github.com/neatio-net/neatio@v1.7.3-0.20231114194659-f4d7a2226baa/utilities/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_SCALAR_REPR_IMPL_H_ 8 #define _SECP256K1_SCALAR_REPR_IMPL_H_ 9 10 /* Limbs of the secp256k1 order. */ 11 #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) 12 #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL) 13 #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL) 14 #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) 15 16 /* Limbs of 2^256 minus the secp256k1 order. */ 17 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) 18 #define SECP256K1_N_C_1 (~SECP256K1_N_1) 19 #define SECP256K1_N_C_2 (1) 20 21 /* Limbs of half the secp256k1 order. */ 22 #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL) 23 #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL) 24 #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) 25 #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL) 26 27 SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { 28 r->d[0] = 0; 29 r->d[1] = 0; 30 r->d[2] = 0; 31 r->d[3] = 0; 32 } 33 34 SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { 35 r->d[0] = v; 36 r->d[1] = 0; 37 r->d[2] = 0; 38 r->d[3] = 0; 39 } 40 41 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { 42 VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6); 43 return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1); 44 } 45 46 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { 47 VERIFY_CHECK(count < 32); 48 VERIFY_CHECK(offset + count <= 256); 49 if ((offset + count - 1) >> 6 == offset >> 6) { 50 return secp256k1_scalar_get_bits(a, offset, count); 51 } else { 52 VERIFY_CHECK((offset >> 6) + 1 < 4); 53 return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1); 54 } 55 } 56 57 SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { 58 int yes = 0; 59 int no = 0; 60 no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */ 61 no |= (a->d[2] < SECP256K1_N_2); 62 yes |= (a->d[2] > SECP256K1_N_2) & ~no; 63 no |= (a->d[1] < SECP256K1_N_1); 64 yes |= (a->d[1] > SECP256K1_N_1) & ~no; 65 yes |= (a->d[0] >= SECP256K1_N_0) & ~no; 66 return yes; 67 } 68 69 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) { 70 uint128_t t; 71 VERIFY_CHECK(overflow <= 1); 72 t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0; 73 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 74 t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1; 75 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 76 t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2; 77 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 78 t += (uint64_t)r->d[3]; 79 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; 80 return overflow; 81 } 82 83 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { 84 int overflow; 85 uint128_t t = (uint128_t)a->d[0] + b->d[0]; 86 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 87 t += (uint128_t)a->d[1] + b->d[1]; 88 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 89 t += (uint128_t)a->d[2] + b->d[2]; 90 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 91 t += (uint128_t)a->d[3] + b->d[3]; 92 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 93 overflow = t + secp256k1_scalar_check_overflow(r); 94 VERIFY_CHECK(overflow == 0 || overflow == 1); 95 secp256k1_scalar_reduce(r, overflow); 96 return overflow; 97 } 98 99 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { 100 uint128_t t; 101 VERIFY_CHECK(bit < 256); 102 bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */ 103 t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F)); 104 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 105 t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F)); 106 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 107 t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F)); 108 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; 109 t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F)); 110 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; 111 #ifdef VERIFY 112 VERIFY_CHECK((t >> 64) == 0); 113 VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); 114 #endif 115 } 116 117 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { 118 int over; 119 r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56; 120 r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56; 121 r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56; 122 r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56; 123 over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r)); 124 if (overflow) { 125 *overflow = over; 126 } 127 } 128 129 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { 130 bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3]; 131 bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2]; 132 bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1]; 133 bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; 134 } 135 136 SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { 137 return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0; 138 } 139 140 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { 141 uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0); 142 uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1; 143 r->d[0] = t & nonzero; t >>= 64; 144 t += (uint128_t)(~a->d[1]) + SECP256K1_N_1; 145 r->d[1] = t & nonzero; t >>= 64; 146 t += (uint128_t)(~a->d[2]) + SECP256K1_N_2; 147 r->d[2] = t & nonzero; t >>= 64; 148 t += (uint128_t)(~a->d[3]) + SECP256K1_N_3; 149 r->d[3] = t & nonzero; 150 } 151 152 SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { 153 return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0; 154 } 155 156 static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { 157 int yes = 0; 158 int no = 0; 159 no |= (a->d[3] < SECP256K1_N_H_3); 160 yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; 161 no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */ 162 no |= (a->d[1] < SECP256K1_N_H_1) & ~yes; 163 yes |= (a->d[1] > SECP256K1_N_H_1) & ~no; 164 yes |= (a->d[0] > SECP256K1_N_H_0) & ~no; 165 return yes; 166 } 167 168 static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { 169 /* If we are flag = 0, mask = 00...00 and this is a no-op; 170 * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ 171 uint64_t mask = !flag - 1; 172 uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1; 173 uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); 174 r->d[0] = t & nonzero; t >>= 64; 175 t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); 176 r->d[1] = t & nonzero; t >>= 64; 177 t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); 178 r->d[2] = t & nonzero; t >>= 64; 179 t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); 180 r->d[3] = t & nonzero; 181 return 2 * (mask == 0) - 1; 182 } 183 184 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ 185 186 /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ 187 #define muladd(a,b) { \ 188 uint64_t tl, th; \ 189 { \ 190 uint128_t t = (uint128_t)a * b; \ 191 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ 192 tl = t; \ 193 } \ 194 c0 += tl; /* overflow is handled on the next line */ \ 195 th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ 196 c1 += th; /* overflow is handled on the next line */ \ 197 c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ 198 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ 199 } 200 201 /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */ 202 #define muladd_fast(a,b) { \ 203 uint64_t tl, th; \ 204 { \ 205 uint128_t t = (uint128_t)a * b; \ 206 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ 207 tl = t; \ 208 } \ 209 c0 += tl; /* overflow is handled on the next line */ \ 210 th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ 211 c1 += th; /* never overflows by contract (verified in the next line) */ \ 212 VERIFY_CHECK(c1 >= th); \ 213 } 214 215 /** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ 216 #define muladd2(a,b) { \ 217 uint64_t tl, th, th2, tl2; \ 218 { \ 219 uint128_t t = (uint128_t)a * b; \ 220 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ 221 tl = t; \ 222 } \ 223 th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \ 224 c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ 225 VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ 226 tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \ 227 th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ 228 c0 += tl2; /* overflow is handled on the next line */ \ 229 th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ 230 c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ 231 VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ 232 c1 += th2; /* overflow is handled on the next line */ \ 233 c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ 234 VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ 235 } 236 237 /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ 238 #define sumadd(a) { \ 239 unsigned int over; \ 240 c0 += (a); /* overflow is handled on the next line */ \ 241 over = (c0 < (a)) ? 1 : 0; \ 242 c1 += over; /* overflow is handled on the next line */ \ 243 c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ 244 } 245 246 /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ 247 #define sumadd_fast(a) { \ 248 c0 += (a); /* overflow is handled on the next line */ \ 249 c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ 250 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ 251 VERIFY_CHECK(c2 == 0); \ 252 } 253 254 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */ 255 #define extract(n) { \ 256 (n) = c0; \ 257 c0 = c1; \ 258 c1 = c2; \ 259 c2 = 0; \ 260 } 261 262 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */ 263 #define extract_fast(n) { \ 264 (n) = c0; \ 265 c0 = c1; \ 266 c1 = 0; \ 267 VERIFY_CHECK(c2 == 0); \ 268 } 269 270 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) { 271 #ifdef USE_ASM_X86_64 272 /* Reduce 512 bits into 385. */ 273 uint64_t m0, m1, m2, m3, m4, m5, m6; 274 uint64_t p0, p1, p2, p3, p4; 275 uint64_t c; 276 277 __asm__ __volatile__( 278 /* Preload. */ 279 "movq 32(%%rsi), %%r11\n" 280 "movq 40(%%rsi), %%r12\n" 281 "movq 48(%%rsi), %%r13\n" 282 "movq 56(%%rsi), %%r14\n" 283 /* Initialize r8,r9,r10 */ 284 "movq 0(%%rsi), %%r8\n" 285 "xorq %%r9, %%r9\n" 286 "xorq %%r10, %%r10\n" 287 /* (r8,r9) += n0 * c0 */ 288 "movq %8, %%rax\n" 289 "mulq %%r11\n" 290 "addq %%rax, %%r8\n" 291 "adcq %%rdx, %%r9\n" 292 /* extract m0 */ 293 "movq %%r8, %q0\n" 294 "xorq %%r8, %%r8\n" 295 /* (r9,r10) += l1 */ 296 "addq 8(%%rsi), %%r9\n" 297 "adcq $0, %%r10\n" 298 /* (r9,r10,r8) += n1 * c0 */ 299 "movq %8, %%rax\n" 300 "mulq %%r12\n" 301 "addq %%rax, %%r9\n" 302 "adcq %%rdx, %%r10\n" 303 "adcq $0, %%r8\n" 304 /* (r9,r10,r8) += n0 * c1 */ 305 "movq %9, %%rax\n" 306 "mulq %%r11\n" 307 "addq %%rax, %%r9\n" 308 "adcq %%rdx, %%r10\n" 309 "adcq $0, %%r8\n" 310 /* extract m1 */ 311 "movq %%r9, %q1\n" 312 "xorq %%r9, %%r9\n" 313 /* (r10,r8,r9) += l2 */ 314 "addq 16(%%rsi), %%r10\n" 315 "adcq $0, %%r8\n" 316 "adcq $0, %%r9\n" 317 /* (r10,r8,r9) += n2 * c0 */ 318 "movq %8, %%rax\n" 319 "mulq %%r13\n" 320 "addq %%rax, %%r10\n" 321 "adcq %%rdx, %%r8\n" 322 "adcq $0, %%r9\n" 323 /* (r10,r8,r9) += n1 * c1 */ 324 "movq %9, %%rax\n" 325 "mulq %%r12\n" 326 "addq %%rax, %%r10\n" 327 "adcq %%rdx, %%r8\n" 328 "adcq $0, %%r9\n" 329 /* (r10,r8,r9) += n0 */ 330 "addq %%r11, %%r10\n" 331 "adcq $0, %%r8\n" 332 "adcq $0, %%r9\n" 333 /* extract m2 */ 334 "movq %%r10, %q2\n" 335 "xorq %%r10, %%r10\n" 336 /* (r8,r9,r10) += l3 */ 337 "addq 24(%%rsi), %%r8\n" 338 "adcq $0, %%r9\n" 339 "adcq $0, %%r10\n" 340 /* (r8,r9,r10) += n3 * c0 */ 341 "movq %8, %%rax\n" 342 "mulq %%r14\n" 343 "addq %%rax, %%r8\n" 344 "adcq %%rdx, %%r9\n" 345 "adcq $0, %%r10\n" 346 /* (r8,r9,r10) += n2 * c1 */ 347 "movq %9, %%rax\n" 348 "mulq %%r13\n" 349 "addq %%rax, %%r8\n" 350 "adcq %%rdx, %%r9\n" 351 "adcq $0, %%r10\n" 352 /* (r8,r9,r10) += n1 */ 353 "addq %%r12, %%r8\n" 354 "adcq $0, %%r9\n" 355 "adcq $0, %%r10\n" 356 /* extract m3 */ 357 "movq %%r8, %q3\n" 358 "xorq %%r8, %%r8\n" 359 /* (r9,r10,r8) += n3 * c1 */ 360 "movq %9, %%rax\n" 361 "mulq %%r14\n" 362 "addq %%rax, %%r9\n" 363 "adcq %%rdx, %%r10\n" 364 "adcq $0, %%r8\n" 365 /* (r9,r10,r8) += n2 */ 366 "addq %%r13, %%r9\n" 367 "adcq $0, %%r10\n" 368 "adcq $0, %%r8\n" 369 /* extract m4 */ 370 "movq %%r9, %q4\n" 371 /* (r10,r8) += n3 */ 372 "addq %%r14, %%r10\n" 373 "adcq $0, %%r8\n" 374 /* extract m5 */ 375 "movq %%r10, %q5\n" 376 /* extract m6 */ 377 "movq %%r8, %q6\n" 378 : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6) 379 : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) 380 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc"); 381 382 /* Reduce 385 bits into 258. */ 383 __asm__ __volatile__( 384 /* Preload */ 385 "movq %q9, %%r11\n" 386 "movq %q10, %%r12\n" 387 "movq %q11, %%r13\n" 388 /* Initialize (r8,r9,r10) */ 389 "movq %q5, %%r8\n" 390 "xorq %%r9, %%r9\n" 391 "xorq %%r10, %%r10\n" 392 /* (r8,r9) += m4 * c0 */ 393 "movq %12, %%rax\n" 394 "mulq %%r11\n" 395 "addq %%rax, %%r8\n" 396 "adcq %%rdx, %%r9\n" 397 /* extract p0 */ 398 "movq %%r8, %q0\n" 399 "xorq %%r8, %%r8\n" 400 /* (r9,r10) += m1 */ 401 "addq %q6, %%r9\n" 402 "adcq $0, %%r10\n" 403 /* (r9,r10,r8) += m5 * c0 */ 404 "movq %12, %%rax\n" 405 "mulq %%r12\n" 406 "addq %%rax, %%r9\n" 407 "adcq %%rdx, %%r10\n" 408 "adcq $0, %%r8\n" 409 /* (r9,r10,r8) += m4 * c1 */ 410 "movq %13, %%rax\n" 411 "mulq %%r11\n" 412 "addq %%rax, %%r9\n" 413 "adcq %%rdx, %%r10\n" 414 "adcq $0, %%r8\n" 415 /* extract p1 */ 416 "movq %%r9, %q1\n" 417 "xorq %%r9, %%r9\n" 418 /* (r10,r8,r9) += m2 */ 419 "addq %q7, %%r10\n" 420 "adcq $0, %%r8\n" 421 "adcq $0, %%r9\n" 422 /* (r10,r8,r9) += m6 * c0 */ 423 "movq %12, %%rax\n" 424 "mulq %%r13\n" 425 "addq %%rax, %%r10\n" 426 "adcq %%rdx, %%r8\n" 427 "adcq $0, %%r9\n" 428 /* (r10,r8,r9) += m5 * c1 */ 429 "movq %13, %%rax\n" 430 "mulq %%r12\n" 431 "addq %%rax, %%r10\n" 432 "adcq %%rdx, %%r8\n" 433 "adcq $0, %%r9\n" 434 /* (r10,r8,r9) += m4 */ 435 "addq %%r11, %%r10\n" 436 "adcq $0, %%r8\n" 437 "adcq $0, %%r9\n" 438 /* extract p2 */ 439 "movq %%r10, %q2\n" 440 /* (r8,r9) += m3 */ 441 "addq %q8, %%r8\n" 442 "adcq $0, %%r9\n" 443 /* (r8,r9) += m6 * c1 */ 444 "movq %13, %%rax\n" 445 "mulq %%r13\n" 446 "addq %%rax, %%r8\n" 447 "adcq %%rdx, %%r9\n" 448 /* (r8,r9) += m5 */ 449 "addq %%r12, %%r8\n" 450 "adcq $0, %%r9\n" 451 /* extract p3 */ 452 "movq %%r8, %q3\n" 453 /* (r9) += m6 */ 454 "addq %%r13, %%r9\n" 455 /* extract p4 */ 456 "movq %%r9, %q4\n" 457 : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4) 458 : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) 459 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc"); 460 461 /* Reduce 258 bits into 256. */ 462 __asm__ __volatile__( 463 /* Preload */ 464 "movq %q5, %%r10\n" 465 /* (rax,rdx) = p4 * c0 */ 466 "movq %7, %%rax\n" 467 "mulq %%r10\n" 468 /* (rax,rdx) += p0 */ 469 "addq %q1, %%rax\n" 470 "adcq $0, %%rdx\n" 471 /* extract r0 */ 472 "movq %%rax, 0(%q6)\n" 473 /* Move to (r8,r9) */ 474 "movq %%rdx, %%r8\n" 475 "xorq %%r9, %%r9\n" 476 /* (r8,r9) += p1 */ 477 "addq %q2, %%r8\n" 478 "adcq $0, %%r9\n" 479 /* (r8,r9) += p4 * c1 */ 480 "movq %8, %%rax\n" 481 "mulq %%r10\n" 482 "addq %%rax, %%r8\n" 483 "adcq %%rdx, %%r9\n" 484 /* Extract r1 */ 485 "movq %%r8, 8(%q6)\n" 486 "xorq %%r8, %%r8\n" 487 /* (r9,r8) += p4 */ 488 "addq %%r10, %%r9\n" 489 "adcq $0, %%r8\n" 490 /* (r9,r8) += p2 */ 491 "addq %q3, %%r9\n" 492 "adcq $0, %%r8\n" 493 /* Extract r2 */ 494 "movq %%r9, 16(%q6)\n" 495 "xorq %%r9, %%r9\n" 496 /* (r8,r9) += p3 */ 497 "addq %q4, %%r8\n" 498 "adcq $0, %%r9\n" 499 /* Extract r3 */ 500 "movq %%r8, 24(%q6)\n" 501 /* Extract c */ 502 "movq %%r9, %q0\n" 503 : "=g"(c) 504 : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) 505 : "rax", "rdx", "r8", "r9", "r10", "cc", "memory"); 506 #else 507 uint128_t c; 508 uint64_t c0, c1, c2; 509 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7]; 510 uint64_t m0, m1, m2, m3, m4, m5; 511 uint32_t m6; 512 uint64_t p0, p1, p2, p3; 513 uint32_t p4; 514 515 /* Reduce 512 bits into 385. */ 516 /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */ 517 c0 = l[0]; c1 = 0; c2 = 0; 518 muladd_fast(n0, SECP256K1_N_C_0); 519 extract_fast(m0); 520 sumadd_fast(l[1]); 521 muladd(n1, SECP256K1_N_C_0); 522 muladd(n0, SECP256K1_N_C_1); 523 extract(m1); 524 sumadd(l[2]); 525 muladd(n2, SECP256K1_N_C_0); 526 muladd(n1, SECP256K1_N_C_1); 527 sumadd(n0); 528 extract(m2); 529 sumadd(l[3]); 530 muladd(n3, SECP256K1_N_C_0); 531 muladd(n2, SECP256K1_N_C_1); 532 sumadd(n1); 533 extract(m3); 534 muladd(n3, SECP256K1_N_C_1); 535 sumadd(n2); 536 extract(m4); 537 sumadd_fast(n3); 538 extract_fast(m5); 539 VERIFY_CHECK(c0 <= 1); 540 m6 = c0; 541 542 /* Reduce 385 bits into 258. */ 543 /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */ 544 c0 = m0; c1 = 0; c2 = 0; 545 muladd_fast(m4, SECP256K1_N_C_0); 546 extract_fast(p0); 547 sumadd_fast(m1); 548 muladd(m5, SECP256K1_N_C_0); 549 muladd(m4, SECP256K1_N_C_1); 550 extract(p1); 551 sumadd(m2); 552 muladd(m6, SECP256K1_N_C_0); 553 muladd(m5, SECP256K1_N_C_1); 554 sumadd(m4); 555 extract(p2); 556 sumadd_fast(m3); 557 muladd_fast(m6, SECP256K1_N_C_1); 558 sumadd_fast(m5); 559 extract_fast(p3); 560 p4 = c0 + m6; 561 VERIFY_CHECK(p4 <= 2); 562 563 /* Reduce 258 bits into 256. */ 564 /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */ 565 c = p0 + (uint128_t)SECP256K1_N_C_0 * p4; 566 r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; 567 c += p1 + (uint128_t)SECP256K1_N_C_1 * p4; 568 r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; 569 c += p2 + (uint128_t)p4; 570 r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; 571 c += p3; 572 r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; 573 #endif 574 575 /* Final reduction of r. */ 576 secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); 577 } 578 579 static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) { 580 #ifdef USE_ASM_X86_64 581 const uint64_t *pb = b->d; 582 __asm__ __volatile__( 583 /* Preload */ 584 "movq 0(%%rdi), %%r15\n" 585 "movq 8(%%rdi), %%rbx\n" 586 "movq 16(%%rdi), %%rcx\n" 587 "movq 0(%%rdx), %%r11\n" 588 "movq 8(%%rdx), %%r12\n" 589 "movq 16(%%rdx), %%r13\n" 590 "movq 24(%%rdx), %%r14\n" 591 /* (rax,rdx) = a0 * b0 */ 592 "movq %%r15, %%rax\n" 593 "mulq %%r11\n" 594 /* Extract l0 */ 595 "movq %%rax, 0(%%rsi)\n" 596 /* (r8,r9,r10) = (rdx) */ 597 "movq %%rdx, %%r8\n" 598 "xorq %%r9, %%r9\n" 599 "xorq %%r10, %%r10\n" 600 /* (r8,r9,r10) += a0 * b1 */ 601 "movq %%r15, %%rax\n" 602 "mulq %%r12\n" 603 "addq %%rax, %%r8\n" 604 "adcq %%rdx, %%r9\n" 605 "adcq $0, %%r10\n" 606 /* (r8,r9,r10) += a1 * b0 */ 607 "movq %%rbx, %%rax\n" 608 "mulq %%r11\n" 609 "addq %%rax, %%r8\n" 610 "adcq %%rdx, %%r9\n" 611 "adcq $0, %%r10\n" 612 /* Extract l1 */ 613 "movq %%r8, 8(%%rsi)\n" 614 "xorq %%r8, %%r8\n" 615 /* (r9,r10,r8) += a0 * b2 */ 616 "movq %%r15, %%rax\n" 617 "mulq %%r13\n" 618 "addq %%rax, %%r9\n" 619 "adcq %%rdx, %%r10\n" 620 "adcq $0, %%r8\n" 621 /* (r9,r10,r8) += a1 * b1 */ 622 "movq %%rbx, %%rax\n" 623 "mulq %%r12\n" 624 "addq %%rax, %%r9\n" 625 "adcq %%rdx, %%r10\n" 626 "adcq $0, %%r8\n" 627 /* (r9,r10,r8) += a2 * b0 */ 628 "movq %%rcx, %%rax\n" 629 "mulq %%r11\n" 630 "addq %%rax, %%r9\n" 631 "adcq %%rdx, %%r10\n" 632 "adcq $0, %%r8\n" 633 /* Extract l2 */ 634 "movq %%r9, 16(%%rsi)\n" 635 "xorq %%r9, %%r9\n" 636 /* (r10,r8,r9) += a0 * b3 */ 637 "movq %%r15, %%rax\n" 638 "mulq %%r14\n" 639 "addq %%rax, %%r10\n" 640 "adcq %%rdx, %%r8\n" 641 "adcq $0, %%r9\n" 642 /* Preload a3 */ 643 "movq 24(%%rdi), %%r15\n" 644 /* (r10,r8,r9) += a1 * b2 */ 645 "movq %%rbx, %%rax\n" 646 "mulq %%r13\n" 647 "addq %%rax, %%r10\n" 648 "adcq %%rdx, %%r8\n" 649 "adcq $0, %%r9\n" 650 /* (r10,r8,r9) += a2 * b1 */ 651 "movq %%rcx, %%rax\n" 652 "mulq %%r12\n" 653 "addq %%rax, %%r10\n" 654 "adcq %%rdx, %%r8\n" 655 "adcq $0, %%r9\n" 656 /* (r10,r8,r9) += a3 * b0 */ 657 "movq %%r15, %%rax\n" 658 "mulq %%r11\n" 659 "addq %%rax, %%r10\n" 660 "adcq %%rdx, %%r8\n" 661 "adcq $0, %%r9\n" 662 /* Extract l3 */ 663 "movq %%r10, 24(%%rsi)\n" 664 "xorq %%r10, %%r10\n" 665 /* (r8,r9,r10) += a1 * b3 */ 666 "movq %%rbx, %%rax\n" 667 "mulq %%r14\n" 668 "addq %%rax, %%r8\n" 669 "adcq %%rdx, %%r9\n" 670 "adcq $0, %%r10\n" 671 /* (r8,r9,r10) += a2 * b2 */ 672 "movq %%rcx, %%rax\n" 673 "mulq %%r13\n" 674 "addq %%rax, %%r8\n" 675 "adcq %%rdx, %%r9\n" 676 "adcq $0, %%r10\n" 677 /* (r8,r9,r10) += a3 * b1 */ 678 "movq %%r15, %%rax\n" 679 "mulq %%r12\n" 680 "addq %%rax, %%r8\n" 681 "adcq %%rdx, %%r9\n" 682 "adcq $0, %%r10\n" 683 /* Extract l4 */ 684 "movq %%r8, 32(%%rsi)\n" 685 "xorq %%r8, %%r8\n" 686 /* (r9,r10,r8) += a2 * b3 */ 687 "movq %%rcx, %%rax\n" 688 "mulq %%r14\n" 689 "addq %%rax, %%r9\n" 690 "adcq %%rdx, %%r10\n" 691 "adcq $0, %%r8\n" 692 /* (r9,r10,r8) += a3 * b2 */ 693 "movq %%r15, %%rax\n" 694 "mulq %%r13\n" 695 "addq %%rax, %%r9\n" 696 "adcq %%rdx, %%r10\n" 697 "adcq $0, %%r8\n" 698 /* Extract l5 */ 699 "movq %%r9, 40(%%rsi)\n" 700 /* (r10,r8) += a3 * b3 */ 701 "movq %%r15, %%rax\n" 702 "mulq %%r14\n" 703 "addq %%rax, %%r10\n" 704 "adcq %%rdx, %%r8\n" 705 /* Extract l6 */ 706 "movq %%r10, 48(%%rsi)\n" 707 /* Extract l7 */ 708 "movq %%r8, 56(%%rsi)\n" 709 : "+d"(pb) 710 : "S"(l), "D"(a->d) 711 : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory"); 712 #else 713 /* 160 bit accumulator. */ 714 uint64_t c0 = 0, c1 = 0; 715 uint32_t c2 = 0; 716 717 /* l[0..7] = a[0..3] * b[0..3]. */ 718 muladd_fast(a->d[0], b->d[0]); 719 extract_fast(l[0]); 720 muladd(a->d[0], b->d[1]); 721 muladd(a->d[1], b->d[0]); 722 extract(l[1]); 723 muladd(a->d[0], b->d[2]); 724 muladd(a->d[1], b->d[1]); 725 muladd(a->d[2], b->d[0]); 726 extract(l[2]); 727 muladd(a->d[0], b->d[3]); 728 muladd(a->d[1], b->d[2]); 729 muladd(a->d[2], b->d[1]); 730 muladd(a->d[3], b->d[0]); 731 extract(l[3]); 732 muladd(a->d[1], b->d[3]); 733 muladd(a->d[2], b->d[2]); 734 muladd(a->d[3], b->d[1]); 735 extract(l[4]); 736 muladd(a->d[2], b->d[3]); 737 muladd(a->d[3], b->d[2]); 738 extract(l[5]); 739 muladd_fast(a->d[3], b->d[3]); 740 extract_fast(l[6]); 741 VERIFY_CHECK(c1 == 0); 742 l[7] = c0; 743 #endif 744 } 745 746 static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) { 747 #ifdef USE_ASM_X86_64 748 __asm__ __volatile__( 749 /* Preload */ 750 "movq 0(%%rdi), %%r11\n" 751 "movq 8(%%rdi), %%r12\n" 752 "movq 16(%%rdi), %%r13\n" 753 "movq 24(%%rdi), %%r14\n" 754 /* (rax,rdx) = a0 * a0 */ 755 "movq %%r11, %%rax\n" 756 "mulq %%r11\n" 757 /* Extract l0 */ 758 "movq %%rax, 0(%%rsi)\n" 759 /* (r8,r9,r10) = (rdx,0) */ 760 "movq %%rdx, %%r8\n" 761 "xorq %%r9, %%r9\n" 762 "xorq %%r10, %%r10\n" 763 /* (r8,r9,r10) += 2 * a0 * a1 */ 764 "movq %%r11, %%rax\n" 765 "mulq %%r12\n" 766 "addq %%rax, %%r8\n" 767 "adcq %%rdx, %%r9\n" 768 "adcq $0, %%r10\n" 769 "addq %%rax, %%r8\n" 770 "adcq %%rdx, %%r9\n" 771 "adcq $0, %%r10\n" 772 /* Extract l1 */ 773 "movq %%r8, 8(%%rsi)\n" 774 "xorq %%r8, %%r8\n" 775 /* (r9,r10,r8) += 2 * a0 * a2 */ 776 "movq %%r11, %%rax\n" 777 "mulq %%r13\n" 778 "addq %%rax, %%r9\n" 779 "adcq %%rdx, %%r10\n" 780 "adcq $0, %%r8\n" 781 "addq %%rax, %%r9\n" 782 "adcq %%rdx, %%r10\n" 783 "adcq $0, %%r8\n" 784 /* (r9,r10,r8) += a1 * a1 */ 785 "movq %%r12, %%rax\n" 786 "mulq %%r12\n" 787 "addq %%rax, %%r9\n" 788 "adcq %%rdx, %%r10\n" 789 "adcq $0, %%r8\n" 790 /* Extract l2 */ 791 "movq %%r9, 16(%%rsi)\n" 792 "xorq %%r9, %%r9\n" 793 /* (r10,r8,r9) += 2 * a0 * a3 */ 794 "movq %%r11, %%rax\n" 795 "mulq %%r14\n" 796 "addq %%rax, %%r10\n" 797 "adcq %%rdx, %%r8\n" 798 "adcq $0, %%r9\n" 799 "addq %%rax, %%r10\n" 800 "adcq %%rdx, %%r8\n" 801 "adcq $0, %%r9\n" 802 /* (r10,r8,r9) += 2 * a1 * a2 */ 803 "movq %%r12, %%rax\n" 804 "mulq %%r13\n" 805 "addq %%rax, %%r10\n" 806 "adcq %%rdx, %%r8\n" 807 "adcq $0, %%r9\n" 808 "addq %%rax, %%r10\n" 809 "adcq %%rdx, %%r8\n" 810 "adcq $0, %%r9\n" 811 /* Extract l3 */ 812 "movq %%r10, 24(%%rsi)\n" 813 "xorq %%r10, %%r10\n" 814 /* (r8,r9,r10) += 2 * a1 * a3 */ 815 "movq %%r12, %%rax\n" 816 "mulq %%r14\n" 817 "addq %%rax, %%r8\n" 818 "adcq %%rdx, %%r9\n" 819 "adcq $0, %%r10\n" 820 "addq %%rax, %%r8\n" 821 "adcq %%rdx, %%r9\n" 822 "adcq $0, %%r10\n" 823 /* (r8,r9,r10) += a2 * a2 */ 824 "movq %%r13, %%rax\n" 825 "mulq %%r13\n" 826 "addq %%rax, %%r8\n" 827 "adcq %%rdx, %%r9\n" 828 "adcq $0, %%r10\n" 829 /* Extract l4 */ 830 "movq %%r8, 32(%%rsi)\n" 831 "xorq %%r8, %%r8\n" 832 /* (r9,r10,r8) += 2 * a2 * a3 */ 833 "movq %%r13, %%rax\n" 834 "mulq %%r14\n" 835 "addq %%rax, %%r9\n" 836 "adcq %%rdx, %%r10\n" 837 "adcq $0, %%r8\n" 838 "addq %%rax, %%r9\n" 839 "adcq %%rdx, %%r10\n" 840 "adcq $0, %%r8\n" 841 /* Extract l5 */ 842 "movq %%r9, 40(%%rsi)\n" 843 /* (r10,r8) += a3 * a3 */ 844 "movq %%r14, %%rax\n" 845 "mulq %%r14\n" 846 "addq %%rax, %%r10\n" 847 "adcq %%rdx, %%r8\n" 848 /* Extract l6 */ 849 "movq %%r10, 48(%%rsi)\n" 850 /* Extract l7 */ 851 "movq %%r8, 56(%%rsi)\n" 852 : 853 : "S"(l), "D"(a->d) 854 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory"); 855 #else 856 /* 160 bit accumulator. */ 857 uint64_t c0 = 0, c1 = 0; 858 uint32_t c2 = 0; 859 860 /* l[0..7] = a[0..3] * b[0..3]. */ 861 muladd_fast(a->d[0], a->d[0]); 862 extract_fast(l[0]); 863 muladd2(a->d[0], a->d[1]); 864 extract(l[1]); 865 muladd2(a->d[0], a->d[2]); 866 muladd(a->d[1], a->d[1]); 867 extract(l[2]); 868 muladd2(a->d[0], a->d[3]); 869 muladd2(a->d[1], a->d[2]); 870 extract(l[3]); 871 muladd2(a->d[1], a->d[3]); 872 muladd(a->d[2], a->d[2]); 873 extract(l[4]); 874 muladd2(a->d[2], a->d[3]); 875 extract(l[5]); 876 muladd_fast(a->d[3], a->d[3]); 877 extract_fast(l[6]); 878 VERIFY_CHECK(c1 == 0); 879 l[7] = c0; 880 #endif 881 } 882 883 #undef sumadd 884 #undef sumadd_fast 885 #undef muladd 886 #undef muladd_fast 887 #undef muladd2 888 #undef extract 889 #undef extract_fast 890 891 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { 892 uint64_t l[8]; 893 secp256k1_scalar_mul_512(l, a, b); 894 secp256k1_scalar_reduce_512(r, l); 895 } 896 897 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { 898 int ret; 899 VERIFY_CHECK(n > 0); 900 VERIFY_CHECK(n < 16); 901 ret = r->d[0] & ((1 << n) - 1); 902 r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n)); 903 r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n)); 904 r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n)); 905 r->d[3] = (r->d[3] >> n); 906 return ret; 907 } 908 909 static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { 910 uint64_t l[8]; 911 secp256k1_scalar_sqr_512(l, a); 912 secp256k1_scalar_reduce_512(r, l); 913 } 914 915 #ifdef USE_ENDOMORPHISM 916 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { 917 r1->d[0] = a->d[0]; 918 r1->d[1] = a->d[1]; 919 r1->d[2] = 0; 920 r1->d[3] = 0; 921 r2->d[0] = a->d[2]; 922 r2->d[1] = a->d[3]; 923 r2->d[2] = 0; 924 r2->d[3] = 0; 925 } 926 #endif 927 928 SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { 929 return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; 930 } 931 932 SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { 933 uint64_t l[8]; 934 unsigned int shiftlimbs; 935 unsigned int shiftlow; 936 unsigned int shifthigh; 937 VERIFY_CHECK(shift >= 256); 938 secp256k1_scalar_mul_512(l, a, b); 939 shiftlimbs = shift >> 6; 940 shiftlow = shift & 0x3F; 941 shifthigh = 64 - shiftlow; 942 r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0; 943 r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; 944 r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; 945 r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0; 946 secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); 947 } 948 949 #endif