fe_sqr(&x6, &x6);
   154      }
   155      secp256k1_fe_mul(&x6, &x6, &x3);
   156  
   157      x9 = x6;
   158      for (j=0; j<3; j++) {
   159          secp256k1_fe_sqr(&x9, &x9);
   160      }
   161      secp256k1_fe_mul(&x9, &x9, &x3);
   162  
   163      x11 = x9;
   164      for (j=0; j<2; j++) {
   165          secp256k1_fe_sqr(&x11, &x11);
   166      }
   167      secp256k1_fe_mul(&x11, &x11, &x2);
   168  
   169      x22 = x11;
   170      for (j=0; j<11; j++) {
   171          secp256k1_fe_sqr(&x22, &x22);
   172      }
   173      secp256k1_fe_mul(&x22, &x22, &x11);
   174  
   175      x44 = x22;
   176      for (j=0; j<22; j++) {
   177          secp256k1_fe_sqr(&x44, &x44);
   178      }
   179      secp256k1_fe_mul(&x44, &x44, &x22);
   180  
   181      x88 = x44;
   182      for (j=0; j<44; j++) {
   183          secp256k1_fe_sqr(&x88, &x88);
   184      }
   185      secp256k1_fe_mul(&x88, &x88, &x44);
   186  
   187      x176 = x88;
   188      for (j=0; j<88; j++) {
   189          secp256k1_fe_sqr(&x176, &x176);
   190      }
   191      secp256k1_fe_mul(&x176, &x176, &x88);
   192  
   193      x220 = x176;
   194      for (j=0; j<44; j++) {
   195          secp256k1_fe_sqr(&x220, &x220);
   196      }
   197      secp256k1_fe_mul(&x220, &x220, &x44);
   198  
   199      x223 = x220;
   200      for (j=0; j<3; j++) {
   201          secp256k1_fe_sqr(&x223, &x223);
   202      }
   203      secp256k1_fe_mul(&x223, &x223, &x3);
   204  
   205      /* The final result is then assembled using a sliding window over the blocks. */
   206  
   207      t1 = x223;
   208      for (j=0; j<23; j++) {
   209          secp256k1_fe_sqr(&t1, &t1);
   210      }
   211      secp256k1_fe_mul(&t1, &t1, &x22);
   212      for (j=0; j<5; j++) {
   213          secp256k1_fe_sqr(&t1, &t1);
   214      }
   215      secp256k1_fe_mul(&t1, &t1, a);
   216      for (j=0; j<3; j++) {
   217          secp256k1_fe_sqr(&t1, &t1);
   218      }
   219      secp256k1_fe_mul(&t1, &t1, &x2);
   220      for (j=0; j<2; j++) {
   221          secp256k1_fe_sqr(&t1, &t1);
   222      }
   223      secp256k1_fe_mul(r, a, &t1);
   224  }
   225  
   226  static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
   227  #if defined(USE_FIELD_INV_BUILTIN)
   228      secp256k1_fe_inv(r, a);
   229  #elif defined(USE_FIELD_INV_NUM)
   230      secp256k1_num n, m;
   231      static const secp256k1_fe negone = SECP256K1_FE_CONST(
   232          0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
   233          0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
   234      );
   235      /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
   236      static const unsigned char prime[32] = {
   237          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   238          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   239          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   240          0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
   241      };
   242      unsigned char b[32];
   243      int res;
   244      secp256k1_fe c = *a;
   245      secp256k1_fe_normalize_var(&c);
   246      secp256k1_fe_get_b32(b, &c);
   247      secp256k1_num_set_bin(&n, b, 32);
   248      secp256k1_num_set_bin(&m, prime, 32);
   249      secp256k1_num_mod_inverse(&n, &n, &m);
   250      secp256k1_num_get_bin(b, 32, &n);
   251      res = secp256k1_fe_set_b32(r, b);
   252      (void)res;
   253      VERIFY_CHECK(res);
   254      /* Verify the result is the (unique) valid inverse using non-GMP code. */
   255      secp256k1_fe_mul(&c, &c, r);
   256      secp256k1_fe_add(&c, &negone);
   257      CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
   258  #else
   259  #error "Please select field inverse implementation"
   260  #endif
   261  }
   262  
   263  static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
   264      secp256k1_fe u;
   265      size_t i;
   266      if (len < 1) {
   267          return;
   268      }
   269  
   270      VERIFY_CHECK((r + len <= a) || (a + len <= r));
   271  
   272      r[0] = a[0];
   273  
   274      i = 0;
   275      while (++i < len) {
   276          secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
   277      }
   278  
   279      secp256k1_fe_inv_var(&u, &r[--i]);
   280  
   281      while (i > 0) {
   282          size_t j = i--;
   283          secp256k1_fe_mul(&r[j], &r[i], &u);
   284          secp256k1_fe_mul(&u, &u, &a[j]);
   285      }
   286  
   287      r[0] = u;
   288  }
   289  
   290  static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
   291  #ifndef USE_NUM_NONE
   292      unsigned char b[32];
   293      secp256k1_num n;
   294      secp256k1_num m;
   295      /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
   296      static const unsigned char prime[32] = {
   297          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   298          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   299          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
   300          0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
   301      };
   302  
   303      secp256k1_fe c = *a;
   304      secp256k1_fe_normalize_var(&c);
   305      secp256k1_fe_get_b32(b, &c);
   306      secp256k1_num_set_bin(&n, b, 32);
   307      secp256k1_num_set_bin(&m, prime, 32);
   308      return secp256k1_num_jacobi(&n, &m) >= 0;
   309  #else
   310      secp256k1_fe r;
   311      return secp256k1_fe_sqrt(&r, a);
   312  #endif
   313  }
   314  
   315  #endif