github.com/neatio-net/neatio@v1.7.3-0.20231114194659-f4d7a2226baa/utilities/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
     8  #define _SECP256K1_SCALAR_REPR_IMPL_H_
     9  
    10  /* Limbs of the secp256k1 order. */
    11  #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
    12  #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
    13  #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
    14  #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
    15  
    16  /* Limbs of 2^256 minus the secp256k1 order. */
    17  #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
    18  #define SECP256K1_N_C_1 (~SECP256K1_N_1)
    19  #define SECP256K1_N_C_2 (1)
    20  
    21  /* Limbs of half the secp256k1 order. */
    22  #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
    23  #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
    24  #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
    25  #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
    26  
    27  SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
    28      r->d[0] = 0;
    29      r->d[1] = 0;
    30      r->d[2] = 0;
    31      r->d[3] = 0;
    32  }
    33  
    34  SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
    35      r->d[0] = v;
    36      r->d[1] = 0;
    37      r->d[2] = 0;
    38      r->d[3] = 0;
    39  }
    40  
    41  SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
    42      VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
    43      return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
    44  }
    45  
    46  SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
    47      VERIFY_CHECK(count < 32);
    48      VERIFY_CHECK(offset + count <= 256);
    49      if ((offset + count - 1) >> 6 == offset >> 6) {
    50          return secp256k1_scalar_get_bits(a, offset, count);
    51      } else {
    52          VERIFY_CHECK((offset >> 6) + 1 < 4);
    53          return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
    54      }
    55  }
    56  
    57  SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
    58      int yes = 0;
    59      int no = 0;
    60      no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
    61      no |= (a->d[2] < SECP256K1_N_2);
    62      yes |= (a->d[2] > SECP256K1_N_2) & ~no;
    63      no |= (a->d[1] < SECP256K1_N_1);
    64      yes |= (a->d[1] > SECP256K1_N_1) & ~no;
    65      yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
    66      return yes;
    67  }
    68  
    69  SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
    70      uint128_t t;
    71      VERIFY_CHECK(overflow <= 1);
    72      t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
    73      r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    74      t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
    75      r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    76      t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
    77      r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    78      t += (uint64_t)r->d[3];
    79      r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
    80      return overflow;
    81  }
    82  
    83  static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
    84      int overflow;
    85      uint128_t t = (uint128_t)a->d[0] + b->d[0];
    86      r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    87      t += (uint128_t)a->d[1] + b->d[1];
    88      r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    89      t += (uint128_t)a->d[2] + b->d[2];
    90      r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    91      t += (uint128_t)a->d[3] + b->d[3];
    92      r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    93      overflow = t + secp256k1_scalar_check_overflow(r);
    94      VERIFY_CHECK(overflow == 0 || overflow == 1);
    95      secp256k1_scalar_reduce(r, overflow);
    96      return overflow;
    97  }
    98  
    99  static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
   100      uint128_t t;
   101      VERIFY_CHECK(bit < 256);
   102      bit += ((uint32_t) flag - 1) & 0x100;  /* forcing (bit >> 6) > 3 makes this a noop */
   103      t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
   104      r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
   105      t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
   106      r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
   107      t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
   108      r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
   109      t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
   110      r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
   111  #ifdef VERIFY
   112      VERIFY_CHECK((t >> 64) == 0);
   113      VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
   114  #endif
   115  }
   116  
   117  static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
   118      int over;
   119      r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
   120      r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
   121      r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
   122      r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
   123      over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
   124      if (overflow) {
   125          *overflow = over;
   126      }
   127  }
   128  
   129  static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
   130      bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
   131      bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
   132      bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
   133      bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
   134  }
   135  
   136  SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
   137      return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
   138  }
   139  
   140  static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
   141      uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
   142      uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
   143      r->d[0] = t & nonzero; t >>= 64;
   144      t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
   145      r->d[1] = t & nonzero; t >>= 64;
   146      t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
   147      r->d[2] = t & nonzero; t >>= 64;
   148      t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
   149      r->d[3] = t & nonzero;
   150  }
   151  
   152  SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
   153      return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
   154  }
   155  
   156  static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
   157      int yes = 0;
   158      int no = 0;
   159      no |= (a->d[3] < SECP256K1_N_H_3);
   160      yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
   161      no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
   162      no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
   163      yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
   164      yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
   165      return yes;
   166  }
   167  
   168  static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
   169      /* If we are flag = 0, mask = 00...00 and this is a no-op;
   170       * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
   171      uint64_t mask = !flag - 1;
   172      uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
   173      uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
   174      r->d[0] = t & nonzero; t >>= 64;
   175      t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
   176      r->d[1] = t & nonzero; t >>= 64;
   177      t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
   178      r->d[2] = t & nonzero; t >>= 64;
   179      t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
   180      r->d[3] = t & nonzero;
   181      return 2 * (mask == 0) - 1;
   182  }
   183  
   184  /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
   185  
   186  /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
   187  #define muladd(a,b) { \
   188      uint64_t tl, th; \
   189      { \
   190          uint128_t t = (uint128_t)a * b; \
   191          th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
   192          tl = t; \
   193      } \
   194      c0 += tl;                 /* overflow is handled on the next line */ \
   195      th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFFFFFFFFFF */ \
   196      c1 += th;                 /* overflow is handled on the next line */ \
   197      c2 += (c1 < th) ? 1 : 0;  /* never overflows by contract (verified in the next line) */ \
   198      VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
   199  }
   200  
   201  /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
   202  #define muladd_fast(a,b) { \
   203      uint64_t tl, th; \
   204      { \
   205          uint128_t t = (uint128_t)a * b; \
   206          th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
   207          tl = t; \
   208      } \
   209      c0 += tl;                 /* overflow is handled on the next line */ \
   210      th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFFFFFFFFFF */ \
   211      c1 += th;                 /* never overflows by contract (verified in the next line) */ \
   212      VERIFY_CHECK(c1 >= th); \
   213  }
   214  
   215  /** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
   216  #define muladd2(a,b) { \
   217      uint64_t tl, th, th2, tl2; \
   218      { \
   219          uint128_t t = (uint128_t)a * b; \
   220          th = t >> 64;               /* at most 0xFFFFFFFFFFFFFFFE */ \
   221          tl = t; \
   222      } \
   223      th2 = th + th;                  /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
   224      c2 += (th2 < th) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
   225      VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
   226      tl2 = tl + tl;                  /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
   227      th2 += (tl2 < tl) ? 1 : 0;      /* at most 0xFFFFFFFFFFFFFFFF */ \
   228      c0 += tl2;                      /* overflow is handled on the next line */ \
   229      th2 += (c0 < tl2) ? 1 : 0;      /* second overflow is handled on the next line */ \
   230      c2 += (c0 < tl2) & (th2 == 0);  /* never overflows by contract (verified the next line) */ \
   231      VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
   232      c1 += th2;                      /* overflow is handled on the next line */ \
   233      c2 += (c1 < th2) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
   234      VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
   235  }
   236  
   237  /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
   238  #define sumadd(a) { \
   239      unsigned int over; \
   240      c0 += (a);                  /* overflow is handled on the next line */ \
   241      over = (c0 < (a)) ? 1 : 0; \
   242      c1 += over;                 /* overflow is handled on the next line */ \
   243      c2 += (c1 < over) ? 1 : 0;  /* never overflows by contract */ \
   244  }
   245  
   246  /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
   247  #define sumadd_fast(a) { \
   248      c0 += (a);                 /* overflow is handled on the next line */ \
   249      c1 += (c0 < (a)) ? 1 : 0;  /* never overflows by contract (verified the next line) */ \
   250      VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
   251      VERIFY_CHECK(c2 == 0); \
   252  }
   253  
   254  /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
   255  #define extract(n) { \
   256      (n) = c0; \
   257      c0 = c1; \
   258      c1 = c2; \
   259      c2 = 0; \
   260  }
   261  
   262  /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
   263  #define extract_fast(n) { \
   264      (n) = c0; \
   265      c0 = c1; \
   266      c1 = 0; \
   267      VERIFY_CHECK(c2 == 0); \
   268  }
   269  
   270  static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
   271  #ifdef USE_ASM_X86_64
   272      /* Reduce 512 bits into 385. */
   273      uint64_t m0, m1, m2, m3, m4, m5, m6;
   274      uint64_t p0, p1, p2, p3, p4;
   275      uint64_t c;
   276  
   277      __asm__ __volatile__(
   278      /* Preload. */
   279      "movq 32(%%rsi), %%r11\n"
   280      "movq 40(%%rsi), %%r12\n"
   281      "movq 48(%%rsi), %%r13\n"
   282      "movq 56(%%rsi), %%r14\n"
   283      /* Initialize r8,r9,r10 */
   284      "movq 0(%%rsi), %%r8\n"
   285      "xorq %%r9, %%r9\n"
   286      "xorq %%r10, %%r10\n"
   287      /* (r8,r9) += n0 * c0 */
   288      "movq %8, %%rax\n"
   289      "mulq %%r11\n"
   290      "addq %%rax, %%r8\n"
   291      "adcq %%rdx, %%r9\n"
   292      /* extract m0 */
   293      "movq %%r8, %q0\n"
   294      "xorq %%r8, %%r8\n"
   295      /* (r9,r10) += l1 */
   296      "addq 8(%%rsi), %%r9\n"
   297      "adcq $0, %%r10\n"
   298      /* (r9,r10,r8) += n1 * c0 */
   299      "movq %8, %%rax\n"
   300      "mulq %%r12\n"
   301      "addq %%rax, %%r9\n"
   302      "adcq %%rdx, %%r10\n"
   303      "adcq $0, %%r8\n"
   304      /* (r9,r10,r8) += n0 * c1 */
   305      "movq %9, %%rax\n"
   306      "mulq %%r11\n"
   307      "addq %%rax, %%r9\n"
   308      "adcq %%rdx, %%r10\n"
   309      "adcq $0, %%r8\n"
   310      /* extract m1 */
   311      "movq %%r9, %q1\n"
   312      "xorq %%r9, %%r9\n"
   313      /* (r10,r8,r9) += l2 */
   314      "addq 16(%%rsi), %%r10\n"
   315      "adcq $0, %%r8\n"
   316      "adcq $0, %%r9\n"
   317      /* (r10,r8,r9) += n2 * c0 */
   318      "movq %8, %%rax\n"
   319      "mulq %%r13\n"
   320      "addq %%rax, %%r10\n"
   321      "adcq %%rdx, %%r8\n"
   322      "adcq $0, %%r9\n"
   323      /* (r10,r8,r9) += n1 * c1 */
   324      "movq %9, %%rax\n"
   325      "mulq %%r12\n"
   326      "addq %%rax, %%r10\n"
   327      "adcq %%rdx, %%r8\n"
   328      "adcq $0, %%r9\n"
   329      /* (r10,r8,r9) += n0 */
   330      "addq %%r11, %%r10\n"
   331      "adcq $0, %%r8\n"
   332      "adcq $0, %%r9\n"
   333      /* extract m2 */
   334      "movq %%r10, %q2\n"
   335      "xorq %%r10, %%r10\n"
   336      /* (r8,r9,r10) += l3 */
   337      "addq 24(%%rsi), %%r8\n"
   338      "adcq $0, %%r9\n"
   339      "adcq $0, %%r10\n"
   340      /* (r8,r9,r10) += n3 * c0 */
   341      "movq %8, %%rax\n"
   342      "mulq %%r14\n"
   343      "addq %%rax, %%r8\n"
   344      "adcq %%rdx, %%r9\n"
   345      "adcq $0, %%r10\n"
   346      /* (r8,r9,r10) += n2 * c1 */
   347      "movq %9, %%rax\n"
   348      "mulq %%r13\n"
   349      "addq %%rax, %%r8\n"
   350      "adcq %%rdx, %%r9\n"
   351      "adcq $0, %%r10\n"
   352      /* (r8,r9,r10) += n1 */
   353      "addq %%r12, %%r8\n"
   354      "adcq $0, %%r9\n"
   355      "adcq $0, %%r10\n"
   356      /* extract m3 */
   357      "movq %%r8, %q3\n"
   358      "xorq %%r8, %%r8\n"
   359      /* (r9,r10,r8) += n3 * c1 */
   360      "movq %9, %%rax\n"
   361      "mulq %%r14\n"
   362      "addq %%rax, %%r9\n"
   363      "adcq %%rdx, %%r10\n"
   364      "adcq $0, %%r8\n"
   365      /* (r9,r10,r8) += n2 */
   366      "addq %%r13, %%r9\n"
   367      "adcq $0, %%r10\n"
   368      "adcq $0, %%r8\n"
   369      /* extract m4 */
   370      "movq %%r9, %q4\n"
   371      /* (r10,r8) += n3 */
   372      "addq %%r14, %%r10\n"
   373      "adcq $0, %%r8\n"
   374      /* extract m5 */
   375      "movq %%r10, %q5\n"
   376      /* extract m6 */
   377      "movq %%r8, %q6\n"
   378      : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
   379      : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
   380      : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
   381  
   382      /* Reduce 385 bits into 258. */
   383      __asm__ __volatile__(
   384      /* Preload */
   385      "movq %q9, %%r11\n"
   386      "movq %q10, %%r12\n"
   387      "movq %q11, %%r13\n"
   388      /* Initialize (r8,r9,r10) */
   389      "movq %q5, %%r8\n"
   390      "xorq %%r9, %%r9\n"
   391      "xorq %%r10, %%r10\n"
   392      /* (r8,r9) += m4 * c0 */
   393      "movq %12, %%rax\n"
   394      "mulq %%r11\n"
   395      "addq %%rax, %%r8\n"
   396      "adcq %%rdx, %%r9\n"
   397      /* extract p0 */
   398      "movq %%r8, %q0\n"
   399      "xorq %%r8, %%r8\n"
   400      /* (r9,r10) += m1 */
   401      "addq %q6, %%r9\n"
   402      "adcq $0, %%r10\n"
   403      /* (r9,r10,r8) += m5 * c0 */
   404      "movq %12, %%rax\n"
   405      "mulq %%r12\n"
   406      "addq %%rax, %%r9\n"
   407      "adcq %%rdx, %%r10\n"
   408      "adcq $0, %%r8\n"
   409      /* (r9,r10,r8) += m4 * c1 */
   410      "movq %13, %%rax\n"
   411      "mulq %%r11\n"
   412      "addq %%rax, %%r9\n"
   413      "adcq %%rdx, %%r10\n"
   414      "adcq $0, %%r8\n"
   415      /* extract p1 */
   416      "movq %%r9, %q1\n"
   417      "xorq %%r9, %%r9\n"
   418      /* (r10,r8,r9) += m2 */
   419      "addq %q7, %%r10\n"
   420      "adcq $0, %%r8\n"
   421      "adcq $0, %%r9\n"
   422      /* (r10,r8,r9) += m6 * c0 */
   423      "movq %12, %%rax\n"
   424      "mulq %%r13\n"
   425      "addq %%rax, %%r10\n"
   426      "adcq %%rdx, %%r8\n"
   427      "adcq $0, %%r9\n"
   428      /* (r10,r8,r9) += m5 * c1 */
   429      "movq %13, %%rax\n"
   430      "mulq %%r12\n"
   431      "addq %%rax, %%r10\n"
   432      "adcq %%rdx, %%r8\n"
   433      "adcq $0, %%r9\n"
   434      /* (r10,r8,r9) += m4 */
   435      "addq %%r11, %%r10\n"
   436      "adcq $0, %%r8\n"
   437      "adcq $0, %%r9\n"
   438      /* extract p2 */
   439      "movq %%r10, %q2\n"
   440      /* (r8,r9) += m3 */
   441      "addq %q8, %%r8\n"
   442      "adcq $0, %%r9\n"
   443      /* (r8,r9) += m6 * c1 */
   444      "movq %13, %%rax\n"
   445      "mulq %%r13\n"
   446      "addq %%rax, %%r8\n"
   447      "adcq %%rdx, %%r9\n"
   448      /* (r8,r9) += m5 */
   449      "addq %%r12, %%r8\n"
   450      "adcq $0, %%r9\n"
   451      /* extract p3 */
   452      "movq %%r8, %q3\n"
   453      /* (r9) += m6 */
   454      "addq %%r13, %%r9\n"
   455      /* extract p4 */
   456      "movq %%r9, %q4\n"
   457      : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
   458      : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
   459      : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
   460  
   461      /* Reduce 258 bits into 256. */
   462      __asm__ __volatile__(
   463      /* Preload */
   464      "movq %q5, %%r10\n"
   465      /* (rax,rdx) = p4 * c0 */
   466      "movq %7, %%rax\n"
   467      "mulq %%r10\n"
   468      /* (rax,rdx) += p0 */
   469      "addq %q1, %%rax\n"
   470      "adcq $0, %%rdx\n"
   471      /* extract r0 */
   472      "movq %%rax, 0(%q6)\n"
   473      /* Move to (r8,r9) */
   474      "movq %%rdx, %%r8\n"
   475      "xorq %%r9, %%r9\n"
   476      /* (r8,r9) += p1 */
   477      "addq %q2, %%r8\n"
   478      "adcq $0, %%r9\n"
   479      /* (r8,r9) += p4 * c1 */
   480      "movq %8, %%rax\n"
   481      "mulq %%r10\n"
   482      "addq %%rax, %%r8\n"
   483      "adcq %%rdx, %%r9\n"
   484      /* Extract r1 */
   485      "movq %%r8, 8(%q6)\n"
   486      "xorq %%r8, %%r8\n"
   487      /* (r9,r8) += p4 */
   488      "addq %%r10, %%r9\n"
   489      "adcq $0, %%r8\n"
   490      /* (r9,r8) += p2 */
   491      "addq %q3, %%r9\n"
   492      "adcq $0, %%r8\n"
   493      /* Extract r2 */
   494      "movq %%r9, 16(%q6)\n"
   495      "xorq %%r9, %%r9\n"
   496      /* (r8,r9) += p3 */
   497      "addq %q4, %%r8\n"
   498      "adcq $0, %%r9\n"
   499      /* Extract r3 */
   500      "movq %%r8, 24(%q6)\n"
   501      /* Extract c */
   502      "movq %%r9, %q0\n"
   503      : "=g"(c)
   504      : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
   505      : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
   506  #else
   507      uint128_t c;
   508      uint64_t c0, c1, c2;
   509      uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
   510      uint64_t m0, m1, m2, m3, m4, m5;
   511      uint32_t m6;
   512      uint64_t p0, p1, p2, p3;
   513      uint32_t p4;
   514  
   515      /* Reduce 512 bits into 385. */
   516      /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
   517      c0 = l[0]; c1 = 0; c2 = 0;
   518      muladd_fast(n0, SECP256K1_N_C_0);
   519      extract_fast(m0);
   520      sumadd_fast(l[1]);
   521      muladd(n1, SECP256K1_N_C_0);
   522      muladd(n0, SECP256K1_N_C_1);
   523      extract(m1);
   524      sumadd(l[2]);
   525      muladd(n2, SECP256K1_N_C_0);
   526      muladd(n1, SECP256K1_N_C_1);
   527      sumadd(n0);
   528      extract(m2);
   529      sumadd(l[3]);
   530      muladd(n3, SECP256K1_N_C_0);
   531      muladd(n2, SECP256K1_N_C_1);
   532      sumadd(n1);
   533      extract(m3);
   534      muladd(n3, SECP256K1_N_C_1);
   535      sumadd(n2);
   536      extract(m4);
   537      sumadd_fast(n3);
   538      extract_fast(m5);
   539      VERIFY_CHECK(c0 <= 1);
   540      m6 = c0;
   541  
   542      /* Reduce 385 bits into 258. */
   543      /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
   544      c0 = m0; c1 = 0; c2 = 0;
   545      muladd_fast(m4, SECP256K1_N_C_0);
   546      extract_fast(p0);
   547      sumadd_fast(m1);
   548      muladd(m5, SECP256K1_N_C_0);
   549      muladd(m4, SECP256K1_N_C_1);
   550      extract(p1);
   551      sumadd(m2);
   552      muladd(m6, SECP256K1_N_C_0);
   553      muladd(m5, SECP256K1_N_C_1);
   554      sumadd(m4);
   555      extract(p2);
   556      sumadd_fast(m3);
   557      muladd_fast(m6, SECP256K1_N_C_1);
   558      sumadd_fast(m5);
   559      extract_fast(p3);
   560      p4 = c0 + m6;
   561      VERIFY_CHECK(p4 <= 2);
   562  
   563      /* Reduce 258 bits into 256. */
   564      /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
   565      c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
   566      r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
   567      c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
   568      r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
   569      c += p2 + (uint128_t)p4;
   570      r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
   571      c += p3;
   572      r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
   573  #endif
   574  
   575      /* Final reduction of r. */
   576      secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
   577  }
   578  
   579  static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
   580  #ifdef USE_ASM_X86_64
   581      const uint64_t *pb = b->d;
   582      __asm__ __volatile__(
   583      /* Preload */
   584      "movq 0(%%rdi), %%r15\n"
   585      "movq 8(%%rdi), %%rbx\n"
   586      "movq 16(%%rdi), %%rcx\n"
   587      "movq 0(%%rdx), %%r11\n"
   588      "movq 8(%%rdx), %%r12\n"
   589      "movq 16(%%rdx), %%r13\n"
   590      "movq 24(%%rdx), %%r14\n"
   591      /* (rax,rdx) = a0 * b0 */
   592      "movq %%r15, %%rax\n"
   593      "mulq %%r11\n"
   594      /* Extract l0 */
   595      "movq %%rax, 0(%%rsi)\n"
   596      /* (r8,r9,r10) = (rdx) */
   597      "movq %%rdx, %%r8\n"
   598      "xorq %%r9, %%r9\n"
   599      "xorq %%r10, %%r10\n"
   600      /* (r8,r9,r10) += a0 * b1 */
   601      "movq %%r15, %%rax\n"
   602      "mulq %%r12\n"
   603      "addq %%rax, %%r8\n"
   604      "adcq %%rdx, %%r9\n"
   605      "adcq $0, %%r10\n"
   606      /* (r8,r9,r10) += a1 * b0 */
   607      "movq %%rbx, %%rax\n"
   608      "mulq %%r11\n"
   609      "addq %%rax, %%r8\n"
   610      "adcq %%rdx, %%r9\n"
   611      "adcq $0, %%r10\n"
   612      /* Extract l1 */
   613      "movq %%r8, 8(%%rsi)\n"
   614      "xorq %%r8, %%r8\n"
   615      /* (r9,r10,r8) += a0 * b2 */
   616      "movq %%r15, %%rax\n"
   617      "mulq %%r13\n"
   618      "addq %%rax, %%r9\n"
   619      "adcq %%rdx, %%r10\n"
   620      "adcq $0, %%r8\n"
   621      /* (r9,r10,r8) += a1 * b1 */
   622      "movq %%rbx, %%rax\n"
   623      "mulq %%r12\n"
   624      "addq %%rax, %%r9\n"
   625      "adcq %%rdx, %%r10\n"
   626      "adcq $0, %%r8\n"
   627      /* (r9,r10,r8) += a2 * b0 */
   628      "movq %%rcx, %%rax\n"
   629      "mulq %%r11\n"
   630      "addq %%rax, %%r9\n"
   631      "adcq %%rdx, %%r10\n"
   632      "adcq $0, %%r8\n"
   633      /* Extract l2 */
   634      "movq %%r9, 16(%%rsi)\n"
   635      "xorq %%r9, %%r9\n"
   636      /* (r10,r8,r9) += a0 * b3 */
   637      "movq %%r15, %%rax\n"
   638      "mulq %%r14\n"
   639      "addq %%rax, %%r10\n"
   640      "adcq %%rdx, %%r8\n"
   641      "adcq $0, %%r9\n"
   642      /* Preload a3 */
   643      "movq 24(%%rdi), %%r15\n"
   644      /* (r10,r8,r9) += a1 * b2 */
   645      "movq %%rbx, %%rax\n"
   646      "mulq %%r13\n"
   647      "addq %%rax, %%r10\n"
   648      "adcq %%rdx, %%r8\n"
   649      "adcq $0, %%r9\n"
   650      /* (r10,r8,r9) += a2 * b1 */
   651      "movq %%rcx, %%rax\n"
   652      "mulq %%r12\n"
   653      "addq %%rax, %%r10\n"
   654      "adcq %%rdx, %%r8\n"
   655      "adcq $0, %%r9\n"
   656      /* (r10,r8,r9) += a3 * b0 */
   657      "movq %%r15, %%rax\n"
   658      "mulq %%r11\n"
   659      "addq %%rax, %%r10\n"
   660      "adcq %%rdx, %%r8\n"
   661      "adcq $0, %%r9\n"
   662      /* Extract l3 */
   663      "movq %%r10, 24(%%rsi)\n"
   664      "xorq %%r10, %%r10\n"
   665      /* (r8,r9,r10) += a1 * b3 */
   666      "movq %%rbx, %%rax\n"
   667      "mulq %%r14\n"
   668      "addq %%rax, %%r8\n"
   669      "adcq %%rdx, %%r9\n"
   670      "adcq $0, %%r10\n"
   671      /* (r8,r9,r10) += a2 * b2 */
   672      "movq %%rcx, %%rax\n"
   673      "mulq %%r13\n"
   674      "addq %%rax, %%r8\n"
   675      "adcq %%rdx, %%r9\n"
   676      "adcq $0, %%r10\n"
   677      /* (r8,r9,r10) += a3 * b1 */
   678      "movq %%r15, %%rax\n"
   679      "mulq %%r12\n"
   680      "addq %%rax, %%r8\n"
   681      "adcq %%rdx, %%r9\n"
   682      "adcq $0, %%r10\n"
   683      /* Extract l4 */
   684      "movq %%r8, 32(%%rsi)\n"
   685      "xorq %%r8, %%r8\n"
   686      /* (r9,r10,r8) += a2 * b3 */
   687      "movq %%rcx, %%rax\n"
   688      "mulq %%r14\n"
   689      "addq %%rax, %%r9\n"
   690      "adcq %%rdx, %%r10\n"
   691      "adcq $0, %%r8\n"
   692      /* (r9,r10,r8) += a3 * b2 */
   693      "movq %%r15, %%rax\n"
   694      "mulq %%r13\n"
   695      "addq %%rax, %%r9\n"
   696      "adcq %%rdx, %%r10\n"
   697      "adcq $0, %%r8\n"
   698      /* Extract l5 */
   699      "movq %%r9, 40(%%rsi)\n"
   700      /* (r10,r8) += a3 * b3 */
   701      "movq %%r15, %%rax\n"
   702      "mulq %%r14\n"
   703      "addq %%rax, %%r10\n"
   704      "adcq %%rdx, %%r8\n"
   705      /* Extract l6 */
   706      "movq %%r10, 48(%%rsi)\n"
   707      /* Extract l7 */
   708      "movq %%r8, 56(%%rsi)\n"
   709      : "+d"(pb)
   710      : "S"(l), "D"(a->d)
   711      : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
   712  #else
   713      /* 160 bit accumulator. */
   714      uint64_t c0 = 0, c1 = 0;
   715      uint32_t c2 = 0;
   716  
   717      /* l[0..7] = a[0..3] * b[0..3]. */
   718      muladd_fast(a->d[0], b->d[0]);
   719      extract_fast(l[0]);
   720      muladd(a->d[0], b->d[1]);
   721      muladd(a->d[1], b->d[0]);
   722      extract(l[1]);
   723      muladd(a->d[0], b->d[2]);
   724      muladd(a->d[1], b->d[1]);
   725      muladd(a->d[2], b->d[0]);
   726      extract(l[2]);
   727      muladd(a->d[0], b->d[3]);
   728      muladd(a->d[1], b->d[2]);
   729      muladd(a->d[2], b->d[1]);
   730      muladd(a->d[3], b->d[0]);
   731      extract(l[3]);
   732      muladd(a->d[1], b->d[3]);
   733      muladd(a->d[2], b->d[2]);
   734      muladd(a->d[3], b->d[1]);
   735      extract(l[4]);
   736      muladd(a->d[2], b->d[3]);
   737      muladd(a->d[3], b->d[2]);
   738      extract(l[5]);
   739      muladd_fast(a->d[3], b->d[3]);
   740      extract_fast(l[6]);
   741      VERIFY_CHECK(c1 == 0);
   742      l[7] = c0;
   743  #endif
   744  }
   745  
   746  static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
   747  #ifdef USE_ASM_X86_64
   748      __asm__ __volatile__(
   749      /* Preload */
   750      "movq 0(%%rdi), %%r11\n"
   751      "movq 8(%%rdi), %%r12\n"
   752      "movq 16(%%rdi), %%r13\n"
   753      "movq 24(%%rdi), %%r14\n"
   754      /* (rax,rdx) = a0 * a0 */
   755      "movq %%r11, %%rax\n"
   756      "mulq %%r11\n"
   757      /* Extract l0 */
   758      "movq %%rax, 0(%%rsi)\n"
   759      /* (r8,r9,r10) = (rdx,0) */
   760      "movq %%rdx, %%r8\n"
   761      "xorq %%r9, %%r9\n"
   762      "xorq %%r10, %%r10\n"
   763      /* (r8,r9,r10) += 2 * a0 * a1 */
   764      "movq %%r11, %%rax\n"
   765      "mulq %%r12\n"
   766      "addq %%rax, %%r8\n"
   767      "adcq %%rdx, %%r9\n"
   768      "adcq $0, %%r10\n"
   769      "addq %%rax, %%r8\n"
   770      "adcq %%rdx, %%r9\n"
   771      "adcq $0, %%r10\n"
   772      /* Extract l1 */
   773      "movq %%r8, 8(%%rsi)\n"
   774      "xorq %%r8, %%r8\n"
   775      /* (r9,r10,r8) += 2 * a0 * a2 */
   776      "movq %%r11, %%rax\n"
   777      "mulq %%r13\n"
   778      "addq %%rax, %%r9\n"
   779      "adcq %%rdx, %%r10\n"
   780      "adcq $0, %%r8\n"
   781      "addq %%rax, %%r9\n"
   782      "adcq %%rdx, %%r10\n"
   783      "adcq $0, %%r8\n"
   784      /* (r9,r10,r8) += a1 * a1 */
   785      "movq %%r12, %%rax\n"
   786      "mulq %%r12\n"
   787      "addq %%rax, %%r9\n"
   788      "adcq %%rdx, %%r10\n"
   789      "adcq $0, %%r8\n"
   790      /* Extract l2 */
   791      "movq %%r9, 16(%%rsi)\n"
   792      "xorq %%r9, %%r9\n"
   793      /* (r10,r8,r9) += 2 * a0 * a3 */
   794      "movq %%r11, %%rax\n"
   795      "mulq %%r14\n"
   796      "addq %%rax, %%r10\n"
   797      "adcq %%rdx, %%r8\n"
   798      "adcq $0, %%r9\n"
   799      "addq %%rax, %%r10\n"
   800      "adcq %%rdx, %%r8\n"
   801      "adcq $0, %%r9\n"
   802      /* (r10,r8,r9) += 2 * a1 * a2 */
   803      "movq %%r12, %%rax\n"
   804      "mulq %%r13\n"
   805      "addq %%rax, %%r10\n"
   806      "adcq %%rdx, %%r8\n"
   807      "adcq $0, %%r9\n"
   808      "addq %%rax, %%r10\n"
   809      "adcq %%rdx, %%r8\n"
   810      "adcq $0, %%r9\n"
   811      /* Extract l3 */
   812      "movq %%r10, 24(%%rsi)\n"
   813      "xorq %%r10, %%r10\n"
   814      /* (r8,r9,r10) += 2 * a1 * a3 */
   815      "movq %%r12, %%rax\n"
   816      "mulq %%r14\n"
   817      "addq %%rax, %%r8\n"
   818      "adcq %%rdx, %%r9\n"
   819      "adcq $0, %%r10\n"
   820      "addq %%rax, %%r8\n"
   821      "adcq %%rdx, %%r9\n"
   822      "adcq $0, %%r10\n"
   823      /* (r8,r9,r10) += a2 * a2 */
   824      "movq %%r13, %%rax\n"
   825      "mulq %%r13\n"
   826      "addq %%rax, %%r8\n"
   827      "adcq %%rdx, %%r9\n"
   828      "adcq $0, %%r10\n"
   829      /* Extract l4 */
   830      "movq %%r8, 32(%%rsi)\n"
   831      "xorq %%r8, %%r8\n"
   832      /* (r9,r10,r8) += 2 * a2 * a3 */
   833      "movq %%r13, %%rax\n"
   834      "mulq %%r14\n"
   835      "addq %%rax, %%r9\n"
   836      "adcq %%rdx, %%r10\n"
   837      "adcq $0, %%r8\n"
   838      "addq %%rax, %%r9\n"
   839      "adcq %%rdx, %%r10\n"
   840      "adcq $0, %%r8\n"
   841      /* Extract l5 */
   842      "movq %%r9, 40(%%rsi)\n"
   843      /* (r10,r8) += a3 * a3 */
   844      "movq %%r14, %%rax\n"
   845      "mulq %%r14\n"
   846      "addq %%rax, %%r10\n"
   847      "adcq %%rdx, %%r8\n"
   848      /* Extract l6 */
   849      "movq %%r10, 48(%%rsi)\n"
   850      /* Extract l7 */
   851      "movq %%r8, 56(%%rsi)\n"
   852      :
   853      : "S"(l), "D"(a->d)
   854      : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory");
   855  #else
   856      /* 160 bit accumulator. */
   857      uint64_t c0 = 0, c1 = 0;
   858      uint32_t c2 = 0;
   859  
   860      /* l[0..7] = a[0..3] * b[0..3]. */
   861      muladd_fast(a->d[0], a->d[0]);
   862      extract_fast(l[0]);
   863      muladd2(a->d[0], a->d[1]);
   864      extract(l[1]);
   865      muladd2(a->d[0], a->d[2]);
   866      muladd(a->d[1], a->d[1]);
   867      extract(l[2]);
   868      muladd2(a->d[0], a->d[3]);
   869      muladd2(a->d[1], a->d[2]);
   870      extract(l[3]);
   871      muladd2(a->d[1], a->d[3]);
   872      muladd(a->d[2], a->d[2]);
   873      extract(l[4]);
   874      muladd2(a->d[2], a->d[3]);
   875      extract(l[5]);
   876      muladd_fast(a->d[3], a->d[3]);
   877      extract_fast(l[6]);
   878      VERIFY_CHECK(c1 == 0);
   879      l[7] = c0;
   880  #endif
   881  }
   882  
   883  #undef sumadd
   884  #undef sumadd_fast
   885  #undef muladd
   886  #undef muladd_fast
   887  #undef muladd2
   888  #undef extract
   889  #undef extract_fast
   890  
   891  static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
   892      uint64_t l[8];
   893      secp256k1_scalar_mul_512(l, a, b);
   894      secp256k1_scalar_reduce_512(r, l);
   895  }
   896  
   897  static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
   898      int ret;
   899      VERIFY_CHECK(n > 0);
   900      VERIFY_CHECK(n < 16);
   901      ret = r->d[0] & ((1 << n) - 1);
   902      r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
   903      r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
   904      r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
   905      r->d[3] = (r->d[3] >> n);
   906      return ret;
   907  }
   908  
   909  static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
   910      uint64_t l[8];
   911      secp256k1_scalar_sqr_512(l, a);
   912      secp256k1_scalar_reduce_512(r, l);
   913  }
   914  
   915  #ifdef USE_ENDOMORPHISM
   916  static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
   917      r1->d[0] = a->d[0];
   918      r1->d[1] = a->d[1];
   919      r1->d[2] = 0;
   920      r1->d[3] = 0;
   921      r2->d[0] = a->d[2];
   922      r2->d[1] = a->d[3];
   923      r2->d[2] = 0;
   924      r2->d[3] = 0;
   925  }
   926  #endif
   927  
   928  SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
   929      return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
   930  }
   931  
   932  SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
   933      uint64_t l[8];
   934      unsigned int shiftlimbs;
   935      unsigned int shiftlow;
   936      unsigned int shifthigh;
   937      VERIFY_CHECK(shift >= 256);
   938      secp256k1_scalar_mul_512(l, a, b);
   939      shiftlimbs = shift >> 6;
   940      shiftlow = shift & 0x3F;
   941      shifthigh = 64 - shiftlow;
   942      r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
   943      r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
   944      r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
   945      r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
   946      secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
   947  }
   948  
   949  #endif