github.com/neatlab/neatio@v1.7.3-0.20220425043230-d903e92fcc75/utilities/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // * The name of ThePiachu may not be used to endorse or promote products 18 // derived from this software without specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 package secp256k1 33 34 import ( 35 "crypto/elliptic" 36 "math/big" 37 "unsafe" 38 39 "github.com/neatlab/neatio/utilities/common/math" 40 ) 41 42 /* 43 #include "libsecp256k1/include/secp256k1.h" 44 extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); 45 */ 46 import "C" 47 48 // This code is from https://github.com/ThePiachu/GoBit and implements 49 // several Koblitz elliptic curves over prime fields. 50 // 51 // The curve methods, internally, on Jacobian coordinates. For a given 52 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 53 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 54 // when the whole calculation can be performed within the transform 55 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 56 // it's faster to apply and reverse the transform than to operate in 57 // affine coordinates. 58 59 // A BitCurve represents a Koblitz Curve with a=0. 60 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 61 type BitCurve struct { 62 P *big.Int // the order of the underlying field 63 N *big.Int // the order of the base point 64 B *big.Int // the constant of the BitCurve equation 65 Gx, Gy *big.Int // (x,y) of the base point 66 BitSize int // the size of the underlying field 67 } 68 69 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 70 return &elliptic.CurveParams{ 71 P: BitCurve.P, 72 N: BitCurve.N, 73 B: BitCurve.B, 74 Gx: BitCurve.Gx, 75 Gy: BitCurve.Gy, 76 BitSize: BitCurve.BitSize, 77 } 78 } 79 80 // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. 81 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 82 // y² = x³ + b 83 y2 := new(big.Int).Mul(y, y) //y² 84 y2.Mod(y2, BitCurve.P) //y²%P 85 86 x3 := new(big.Int).Mul(x, x) //x² 87 x3.Mul(x3, x) //x³ 88 89 x3.Add(x3, BitCurve.B) //x³+B 90 x3.Mod(x3, BitCurve.P) //(x³+B)%P 91 92 return x3.Cmp(y2) == 0 93 } 94 95 //TODO: double check if the function is okay 96 // affineFromJacobian reverses the Jacobian transform. See the comment at the 97 // top of the file. 98 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 99 zinv := new(big.Int).ModInverse(z, BitCurve.P) 100 zinvsq := new(big.Int).Mul(zinv, zinv) 101 102 xOut = new(big.Int).Mul(x, zinvsq) 103 xOut.Mod(xOut, BitCurve.P) 104 zinvsq.Mul(zinvsq, zinv) 105 yOut = new(big.Int).Mul(y, zinvsq) 106 yOut.Mod(yOut, BitCurve.P) 107 return 108 } 109 110 // Add returns the sum of (x1,y1) and (x2,y2) 111 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 112 z := new(big.Int).SetInt64(1) 113 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 114 } 115 116 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 117 // (x2, y2, z2) and returns their sum, also in Jacobian form. 118 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 119 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 120 z1z1 := new(big.Int).Mul(z1, z1) 121 z1z1.Mod(z1z1, BitCurve.P) 122 z2z2 := new(big.Int).Mul(z2, z2) 123 z2z2.Mod(z2z2, BitCurve.P) 124 125 u1 := new(big.Int).Mul(x1, z2z2) 126 u1.Mod(u1, BitCurve.P) 127 u2 := new(big.Int).Mul(x2, z1z1) 128 u2.Mod(u2, BitCurve.P) 129 h := new(big.Int).Sub(u2, u1) 130 if h.Sign() == -1 { 131 h.Add(h, BitCurve.P) 132 } 133 i := new(big.Int).Lsh(h, 1) 134 i.Mul(i, i) 135 j := new(big.Int).Mul(h, i) 136 137 s1 := new(big.Int).Mul(y1, z2) 138 s1.Mul(s1, z2z2) 139 s1.Mod(s1, BitCurve.P) 140 s2 := new(big.Int).Mul(y2, z1) 141 s2.Mul(s2, z1z1) 142 s2.Mod(s2, BitCurve.P) 143 r := new(big.Int).Sub(s2, s1) 144 if r.Sign() == -1 { 145 r.Add(r, BitCurve.P) 146 } 147 r.Lsh(r, 1) 148 v := new(big.Int).Mul(u1, i) 149 150 x3 := new(big.Int).Set(r) 151 x3.Mul(x3, x3) 152 x3.Sub(x3, j) 153 x3.Sub(x3, v) 154 x3.Sub(x3, v) 155 x3.Mod(x3, BitCurve.P) 156 157 y3 := new(big.Int).Set(r) 158 v.Sub(v, x3) 159 y3.Mul(y3, v) 160 s1.Mul(s1, j) 161 s1.Lsh(s1, 1) 162 y3.Sub(y3, s1) 163 y3.Mod(y3, BitCurve.P) 164 165 z3 := new(big.Int).Add(z1, z2) 166 z3.Mul(z3, z3) 167 z3.Sub(z3, z1z1) 168 if z3.Sign() == -1 { 169 z3.Add(z3, BitCurve.P) 170 } 171 z3.Sub(z3, z2z2) 172 if z3.Sign() == -1 { 173 z3.Add(z3, BitCurve.P) 174 } 175 z3.Mul(z3, h) 176 z3.Mod(z3, BitCurve.P) 177 178 return x3, y3, z3 179 } 180 181 // Double returns 2*(x,y) 182 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 183 z1 := new(big.Int).SetInt64(1) 184 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 185 } 186 187 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 188 // returns its double, also in Jacobian form. 189 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 190 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 191 192 a := new(big.Int).Mul(x, x) //X1² 193 b := new(big.Int).Mul(y, y) //Y1² 194 c := new(big.Int).Mul(b, b) //B² 195 196 d := new(big.Int).Add(x, b) //X1+B 197 d.Mul(d, d) //(X1+B)² 198 d.Sub(d, a) //(X1+B)²-A 199 d.Sub(d, c) //(X1+B)²-A-C 200 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 201 202 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 203 f := new(big.Int).Mul(e, e) //E² 204 205 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 206 x3.Sub(f, x3) //F-2*D 207 x3.Mod(x3, BitCurve.P) 208 209 y3 := new(big.Int).Sub(d, x3) //D-X3 210 y3.Mul(e, y3) //E*(D-X3) 211 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 212 y3.Mod(y3, BitCurve.P) 213 214 z3 := new(big.Int).Mul(y, z) //Y1*Z1 215 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 216 z3.Mod(z3, BitCurve.P) 217 218 return x3, y3, z3 219 } 220 221 func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 222 // Ensure scalar is exactly 32 bytes. We pad always, even if 223 // scalar is 32 bytes long, to avoid a timing side channel. 224 if len(scalar) > 32 { 225 panic("can't handle scalars > 256 bits") 226 } 227 // NOTE: potential timing issue 228 padded := make([]byte, 32) 229 copy(padded[32-len(scalar):], scalar) 230 scalar = padded 231 232 // Do the multiplication in C, updating point. 233 point := make([]byte, 64) 234 math.ReadBits(Bx, point[:32]) 235 math.ReadBits(By, point[32:]) 236 pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) 237 scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) 238 res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr) 239 240 // Unpack the result and clear temporaries. 241 x := new(big.Int).SetBytes(point[:32]) 242 y := new(big.Int).SetBytes(point[32:]) 243 for i := range point { 244 point[i] = 0 245 } 246 for i := range padded { 247 scalar[i] = 0 248 } 249 if res != 1 { 250 return nil, nil 251 } 252 return x, y 253 } 254 255 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 256 // an integer in big-endian form. 257 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 258 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 259 } 260 261 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 262 // X9.62. 263 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 264 byteLen := (BitCurve.BitSize + 7) >> 3 265 ret := make([]byte, 1+2*byteLen) 266 ret[0] = 4 // uncompressed point flag 267 math.ReadBits(x, ret[1:1+byteLen]) 268 math.ReadBits(y, ret[1+byteLen:]) 269 return ret 270 } 271 272 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 273 // error, x = nil. 274 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 275 byteLen := (BitCurve.BitSize + 7) >> 3 276 if len(data) != 1+2*byteLen { 277 return 278 } 279 if data[0] != 4 { // uncompressed form 280 return 281 } 282 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 283 y = new(big.Int).SetBytes(data[1+byteLen:]) 284 return 285 } 286 287 var theCurve = new(BitCurve) 288 289 func init() { 290 // See SEC 2 section 2.7.1 291 // curve parameters taken from: 292 // http://www.secg.org/collateral/sec2_final.pdf 293 theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) 294 theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) 295 theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) 296 theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) 297 theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) 298 theCurve.BitSize = 256 299 } 300 301 // S256 returns a BitCurve which implements secp256k1. 302 func S256() *BitCurve { 303 return theCurve 304 }