github.com/neatlab/neatio@v1.7.3-0.20220425043230-d903e92fcc75/chain/accounts/usbwallet/ledger.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // This file contains the implementation for interacting with the Ledger hardware
    18  // wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
    19  // https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc
    20  
    21  package usbwallet
    22  
    23  import (
    24  	"encoding/binary"
    25  	"encoding/hex"
    26  	"errors"
    27  	"fmt"
    28  	"io"
    29  	"math/big"
    30  
    31  	"github.com/neatlab/neatio/chain/accounts"
    32  	"github.com/neatlab/neatio/chain/core/types"
    33  	"github.com/neatlab/neatio/chain/log"
    34  	"github.com/neatlab/neatio/utilities/common"
    35  	"github.com/neatlab/neatio/utilities/common/hexutil"
    36  	"github.com/neatlab/neatio/utilities/rlp"
    37  )
    38  
    39  // ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
    40  type ledgerOpcode byte
    41  
    42  // ledgerParam1 is an enumeration encoding the supported Ledger parameters for
    43  // specific opcodes. The same parameter values may be reused between opcodes.
    44  type ledgerParam1 byte
    45  
    46  // ledgerParam2 is an enumeration encoding the supported Ledger parameters for
    47  // specific opcodes. The same parameter values may be reused between opcodes.
    48  type ledgerParam2 byte
    49  
    50  const (
    51  	ledgerOpRetrieveAddress  ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
    52  	ledgerOpSignTransaction  ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
    53  	ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration
    54  
    55  	ledgerP1DirectlyFetchAddress    ledgerParam1 = 0x00 // Return address directly from the wallet
    56  	ledgerP1ConfirmFetchAddress     ledgerParam1 = 0x01 // Require a user confirmation before returning the address
    57  	ledgerP1InitTransactionData     ledgerParam1 = 0x00 // First transaction data block for signing
    58  	ledgerP1ContTransactionData     ledgerParam1 = 0x80 // Subsequent transaction data block for signing
    59  	ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
    60  	ledgerP2ReturnAddressChainCode  ledgerParam2 = 0x01 // Require a user confirmation before returning the address
    61  )
    62  
    63  // errLedgerReplyInvalidHeader is the error message returned by a Ledger data exchange
    64  // if the device replies with a mismatching header. This usually means the device
    65  // is in browser mode.
    66  var errLedgerReplyInvalidHeader = errors.New("ledger: invalid reply header")
    67  
    68  // errLedgerInvalidVersionReply is the error message returned by a Ledger version retrieval
    69  // when a response does arrive, but it does not contain the expected data.
    70  var errLedgerInvalidVersionReply = errors.New("ledger: invalid version reply")
    71  
    72  // ledgerDriver implements the communication with a Ledger hardware wallet.
    73  type ledgerDriver struct {
    74  	device  io.ReadWriter // USB device connection to communicate through
    75  	version [3]byte       // Current version of the Ledger firmware (zero if app is offline)
    76  	browser bool          // Flag whether the Ledger is in browser mode (reply channel mismatch)
    77  	failure error         // Any failure that would make the device unusable
    78  	log     log.Logger    // Contextual logger to tag the ledger with its id
    79  }
    80  
    81  // newLedgerDriver creates a new instance of a Ledger USB protocol driver.
    82  func newLedgerDriver(logger log.Logger) driver {
    83  	return &ledgerDriver{
    84  		log: logger,
    85  	}
    86  }
    87  
    88  // Status implements usbwallet.driver, returning various states the Ledger can
    89  // currently be in.
    90  func (w *ledgerDriver) Status() (string, error) {
    91  	if w.failure != nil {
    92  		return fmt.Sprintf("Failed: %v", w.failure), w.failure
    93  	}
    94  	if w.browser {
    95  		return "Ethereum app in browser mode", w.failure
    96  	}
    97  	if w.offline() {
    98  		return "Ethereum app offline", w.failure
    99  	}
   100  	return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]), w.failure
   101  }
   102  
   103  // offline returns whether the wallet and the Ethereum app is offline or not.
   104  //
   105  // The method assumes that the state lock is held!
   106  func (w *ledgerDriver) offline() bool {
   107  	return w.version == [3]byte{0, 0, 0}
   108  }
   109  
   110  // Open implements usbwallet.driver, attempting to initialize the connection to the
   111  // Ledger hardware wallet. The Ledger does not require a user passphrase, so that
   112  // parameter is silently discarded.
   113  func (w *ledgerDriver) Open(device io.ReadWriter, passphrase string) error {
   114  	w.device, w.failure = device, nil
   115  
   116  	_, err := w.ledgerDerive(accounts.DefaultBaseDerivationPath)
   117  	if err != nil {
   118  		// Ethereum app is not running or in browser mode, nothing more to do, return
   119  		if err == errLedgerReplyInvalidHeader {
   120  			w.browser = true
   121  		}
   122  		return nil
   123  	}
   124  	// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
   125  	if w.version, err = w.ledgerVersion(); err != nil {
   126  		w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
   127  	}
   128  	return nil
   129  }
   130  
   131  // Close implements usbwallet.driver, cleaning up and metadata maintained within
   132  // the Ledger driver.
   133  func (w *ledgerDriver) Close() error {
   134  	w.browser, w.version = false, [3]byte{}
   135  	return nil
   136  }
   137  
   138  // Heartbeat implements usbwallet.driver, performing a sanity check against the
   139  // Ledger to see if it's still online.
   140  func (w *ledgerDriver) Heartbeat() error {
   141  	if _, err := w.ledgerVersion(); err != nil && err != errLedgerInvalidVersionReply {
   142  		w.failure = err
   143  		return err
   144  	}
   145  	return nil
   146  }
   147  
   148  // Derive implements usbwallet.driver, sending a derivation request to the Ledger
   149  // and returning the Ethereum address located on that derivation path.
   150  func (w *ledgerDriver) Derive(path accounts.DerivationPath) (common.Address, error) {
   151  	return w.ledgerDerive(path)
   152  }
   153  
   154  // SignTx implements usbwallet.driver, sending the transaction to the Ledger and
   155  // waiting for the user to confirm or deny the transaction.
   156  //
   157  // Note, if the version of the Ethereum application running on the Ledger wallet is
   158  // too old to sign EIP-155 transactions, but such is requested nonetheless, an error
   159  // will be returned opposed to silently signing in Homestead mode.
   160  func (w *ledgerDriver) SignTx(path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
   161  	// If the Ethereum app doesn't run, abort
   162  	if w.offline() {
   163  		return common.Address{}, nil, accounts.ErrWalletClosed
   164  	}
   165  	// Ensure the wallet is capable of signing the given transaction
   166  	if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
   167  		return common.Address{}, nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
   168  	}
   169  	// All infos gathered and metadata checks out, request signing
   170  	return w.ledgerSign(path, tx, chainID)
   171  }
   172  
   173  // ledgerVersion retrieves the current version of the Ethereum wallet app running
   174  // on the Ledger wallet.
   175  //
   176  // The version retrieval protocol is defined as follows:
   177  //
   178  //   CLA | INS | P1 | P2 | Lc | Le
   179  //   ----+-----+----+----+----+---
   180  //    E0 | 06  | 00 | 00 | 00 | 04
   181  //
   182  // With no input data, and the output data being:
   183  //
   184  //   Description                                        | Length
   185  //   ---------------------------------------------------+--------
   186  //   Flags 01: arbitrary data signature enabled by user | 1 byte
   187  //   Application major version                          | 1 byte
   188  //   Application minor version                          | 1 byte
   189  //   Application patch version                          | 1 byte
   190  func (w *ledgerDriver) ledgerVersion() ([3]byte, error) {
   191  	// Send the request and wait for the response
   192  	reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
   193  	if err != nil {
   194  		return [3]byte{}, err
   195  	}
   196  	if len(reply) != 4 {
   197  		return [3]byte{}, errLedgerInvalidVersionReply
   198  	}
   199  	// Cache the version for future reference
   200  	var version [3]byte
   201  	copy(version[:], reply[1:])
   202  	return version, nil
   203  }
   204  
   205  // ledgerDerive retrieves the currently active Ethereum address from a Ledger
   206  // wallet at the specified derivation path.
   207  //
   208  // The address derivation protocol is defined as follows:
   209  //
   210  //   CLA | INS | P1 | P2 | Lc  | Le
   211  //   ----+-----+----+----+-----+---
   212  //    E0 | 02  | 00 return address
   213  //               01 display address and confirm before returning
   214  //                  | 00: do not return the chain code
   215  //                  | 01: return the chain code
   216  //                       | var | 00
   217  //
   218  // Where the input data is:
   219  //
   220  //   Description                                      | Length
   221  //   -------------------------------------------------+--------
   222  //   Number of BIP 32 derivations to perform (max 10) | 1 byte
   223  //   First derivation index (big endian)              | 4 bytes
   224  //   ...                                              | 4 bytes
   225  //   Last derivation index (big endian)               | 4 bytes
   226  //
   227  // And the output data is:
   228  //
   229  //   Description             | Length
   230  //   ------------------------+-------------------
   231  //   Public Key length       | 1 byte
   232  //   Uncompressed Public Key | arbitrary
   233  //   Ethereum address length | 1 byte
   234  //   Ethereum address        | 40 bytes hex ascii
   235  //   Chain code if requested | 32 bytes
   236  func (w *ledgerDriver) ledgerDerive(derivationPath []uint32) (common.Address, error) {
   237  	// Flatten the derivation path into the Ledger request
   238  	path := make([]byte, 1+4*len(derivationPath))
   239  	path[0] = byte(len(derivationPath))
   240  	for i, component := range derivationPath {
   241  		binary.BigEndian.PutUint32(path[1+4*i:], component)
   242  	}
   243  	// Send the request and wait for the response
   244  	reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
   245  	if err != nil {
   246  		return common.Address{}, err
   247  	}
   248  	// Discard the public key, we don't need that for now
   249  	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
   250  		return common.Address{}, errors.New("reply lacks public key entry")
   251  	}
   252  	reply = reply[1+int(reply[0]):]
   253  
   254  	// Extract the Ethereum hex address string
   255  	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
   256  		return common.Address{}, errors.New("reply lacks address entry")
   257  	}
   258  	hexstr := reply[1 : 1+int(reply[0])]
   259  
   260  	// Decode the hex sting into an Ethereum address and return
   261  	var address common.Address
   262  	hex.Decode(address[:], hexstr)
   263  	return address, nil
   264  }
   265  
   266  // ledgerSign sends the transaction to the Ledger wallet, and waits for the user
   267  // to confirm or deny the transaction.
   268  //
   269  // The transaction signing protocol is defined as follows:
   270  //
   271  //   CLA | INS | P1 | P2 | Lc  | Le
   272  //   ----+-----+----+----+-----+---
   273  //    E0 | 04  | 00: first transaction data block
   274  //               80: subsequent transaction data block
   275  //                  | 00 | variable | variable
   276  //
   277  // Where the input for the first transaction block (first 255 bytes) is:
   278  //
   279  //   Description                                      | Length
   280  //   -------------------------------------------------+----------
   281  //   Number of BIP 32 derivations to perform (max 10) | 1 byte
   282  //   First derivation index (big endian)              | 4 bytes
   283  //   ...                                              | 4 bytes
   284  //   Last derivation index (big endian)               | 4 bytes
   285  //   RLP transaction chunk                            | arbitrary
   286  //
   287  // And the input for subsequent transaction blocks (first 255 bytes) are:
   288  //
   289  //   Description           | Length
   290  //   ----------------------+----------
   291  //   RLP transaction chunk | arbitrary
   292  //
   293  // And the output data is:
   294  //
   295  //   Description | Length
   296  //   ------------+---------
   297  //   signature V | 1 byte
   298  //   signature R | 32 bytes
   299  //   signature S | 32 bytes
   300  func (w *ledgerDriver) ledgerSign(derivationPath []uint32, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
   301  	// Flatten the derivation path into the Ledger request
   302  	path := make([]byte, 1+4*len(derivationPath))
   303  	path[0] = byte(len(derivationPath))
   304  	for i, component := range derivationPath {
   305  		binary.BigEndian.PutUint32(path[1+4*i:], component)
   306  	}
   307  	// Create the transaction RLP based on whether legacy or EIP155 signing was requeste
   308  	var (
   309  		txrlp []byte
   310  		err   error
   311  	)
   312  	if chainID == nil {
   313  		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
   314  			return common.Address{}, nil, err
   315  		}
   316  	} else {
   317  		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
   318  			return common.Address{}, nil, err
   319  		}
   320  	}
   321  	payload := append(path, txrlp...)
   322  
   323  	// Send the request and wait for the response
   324  	var (
   325  		op    = ledgerP1InitTransactionData
   326  		reply []byte
   327  	)
   328  	for len(payload) > 0 {
   329  		// Calculate the size of the next data chunk
   330  		chunk := 255
   331  		if chunk > len(payload) {
   332  			chunk = len(payload)
   333  		}
   334  		// Send the chunk over, ensuring it's processed correctly
   335  		reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
   336  		if err != nil {
   337  			return common.Address{}, nil, err
   338  		}
   339  		// Shift the payload and ensure subsequent chunks are marked as such
   340  		payload = payload[chunk:]
   341  		op = ledgerP1ContTransactionData
   342  	}
   343  	// Extract the Ethereum signature and do a sanity validation
   344  	if len(reply) != 65 {
   345  		return common.Address{}, nil, errors.New("reply lacks signature")
   346  	}
   347  	signature := append(reply[1:], reply[0])
   348  
   349  	// Create the correct signer and signature transform based on the chain ID
   350  	var signer types.Signer
   351  	if chainID == nil {
   352  		signer = new(types.HomesteadSigner)
   353  	} else {
   354  		signer = types.NewEIP155Signer(chainID)
   355  		signature[64] = signature[64] - byte(chainID.Uint64()*2+35)
   356  	}
   357  	signed, err := tx.WithSignature(signer, signature)
   358  	if err != nil {
   359  		return common.Address{}, nil, err
   360  	}
   361  	sender, err := types.Sender(signer, signed)
   362  	if err != nil {
   363  		return common.Address{}, nil, err
   364  	}
   365  	return sender, signed, nil
   366  }
   367  
   368  // ledgerExchange performs a data exchange with the Ledger wallet, sending it a
   369  // message and retrieving the response.
   370  //
   371  // The common transport header is defined as follows:
   372  //
   373  //  Description                           | Length
   374  //  --------------------------------------+----------
   375  //  Communication channel ID (big endian) | 2 bytes
   376  //  Command tag                           | 1 byte
   377  //  Packet sequence index (big endian)    | 2 bytes
   378  //  Payload                               | arbitrary
   379  //
   380  // The Communication channel ID allows commands multiplexing over the same
   381  // physical link. It is not used for the time being, and should be set to 0101
   382  // to avoid compatibility issues with implementations ignoring a leading 00 byte.
   383  //
   384  // The Command tag describes the message content. Use TAG_APDU (0x05) for standard
   385  // APDU payloads, or TAG_PING (0x02) for a simple link test.
   386  //
   387  // The Packet sequence index describes the current sequence for fragmented payloads.
   388  // The first fragment index is 0x00.
   389  //
   390  // APDU Command payloads are encoded as follows:
   391  //
   392  //  Description              | Length
   393  //  -----------------------------------
   394  //  APDU length (big endian) | 2 bytes
   395  //  APDU CLA                 | 1 byte
   396  //  APDU INS                 | 1 byte
   397  //  APDU P1                  | 1 byte
   398  //  APDU P2                  | 1 byte
   399  //  APDU length              | 1 byte
   400  //  Optional APDU data       | arbitrary
   401  func (w *ledgerDriver) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
   402  	// Construct the message payload, possibly split into multiple chunks
   403  	apdu := make([]byte, 2, 7+len(data))
   404  
   405  	binary.BigEndian.PutUint16(apdu, uint16(5+len(data)))
   406  	apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...)
   407  	apdu = append(apdu, data...)
   408  
   409  	// Stream all the chunks to the device
   410  	header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
   411  	chunk := make([]byte, 64)
   412  	space := len(chunk) - len(header)
   413  
   414  	for i := 0; len(apdu) > 0; i++ {
   415  		// Construct the new message to stream
   416  		chunk = append(chunk[:0], header...)
   417  		binary.BigEndian.PutUint16(chunk[3:], uint16(i))
   418  
   419  		if len(apdu) > space {
   420  			chunk = append(chunk, apdu[:space]...)
   421  			apdu = apdu[space:]
   422  		} else {
   423  			chunk = append(chunk, apdu...)
   424  			apdu = nil
   425  		}
   426  		// Send over to the device
   427  		w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk))
   428  		if _, err := w.device.Write(chunk); err != nil {
   429  			return nil, err
   430  		}
   431  	}
   432  	// Stream the reply back from the wallet in 64 byte chunks
   433  	var reply []byte
   434  	chunk = chunk[:64] // Yeah, we surely have enough space
   435  	for {
   436  		// Read the next chunk from the Ledger wallet
   437  		if _, err := io.ReadFull(w.device, chunk); err != nil {
   438  			return nil, err
   439  		}
   440  		w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk))
   441  
   442  		// Make sure the transport header matches
   443  		if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
   444  			return nil, errLedgerReplyInvalidHeader
   445  		}
   446  		// If it's the first chunk, retrieve the total message length
   447  		var payload []byte
   448  
   449  		if chunk[3] == 0x00 && chunk[4] == 0x00 {
   450  			reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
   451  			payload = chunk[7:]
   452  		} else {
   453  			payload = chunk[5:]
   454  		}
   455  		// Append to the reply and stop when filled up
   456  		if left := cap(reply) - len(reply); left > len(payload) {
   457  			reply = append(reply, payload...)
   458  		} else {
   459  			reply = append(reply, payload[:left]...)
   460  			break
   461  		}
   462  	}
   463  	return reply[:len(reply)-2], nil
   464  }