github.com/nibnait/go-learn@v0.0.0-20220227013611-dfa47ea6d2da/src/pkg/mod/golang.org/x/sys@v0.0.0-20210630005230-0f9fa26af87c/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"encoding/binary"
    16  	"runtime"
    17  	"syscall"
    18  	"unsafe"
    19  )
    20  
    21  /*
    22   * Wrapped
    23   */
    24  
    25  func Access(path string, mode uint32) (err error) {
    26  	return Faccessat(AT_FDCWD, path, mode, 0)
    27  }
    28  
    29  func Chmod(path string, mode uint32) (err error) {
    30  	return Fchmodat(AT_FDCWD, path, mode, 0)
    31  }
    32  
    33  func Chown(path string, uid int, gid int) (err error) {
    34  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    35  }
    36  
    37  func Creat(path string, mode uint32) (fd int, err error) {
    38  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    39  }
    40  
    41  //sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
    42  //sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
    43  
    44  func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
    45  	if pathname == "" {
    46  		return fanotifyMark(fd, flags, mask, dirFd, nil)
    47  	}
    48  	p, err := BytePtrFromString(pathname)
    49  	if err != nil {
    50  		return err
    51  	}
    52  	return fanotifyMark(fd, flags, mask, dirFd, p)
    53  }
    54  
    55  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    56  
    57  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    58  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    59  	// and check the flags. Otherwise the mode would be applied to the symlink
    60  	// destination which is not what the user expects.
    61  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    62  		return EINVAL
    63  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    64  		return EOPNOTSUPP
    65  	}
    66  	return fchmodat(dirfd, path, mode)
    67  }
    68  
    69  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    70  
    71  // ioctl itself should not be exposed directly, but additional get/set
    72  // functions for specific types are permissible.
    73  // These are defined in ioctl.go and ioctl_linux.go.
    74  
    75  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
    76  
    77  func Link(oldpath string, newpath string) (err error) {
    78  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
    79  }
    80  
    81  func Mkdir(path string, mode uint32) (err error) {
    82  	return Mkdirat(AT_FDCWD, path, mode)
    83  }
    84  
    85  func Mknod(path string, mode uint32, dev int) (err error) {
    86  	return Mknodat(AT_FDCWD, path, mode, dev)
    87  }
    88  
    89  func Open(path string, mode int, perm uint32) (fd int, err error) {
    90  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
    91  }
    92  
    93  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
    94  
    95  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
    96  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
    97  }
    98  
    99  //sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
   100  
   101  func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
   102  	return openat2(dirfd, path, how, SizeofOpenHow)
   103  }
   104  
   105  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   106  
   107  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   108  	if len(fds) == 0 {
   109  		return ppoll(nil, 0, timeout, sigmask)
   110  	}
   111  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   112  }
   113  
   114  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   115  
   116  func Readlink(path string, buf []byte) (n int, err error) {
   117  	return Readlinkat(AT_FDCWD, path, buf)
   118  }
   119  
   120  func Rename(oldpath string, newpath string) (err error) {
   121  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   122  }
   123  
   124  func Rmdir(path string) error {
   125  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   126  }
   127  
   128  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   129  
   130  func Symlink(oldpath string, newpath string) (err error) {
   131  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   132  }
   133  
   134  func Unlink(path string) error {
   135  	return Unlinkat(AT_FDCWD, path, 0)
   136  }
   137  
   138  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   139  
   140  func Utimes(path string, tv []Timeval) error {
   141  	if tv == nil {
   142  		err := utimensat(AT_FDCWD, path, nil, 0)
   143  		if err != ENOSYS {
   144  			return err
   145  		}
   146  		return utimes(path, nil)
   147  	}
   148  	if len(tv) != 2 {
   149  		return EINVAL
   150  	}
   151  	var ts [2]Timespec
   152  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   153  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   154  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   155  	if err != ENOSYS {
   156  		return err
   157  	}
   158  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   159  }
   160  
   161  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   162  
   163  func UtimesNano(path string, ts []Timespec) error {
   164  	if ts == nil {
   165  		err := utimensat(AT_FDCWD, path, nil, 0)
   166  		if err != ENOSYS {
   167  			return err
   168  		}
   169  		return utimes(path, nil)
   170  	}
   171  	if len(ts) != 2 {
   172  		return EINVAL
   173  	}
   174  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   175  	if err != ENOSYS {
   176  		return err
   177  	}
   178  	// If the utimensat syscall isn't available (utimensat was added to Linux
   179  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   180  	var tv [2]Timeval
   181  	for i := 0; i < 2; i++ {
   182  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   183  	}
   184  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   185  }
   186  
   187  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   188  	if ts == nil {
   189  		return utimensat(dirfd, path, nil, flags)
   190  	}
   191  	if len(ts) != 2 {
   192  		return EINVAL
   193  	}
   194  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   195  }
   196  
   197  func Futimesat(dirfd int, path string, tv []Timeval) error {
   198  	if tv == nil {
   199  		return futimesat(dirfd, path, nil)
   200  	}
   201  	if len(tv) != 2 {
   202  		return EINVAL
   203  	}
   204  	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   205  }
   206  
   207  func Futimes(fd int, tv []Timeval) (err error) {
   208  	// Believe it or not, this is the best we can do on Linux
   209  	// (and is what glibc does).
   210  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   211  }
   212  
   213  const ImplementsGetwd = true
   214  
   215  //sys	Getcwd(buf []byte) (n int, err error)
   216  
   217  func Getwd() (wd string, err error) {
   218  	var buf [PathMax]byte
   219  	n, err := Getcwd(buf[0:])
   220  	if err != nil {
   221  		return "", err
   222  	}
   223  	// Getcwd returns the number of bytes written to buf, including the NUL.
   224  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   225  		return "", EINVAL
   226  	}
   227  	return string(buf[0 : n-1]), nil
   228  }
   229  
   230  func Getgroups() (gids []int, err error) {
   231  	n, err := getgroups(0, nil)
   232  	if err != nil {
   233  		return nil, err
   234  	}
   235  	if n == 0 {
   236  		return nil, nil
   237  	}
   238  
   239  	// Sanity check group count. Max is 1<<16 on Linux.
   240  	if n < 0 || n > 1<<20 {
   241  		return nil, EINVAL
   242  	}
   243  
   244  	a := make([]_Gid_t, n)
   245  	n, err = getgroups(n, &a[0])
   246  	if err != nil {
   247  		return nil, err
   248  	}
   249  	gids = make([]int, n)
   250  	for i, v := range a[0:n] {
   251  		gids[i] = int(v)
   252  	}
   253  	return
   254  }
   255  
   256  func Setgroups(gids []int) (err error) {
   257  	if len(gids) == 0 {
   258  		return setgroups(0, nil)
   259  	}
   260  
   261  	a := make([]_Gid_t, len(gids))
   262  	for i, v := range gids {
   263  		a[i] = _Gid_t(v)
   264  	}
   265  	return setgroups(len(a), &a[0])
   266  }
   267  
   268  type WaitStatus uint32
   269  
   270  // Wait status is 7 bits at bottom, either 0 (exited),
   271  // 0x7F (stopped), or a signal number that caused an exit.
   272  // The 0x80 bit is whether there was a core dump.
   273  // An extra number (exit code, signal causing a stop)
   274  // is in the high bits. At least that's the idea.
   275  // There are various irregularities. For example, the
   276  // "continued" status is 0xFFFF, distinguishing itself
   277  // from stopped via the core dump bit.
   278  
   279  const (
   280  	mask    = 0x7F
   281  	core    = 0x80
   282  	exited  = 0x00
   283  	stopped = 0x7F
   284  	shift   = 8
   285  )
   286  
   287  func (w WaitStatus) Exited() bool { return w&mask == exited }
   288  
   289  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   290  
   291  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   292  
   293  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   294  
   295  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   296  
   297  func (w WaitStatus) ExitStatus() int {
   298  	if !w.Exited() {
   299  		return -1
   300  	}
   301  	return int(w>>shift) & 0xFF
   302  }
   303  
   304  func (w WaitStatus) Signal() syscall.Signal {
   305  	if !w.Signaled() {
   306  		return -1
   307  	}
   308  	return syscall.Signal(w & mask)
   309  }
   310  
   311  func (w WaitStatus) StopSignal() syscall.Signal {
   312  	if !w.Stopped() {
   313  		return -1
   314  	}
   315  	return syscall.Signal(w>>shift) & 0xFF
   316  }
   317  
   318  func (w WaitStatus) TrapCause() int {
   319  	if w.StopSignal() != SIGTRAP {
   320  		return -1
   321  	}
   322  	return int(w>>shift) >> 8
   323  }
   324  
   325  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   326  
   327  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   328  	var status _C_int
   329  	wpid, err = wait4(pid, &status, options, rusage)
   330  	if wstatus != nil {
   331  		*wstatus = WaitStatus(status)
   332  	}
   333  	return
   334  }
   335  
   336  func Mkfifo(path string, mode uint32) error {
   337  	return Mknod(path, mode|S_IFIFO, 0)
   338  }
   339  
   340  func Mkfifoat(dirfd int, path string, mode uint32) error {
   341  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   342  }
   343  
   344  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   345  	if sa.Port < 0 || sa.Port > 0xFFFF {
   346  		return nil, 0, EINVAL
   347  	}
   348  	sa.raw.Family = AF_INET
   349  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   350  	p[0] = byte(sa.Port >> 8)
   351  	p[1] = byte(sa.Port)
   352  	for i := 0; i < len(sa.Addr); i++ {
   353  		sa.raw.Addr[i] = sa.Addr[i]
   354  	}
   355  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   356  }
   357  
   358  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   359  	if sa.Port < 0 || sa.Port > 0xFFFF {
   360  		return nil, 0, EINVAL
   361  	}
   362  	sa.raw.Family = AF_INET6
   363  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   364  	p[0] = byte(sa.Port >> 8)
   365  	p[1] = byte(sa.Port)
   366  	sa.raw.Scope_id = sa.ZoneId
   367  	for i := 0; i < len(sa.Addr); i++ {
   368  		sa.raw.Addr[i] = sa.Addr[i]
   369  	}
   370  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   371  }
   372  
   373  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   374  	name := sa.Name
   375  	n := len(name)
   376  	if n >= len(sa.raw.Path) {
   377  		return nil, 0, EINVAL
   378  	}
   379  	sa.raw.Family = AF_UNIX
   380  	for i := 0; i < n; i++ {
   381  		sa.raw.Path[i] = int8(name[i])
   382  	}
   383  	// length is family (uint16), name, NUL.
   384  	sl := _Socklen(2)
   385  	if n > 0 {
   386  		sl += _Socklen(n) + 1
   387  	}
   388  	if sa.raw.Path[0] == '@' {
   389  		sa.raw.Path[0] = 0
   390  		// Don't count trailing NUL for abstract address.
   391  		sl--
   392  	}
   393  
   394  	return unsafe.Pointer(&sa.raw), sl, nil
   395  }
   396  
   397  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   398  type SockaddrLinklayer struct {
   399  	Protocol uint16
   400  	Ifindex  int
   401  	Hatype   uint16
   402  	Pkttype  uint8
   403  	Halen    uint8
   404  	Addr     [8]byte
   405  	raw      RawSockaddrLinklayer
   406  }
   407  
   408  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   409  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   410  		return nil, 0, EINVAL
   411  	}
   412  	sa.raw.Family = AF_PACKET
   413  	sa.raw.Protocol = sa.Protocol
   414  	sa.raw.Ifindex = int32(sa.Ifindex)
   415  	sa.raw.Hatype = sa.Hatype
   416  	sa.raw.Pkttype = sa.Pkttype
   417  	sa.raw.Halen = sa.Halen
   418  	for i := 0; i < len(sa.Addr); i++ {
   419  		sa.raw.Addr[i] = sa.Addr[i]
   420  	}
   421  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   422  }
   423  
   424  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   425  type SockaddrNetlink struct {
   426  	Family uint16
   427  	Pad    uint16
   428  	Pid    uint32
   429  	Groups uint32
   430  	raw    RawSockaddrNetlink
   431  }
   432  
   433  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   434  	sa.raw.Family = AF_NETLINK
   435  	sa.raw.Pad = sa.Pad
   436  	sa.raw.Pid = sa.Pid
   437  	sa.raw.Groups = sa.Groups
   438  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   439  }
   440  
   441  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   442  // using the HCI protocol.
   443  type SockaddrHCI struct {
   444  	Dev     uint16
   445  	Channel uint16
   446  	raw     RawSockaddrHCI
   447  }
   448  
   449  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   450  	sa.raw.Family = AF_BLUETOOTH
   451  	sa.raw.Dev = sa.Dev
   452  	sa.raw.Channel = sa.Channel
   453  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   454  }
   455  
   456  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   457  // using the L2CAP protocol.
   458  type SockaddrL2 struct {
   459  	PSM      uint16
   460  	CID      uint16
   461  	Addr     [6]uint8
   462  	AddrType uint8
   463  	raw      RawSockaddrL2
   464  }
   465  
   466  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   467  	sa.raw.Family = AF_BLUETOOTH
   468  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   469  	psm[0] = byte(sa.PSM)
   470  	psm[1] = byte(sa.PSM >> 8)
   471  	for i := 0; i < len(sa.Addr); i++ {
   472  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   473  	}
   474  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   475  	cid[0] = byte(sa.CID)
   476  	cid[1] = byte(sa.CID >> 8)
   477  	sa.raw.Bdaddr_type = sa.AddrType
   478  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   479  }
   480  
   481  // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
   482  // using the RFCOMM protocol.
   483  //
   484  // Server example:
   485  //
   486  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   487  //      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
   488  //      	Channel: 1,
   489  //      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
   490  //      })
   491  //      _ = Listen(fd, 1)
   492  //      nfd, sa, _ := Accept(fd)
   493  //      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
   494  //      Read(nfd, buf)
   495  //
   496  // Client example:
   497  //
   498  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   499  //      _ = Connect(fd, &SockaddrRFCOMM{
   500  //      	Channel: 1,
   501  //      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
   502  //      })
   503  //      Write(fd, []byte(`hello`))
   504  type SockaddrRFCOMM struct {
   505  	// Addr represents a bluetooth address, byte ordering is little-endian.
   506  	Addr [6]uint8
   507  
   508  	// Channel is a designated bluetooth channel, only 1-30 are available for use.
   509  	// Since Linux 2.6.7 and further zero value is the first available channel.
   510  	Channel uint8
   511  
   512  	raw RawSockaddrRFCOMM
   513  }
   514  
   515  func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   516  	sa.raw.Family = AF_BLUETOOTH
   517  	sa.raw.Channel = sa.Channel
   518  	sa.raw.Bdaddr = sa.Addr
   519  	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
   520  }
   521  
   522  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   523  // The RxID and TxID fields are used for transport protocol addressing in
   524  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   525  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   526  //
   527  // The SockaddrCAN struct must be bound to the socket file descriptor
   528  // using Bind before the CAN socket can be used.
   529  //
   530  //      // Read one raw CAN frame
   531  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   532  //      addr := &SockaddrCAN{Ifindex: index}
   533  //      Bind(fd, addr)
   534  //      frame := make([]byte, 16)
   535  //      Read(fd, frame)
   536  //
   537  // The full SocketCAN documentation can be found in the linux kernel
   538  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   539  type SockaddrCAN struct {
   540  	Ifindex int
   541  	RxID    uint32
   542  	TxID    uint32
   543  	raw     RawSockaddrCAN
   544  }
   545  
   546  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   547  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   548  		return nil, 0, EINVAL
   549  	}
   550  	sa.raw.Family = AF_CAN
   551  	sa.raw.Ifindex = int32(sa.Ifindex)
   552  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   553  	for i := 0; i < 4; i++ {
   554  		sa.raw.Addr[i] = rx[i]
   555  	}
   556  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   557  	for i := 0; i < 4; i++ {
   558  		sa.raw.Addr[i+4] = tx[i]
   559  	}
   560  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   561  }
   562  
   563  // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
   564  // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
   565  // on the purposes of the fields, check the official linux kernel documentation
   566  // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
   567  type SockaddrCANJ1939 struct {
   568  	Ifindex int
   569  	Name    uint64
   570  	PGN     uint32
   571  	Addr    uint8
   572  	raw     RawSockaddrCAN
   573  }
   574  
   575  func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
   576  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   577  		return nil, 0, EINVAL
   578  	}
   579  	sa.raw.Family = AF_CAN
   580  	sa.raw.Ifindex = int32(sa.Ifindex)
   581  	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
   582  	for i := 0; i < 8; i++ {
   583  		sa.raw.Addr[i] = n[i]
   584  	}
   585  	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
   586  	for i := 0; i < 4; i++ {
   587  		sa.raw.Addr[i+8] = p[i]
   588  	}
   589  	sa.raw.Addr[12] = sa.Addr
   590  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   591  }
   592  
   593  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   594  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   595  // subsystem. The Type and Name fields specify which type of hash or cipher
   596  // should be used with a given socket.
   597  //
   598  // To create a file descriptor that provides access to a hash or cipher, both
   599  // Bind and Accept must be used. Once the setup process is complete, input
   600  // data can be written to the socket, processed by the kernel, and then read
   601  // back as hash output or ciphertext.
   602  //
   603  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   604  // The initial socket setup process is as follows:
   605  //
   606  //      // Open a socket to perform SHA1 hashing.
   607  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   608  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   609  //      unix.Bind(fd, addr)
   610  //      // Note: unix.Accept does not work at this time; must invoke accept()
   611  //      // manually using unix.Syscall.
   612  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   613  //
   614  // Once a file descriptor has been returned from Accept, it may be used to
   615  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   616  // may be re-used repeatedly with subsequent Write and Read operations.
   617  //
   618  // When hashing a small byte slice or string, a single Write and Read may
   619  // be used:
   620  //
   621  //      // Assume hashfd is already configured using the setup process.
   622  //      hash := os.NewFile(hashfd, "sha1")
   623  //      // Hash an input string and read the results. Each Write discards
   624  //      // previous hash state. Read always reads the current state.
   625  //      b := make([]byte, 20)
   626  //      for i := 0; i < 2; i++ {
   627  //          io.WriteString(hash, "Hello, world.")
   628  //          hash.Read(b)
   629  //          fmt.Println(hex.EncodeToString(b))
   630  //      }
   631  //      // Output:
   632  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   633  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   634  //
   635  // For hashing larger byte slices, or byte streams such as those read from
   636  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   637  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   638  //
   639  //      // Assume hashfd and addr are already configured using the setup process.
   640  //      hash := os.NewFile(hashfd, "sha1")
   641  //      // Hash the contents of a file.
   642  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   643  //      b := make([]byte, 4096)
   644  //      for {
   645  //          n, err := f.Read(b)
   646  //          if err == io.EOF {
   647  //              break
   648  //          }
   649  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   650  //      }
   651  //      hash.Read(b)
   652  //      fmt.Println(hex.EncodeToString(b))
   653  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   654  //
   655  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   656  type SockaddrALG struct {
   657  	Type    string
   658  	Name    string
   659  	Feature uint32
   660  	Mask    uint32
   661  	raw     RawSockaddrALG
   662  }
   663  
   664  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   665  	// Leave room for NUL byte terminator.
   666  	if len(sa.Type) > 13 {
   667  		return nil, 0, EINVAL
   668  	}
   669  	if len(sa.Name) > 63 {
   670  		return nil, 0, EINVAL
   671  	}
   672  
   673  	sa.raw.Family = AF_ALG
   674  	sa.raw.Feat = sa.Feature
   675  	sa.raw.Mask = sa.Mask
   676  
   677  	typ, err := ByteSliceFromString(sa.Type)
   678  	if err != nil {
   679  		return nil, 0, err
   680  	}
   681  	name, err := ByteSliceFromString(sa.Name)
   682  	if err != nil {
   683  		return nil, 0, err
   684  	}
   685  
   686  	copy(sa.raw.Type[:], typ)
   687  	copy(sa.raw.Name[:], name)
   688  
   689  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   690  }
   691  
   692  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   693  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   694  // bidirectional communication between a hypervisor and its guest virtual
   695  // machines.
   696  type SockaddrVM struct {
   697  	// CID and Port specify a context ID and port address for a VM socket.
   698  	// Guests have a unique CID, and hosts may have a well-known CID of:
   699  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   700  	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
   701  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   702  	CID   uint32
   703  	Port  uint32
   704  	Flags uint8
   705  	raw   RawSockaddrVM
   706  }
   707  
   708  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   709  	sa.raw.Family = AF_VSOCK
   710  	sa.raw.Port = sa.Port
   711  	sa.raw.Cid = sa.CID
   712  	sa.raw.Flags = sa.Flags
   713  
   714  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   715  }
   716  
   717  type SockaddrXDP struct {
   718  	Flags        uint16
   719  	Ifindex      uint32
   720  	QueueID      uint32
   721  	SharedUmemFD uint32
   722  	raw          RawSockaddrXDP
   723  }
   724  
   725  func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   726  	sa.raw.Family = AF_XDP
   727  	sa.raw.Flags = sa.Flags
   728  	sa.raw.Ifindex = sa.Ifindex
   729  	sa.raw.Queue_id = sa.QueueID
   730  	sa.raw.Shared_umem_fd = sa.SharedUmemFD
   731  
   732  	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
   733  }
   734  
   735  // This constant mirrors the #define of PX_PROTO_OE in
   736  // linux/if_pppox.h. We're defining this by hand here instead of
   737  // autogenerating through mkerrors.sh because including
   738  // linux/if_pppox.h causes some declaration conflicts with other
   739  // includes (linux/if_pppox.h includes linux/in.h, which conflicts
   740  // with netinet/in.h). Given that we only need a single zero constant
   741  // out of that file, it's cleaner to just define it by hand here.
   742  const px_proto_oe = 0
   743  
   744  type SockaddrPPPoE struct {
   745  	SID    uint16
   746  	Remote []byte
   747  	Dev    string
   748  	raw    RawSockaddrPPPoX
   749  }
   750  
   751  func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
   752  	if len(sa.Remote) != 6 {
   753  		return nil, 0, EINVAL
   754  	}
   755  	if len(sa.Dev) > IFNAMSIZ-1 {
   756  		return nil, 0, EINVAL
   757  	}
   758  
   759  	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
   760  	// This next field is in host-endian byte order. We can't use the
   761  	// same unsafe pointer cast as above, because this value is not
   762  	// 32-bit aligned and some architectures don't allow unaligned
   763  	// access.
   764  	//
   765  	// However, the value of px_proto_oe is 0, so we can use
   766  	// encoding/binary helpers to write the bytes without worrying
   767  	// about the ordering.
   768  	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
   769  	// This field is deliberately big-endian, unlike the previous
   770  	// one. The kernel expects SID to be in network byte order.
   771  	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
   772  	copy(sa.raw[8:14], sa.Remote)
   773  	for i := 14; i < 14+IFNAMSIZ; i++ {
   774  		sa.raw[i] = 0
   775  	}
   776  	copy(sa.raw[14:], sa.Dev)
   777  	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
   778  }
   779  
   780  // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
   781  // For more information on TIPC, see: http://tipc.sourceforge.net/.
   782  type SockaddrTIPC struct {
   783  	// Scope is the publication scopes when binding service/service range.
   784  	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
   785  	Scope int
   786  
   787  	// Addr is the type of address used to manipulate a socket. Addr must be
   788  	// one of:
   789  	//  - *TIPCSocketAddr: "id" variant in the C addr union
   790  	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
   791  	//  - *TIPCServiceName: "name" variant in the C addr union
   792  	//
   793  	// If nil, EINVAL will be returned when the structure is used.
   794  	Addr TIPCAddr
   795  
   796  	raw RawSockaddrTIPC
   797  }
   798  
   799  // TIPCAddr is implemented by types that can be used as an address for
   800  // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
   801  // and *TIPCServiceName.
   802  type TIPCAddr interface {
   803  	tipcAddrtype() uint8
   804  	tipcAddr() [12]byte
   805  }
   806  
   807  func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
   808  	var out [12]byte
   809  	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
   810  	return out
   811  }
   812  
   813  func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
   814  
   815  func (sa *TIPCServiceRange) tipcAddr() [12]byte {
   816  	var out [12]byte
   817  	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
   818  	return out
   819  }
   820  
   821  func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
   822  
   823  func (sa *TIPCServiceName) tipcAddr() [12]byte {
   824  	var out [12]byte
   825  	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
   826  	return out
   827  }
   828  
   829  func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
   830  
   831  func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
   832  	if sa.Addr == nil {
   833  		return nil, 0, EINVAL
   834  	}
   835  
   836  	sa.raw.Family = AF_TIPC
   837  	sa.raw.Scope = int8(sa.Scope)
   838  	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
   839  	sa.raw.Addr = sa.Addr.tipcAddr()
   840  
   841  	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
   842  }
   843  
   844  // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
   845  type SockaddrL2TPIP struct {
   846  	Addr   [4]byte
   847  	ConnId uint32
   848  	raw    RawSockaddrL2TPIP
   849  }
   850  
   851  func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   852  	sa.raw.Family = AF_INET
   853  	sa.raw.Conn_id = sa.ConnId
   854  	for i := 0; i < len(sa.Addr); i++ {
   855  		sa.raw.Addr[i] = sa.Addr[i]
   856  	}
   857  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
   858  }
   859  
   860  // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
   861  type SockaddrL2TPIP6 struct {
   862  	Addr   [16]byte
   863  	ZoneId uint32
   864  	ConnId uint32
   865  	raw    RawSockaddrL2TPIP6
   866  }
   867  
   868  func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   869  	sa.raw.Family = AF_INET6
   870  	sa.raw.Conn_id = sa.ConnId
   871  	sa.raw.Scope_id = sa.ZoneId
   872  	for i := 0; i < len(sa.Addr); i++ {
   873  		sa.raw.Addr[i] = sa.Addr[i]
   874  	}
   875  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
   876  }
   877  
   878  // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
   879  type SockaddrIUCV struct {
   880  	UserID string
   881  	Name   string
   882  	raw    RawSockaddrIUCV
   883  }
   884  
   885  func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
   886  	sa.raw.Family = AF_IUCV
   887  	// These are EBCDIC encoded by the kernel, but we still need to pad them
   888  	// with blanks. Initializing with blanks allows the caller to feed in either
   889  	// a padded or an unpadded string.
   890  	for i := 0; i < 8; i++ {
   891  		sa.raw.Nodeid[i] = ' '
   892  		sa.raw.User_id[i] = ' '
   893  		sa.raw.Name[i] = ' '
   894  	}
   895  	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
   896  		return nil, 0, EINVAL
   897  	}
   898  	for i, b := range []byte(sa.UserID[:]) {
   899  		sa.raw.User_id[i] = int8(b)
   900  	}
   901  	for i, b := range []byte(sa.Name[:]) {
   902  		sa.raw.Name[i] = int8(b)
   903  	}
   904  	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
   905  }
   906  
   907  type SockaddrNFC struct {
   908  	DeviceIdx   uint32
   909  	TargetIdx   uint32
   910  	NFCProtocol uint32
   911  	raw         RawSockaddrNFC
   912  }
   913  
   914  func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
   915  	sa.raw.Sa_family = AF_NFC
   916  	sa.raw.Dev_idx = sa.DeviceIdx
   917  	sa.raw.Target_idx = sa.TargetIdx
   918  	sa.raw.Nfc_protocol = sa.NFCProtocol
   919  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
   920  }
   921  
   922  type SockaddrNFCLLCP struct {
   923  	DeviceIdx      uint32
   924  	TargetIdx      uint32
   925  	NFCProtocol    uint32
   926  	DestinationSAP uint8
   927  	SourceSAP      uint8
   928  	ServiceName    string
   929  	raw            RawSockaddrNFCLLCP
   930  }
   931  
   932  func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   933  	sa.raw.Sa_family = AF_NFC
   934  	sa.raw.Dev_idx = sa.DeviceIdx
   935  	sa.raw.Target_idx = sa.TargetIdx
   936  	sa.raw.Nfc_protocol = sa.NFCProtocol
   937  	sa.raw.Dsap = sa.DestinationSAP
   938  	sa.raw.Ssap = sa.SourceSAP
   939  	if len(sa.ServiceName) > len(sa.raw.Service_name) {
   940  		return nil, 0, EINVAL
   941  	}
   942  	copy(sa.raw.Service_name[:], sa.ServiceName)
   943  	sa.raw.SetServiceNameLen(len(sa.ServiceName))
   944  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
   945  }
   946  
   947  var socketProtocol = func(fd int) (int, error) {
   948  	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   949  }
   950  
   951  func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
   952  	switch rsa.Addr.Family {
   953  	case AF_NETLINK:
   954  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   955  		sa := new(SockaddrNetlink)
   956  		sa.Family = pp.Family
   957  		sa.Pad = pp.Pad
   958  		sa.Pid = pp.Pid
   959  		sa.Groups = pp.Groups
   960  		return sa, nil
   961  
   962  	case AF_PACKET:
   963  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   964  		sa := new(SockaddrLinklayer)
   965  		sa.Protocol = pp.Protocol
   966  		sa.Ifindex = int(pp.Ifindex)
   967  		sa.Hatype = pp.Hatype
   968  		sa.Pkttype = pp.Pkttype
   969  		sa.Halen = pp.Halen
   970  		for i := 0; i < len(sa.Addr); i++ {
   971  			sa.Addr[i] = pp.Addr[i]
   972  		}
   973  		return sa, nil
   974  
   975  	case AF_UNIX:
   976  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   977  		sa := new(SockaddrUnix)
   978  		if pp.Path[0] == 0 {
   979  			// "Abstract" Unix domain socket.
   980  			// Rewrite leading NUL as @ for textual display.
   981  			// (This is the standard convention.)
   982  			// Not friendly to overwrite in place,
   983  			// but the callers below don't care.
   984  			pp.Path[0] = '@'
   985  		}
   986  
   987  		// Assume path ends at NUL.
   988  		// This is not technically the Linux semantics for
   989  		// abstract Unix domain sockets--they are supposed
   990  		// to be uninterpreted fixed-size binary blobs--but
   991  		// everyone uses this convention.
   992  		n := 0
   993  		for n < len(pp.Path) && pp.Path[n] != 0 {
   994  			n++
   995  		}
   996  		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   997  		sa.Name = string(bytes)
   998  		return sa, nil
   999  
  1000  	case AF_INET:
  1001  		proto, err := socketProtocol(fd)
  1002  		if err != nil {
  1003  			return nil, err
  1004  		}
  1005  
  1006  		switch proto {
  1007  		case IPPROTO_L2TP:
  1008  			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
  1009  			sa := new(SockaddrL2TPIP)
  1010  			sa.ConnId = pp.Conn_id
  1011  			for i := 0; i < len(sa.Addr); i++ {
  1012  				sa.Addr[i] = pp.Addr[i]
  1013  			}
  1014  			return sa, nil
  1015  		default:
  1016  			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
  1017  			sa := new(SockaddrInet4)
  1018  			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  1019  			sa.Port = int(p[0])<<8 + int(p[1])
  1020  			for i := 0; i < len(sa.Addr); i++ {
  1021  				sa.Addr[i] = pp.Addr[i]
  1022  			}
  1023  			return sa, nil
  1024  		}
  1025  
  1026  	case AF_INET6:
  1027  		proto, err := socketProtocol(fd)
  1028  		if err != nil {
  1029  			return nil, err
  1030  		}
  1031  
  1032  		switch proto {
  1033  		case IPPROTO_L2TP:
  1034  			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
  1035  			sa := new(SockaddrL2TPIP6)
  1036  			sa.ConnId = pp.Conn_id
  1037  			sa.ZoneId = pp.Scope_id
  1038  			for i := 0; i < len(sa.Addr); i++ {
  1039  				sa.Addr[i] = pp.Addr[i]
  1040  			}
  1041  			return sa, nil
  1042  		default:
  1043  			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
  1044  			sa := new(SockaddrInet6)
  1045  			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  1046  			sa.Port = int(p[0])<<8 + int(p[1])
  1047  			sa.ZoneId = pp.Scope_id
  1048  			for i := 0; i < len(sa.Addr); i++ {
  1049  				sa.Addr[i] = pp.Addr[i]
  1050  			}
  1051  			return sa, nil
  1052  		}
  1053  
  1054  	case AF_VSOCK:
  1055  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
  1056  		sa := &SockaddrVM{
  1057  			CID:   pp.Cid,
  1058  			Port:  pp.Port,
  1059  			Flags: pp.Flags,
  1060  		}
  1061  		return sa, nil
  1062  	case AF_BLUETOOTH:
  1063  		proto, err := socketProtocol(fd)
  1064  		if err != nil {
  1065  			return nil, err
  1066  		}
  1067  		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
  1068  		switch proto {
  1069  		case BTPROTO_L2CAP:
  1070  			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
  1071  			sa := &SockaddrL2{
  1072  				PSM:      pp.Psm,
  1073  				CID:      pp.Cid,
  1074  				Addr:     pp.Bdaddr,
  1075  				AddrType: pp.Bdaddr_type,
  1076  			}
  1077  			return sa, nil
  1078  		case BTPROTO_RFCOMM:
  1079  			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  1080  			sa := &SockaddrRFCOMM{
  1081  				Channel: pp.Channel,
  1082  				Addr:    pp.Bdaddr,
  1083  			}
  1084  			return sa, nil
  1085  		}
  1086  	case AF_XDP:
  1087  		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
  1088  		sa := &SockaddrXDP{
  1089  			Flags:        pp.Flags,
  1090  			Ifindex:      pp.Ifindex,
  1091  			QueueID:      pp.Queue_id,
  1092  			SharedUmemFD: pp.Shared_umem_fd,
  1093  		}
  1094  		return sa, nil
  1095  	case AF_PPPOX:
  1096  		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
  1097  		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
  1098  			return nil, EINVAL
  1099  		}
  1100  		sa := &SockaddrPPPoE{
  1101  			SID:    binary.BigEndian.Uint16(pp[6:8]),
  1102  			Remote: pp[8:14],
  1103  		}
  1104  		for i := 14; i < 14+IFNAMSIZ; i++ {
  1105  			if pp[i] == 0 {
  1106  				sa.Dev = string(pp[14:i])
  1107  				break
  1108  			}
  1109  		}
  1110  		return sa, nil
  1111  	case AF_TIPC:
  1112  		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
  1113  
  1114  		sa := &SockaddrTIPC{
  1115  			Scope: int(pp.Scope),
  1116  		}
  1117  
  1118  		// Determine which union variant is present in pp.Addr by checking
  1119  		// pp.Addrtype.
  1120  		switch pp.Addrtype {
  1121  		case TIPC_SERVICE_RANGE:
  1122  			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
  1123  		case TIPC_SERVICE_ADDR:
  1124  			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
  1125  		case TIPC_SOCKET_ADDR:
  1126  			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
  1127  		default:
  1128  			return nil, EINVAL
  1129  		}
  1130  
  1131  		return sa, nil
  1132  	case AF_IUCV:
  1133  		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
  1134  
  1135  		var user [8]byte
  1136  		var name [8]byte
  1137  
  1138  		for i := 0; i < 8; i++ {
  1139  			user[i] = byte(pp.User_id[i])
  1140  			name[i] = byte(pp.Name[i])
  1141  		}
  1142  
  1143  		sa := &SockaddrIUCV{
  1144  			UserID: string(user[:]),
  1145  			Name:   string(name[:]),
  1146  		}
  1147  		return sa, nil
  1148  
  1149  	case AF_CAN:
  1150  		proto, err := socketProtocol(fd)
  1151  		if err != nil {
  1152  			return nil, err
  1153  		}
  1154  
  1155  		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
  1156  
  1157  		switch proto {
  1158  		case CAN_J1939:
  1159  			sa := &SockaddrCANJ1939{
  1160  				Ifindex: int(pp.Ifindex),
  1161  			}
  1162  			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
  1163  			for i := 0; i < 8; i++ {
  1164  				name[i] = pp.Addr[i]
  1165  			}
  1166  			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
  1167  			for i := 0; i < 4; i++ {
  1168  				pgn[i] = pp.Addr[i+8]
  1169  			}
  1170  			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
  1171  			addr[0] = pp.Addr[12]
  1172  			return sa, nil
  1173  		default:
  1174  			sa := &SockaddrCAN{
  1175  				Ifindex: int(pp.Ifindex),
  1176  			}
  1177  			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  1178  			for i := 0; i < 4; i++ {
  1179  				rx[i] = pp.Addr[i]
  1180  			}
  1181  			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  1182  			for i := 0; i < 4; i++ {
  1183  				tx[i] = pp.Addr[i+4]
  1184  			}
  1185  			return sa, nil
  1186  		}
  1187  	case AF_NFC:
  1188  		proto, err := socketProtocol(fd)
  1189  		if err != nil {
  1190  			return nil, err
  1191  		}
  1192  		switch proto {
  1193  		case NFC_SOCKPROTO_RAW:
  1194  			pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
  1195  			sa := &SockaddrNFC{
  1196  				DeviceIdx:   pp.Dev_idx,
  1197  				TargetIdx:   pp.Target_idx,
  1198  				NFCProtocol: pp.Nfc_protocol,
  1199  			}
  1200  			return sa, nil
  1201  		case NFC_SOCKPROTO_LLCP:
  1202  			pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
  1203  			if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
  1204  				return nil, EINVAL
  1205  			}
  1206  			sa := &SockaddrNFCLLCP{
  1207  				DeviceIdx:      pp.Dev_idx,
  1208  				TargetIdx:      pp.Target_idx,
  1209  				NFCProtocol:    pp.Nfc_protocol,
  1210  				DestinationSAP: pp.Dsap,
  1211  				SourceSAP:      pp.Ssap,
  1212  				ServiceName:    string(pp.Service_name[:pp.Service_name_len]),
  1213  			}
  1214  			return sa, nil
  1215  		default:
  1216  			return nil, EINVAL
  1217  		}
  1218  	}
  1219  	return nil, EAFNOSUPPORT
  1220  }
  1221  
  1222  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  1223  	var rsa RawSockaddrAny
  1224  	var len _Socklen = SizeofSockaddrAny
  1225  	// Try accept4 first for Android, then try accept for kernel older than 2.6.28
  1226  	nfd, err = accept4(fd, &rsa, &len, 0)
  1227  	if err == ENOSYS {
  1228  		nfd, err = accept(fd, &rsa, &len)
  1229  	}
  1230  	if err != nil {
  1231  		return
  1232  	}
  1233  	sa, err = anyToSockaddr(fd, &rsa)
  1234  	if err != nil {
  1235  		Close(nfd)
  1236  		nfd = 0
  1237  	}
  1238  	return
  1239  }
  1240  
  1241  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  1242  	var rsa RawSockaddrAny
  1243  	var len _Socklen = SizeofSockaddrAny
  1244  	nfd, err = accept4(fd, &rsa, &len, flags)
  1245  	if err != nil {
  1246  		return
  1247  	}
  1248  	if len > SizeofSockaddrAny {
  1249  		panic("RawSockaddrAny too small")
  1250  	}
  1251  	sa, err = anyToSockaddr(fd, &rsa)
  1252  	if err != nil {
  1253  		Close(nfd)
  1254  		nfd = 0
  1255  	}
  1256  	return
  1257  }
  1258  
  1259  func Getsockname(fd int) (sa Sockaddr, err error) {
  1260  	var rsa RawSockaddrAny
  1261  	var len _Socklen = SizeofSockaddrAny
  1262  	if err = getsockname(fd, &rsa, &len); err != nil {
  1263  		return
  1264  	}
  1265  	return anyToSockaddr(fd, &rsa)
  1266  }
  1267  
  1268  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  1269  	var value IPMreqn
  1270  	vallen := _Socklen(SizeofIPMreqn)
  1271  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1272  	return &value, err
  1273  }
  1274  
  1275  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  1276  	var value Ucred
  1277  	vallen := _Socklen(SizeofUcred)
  1278  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1279  	return &value, err
  1280  }
  1281  
  1282  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  1283  	var value TCPInfo
  1284  	vallen := _Socklen(SizeofTCPInfo)
  1285  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1286  	return &value, err
  1287  }
  1288  
  1289  // GetsockoptString returns the string value of the socket option opt for the
  1290  // socket associated with fd at the given socket level.
  1291  func GetsockoptString(fd, level, opt int) (string, error) {
  1292  	buf := make([]byte, 256)
  1293  	vallen := _Socklen(len(buf))
  1294  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1295  	if err != nil {
  1296  		if err == ERANGE {
  1297  			buf = make([]byte, vallen)
  1298  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1299  		}
  1300  		if err != nil {
  1301  			return "", err
  1302  		}
  1303  	}
  1304  	return string(buf[:vallen-1]), nil
  1305  }
  1306  
  1307  func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
  1308  	var value TpacketStats
  1309  	vallen := _Socklen(SizeofTpacketStats)
  1310  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1311  	return &value, err
  1312  }
  1313  
  1314  func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
  1315  	var value TpacketStatsV3
  1316  	vallen := _Socklen(SizeofTpacketStatsV3)
  1317  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1318  	return &value, err
  1319  }
  1320  
  1321  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  1322  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1323  }
  1324  
  1325  func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
  1326  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1327  }
  1328  
  1329  // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
  1330  // socket to filter incoming packets.  See 'man 7 socket' for usage information.
  1331  func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
  1332  	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
  1333  }
  1334  
  1335  func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
  1336  	var p unsafe.Pointer
  1337  	if len(filter) > 0 {
  1338  		p = unsafe.Pointer(&filter[0])
  1339  	}
  1340  	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
  1341  }
  1342  
  1343  func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
  1344  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1345  }
  1346  
  1347  func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
  1348  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1349  }
  1350  
  1351  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  1352  
  1353  // KeyctlInt calls keyctl commands in which each argument is an int.
  1354  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  1355  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  1356  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  1357  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  1358  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  1359  
  1360  // KeyctlBuffer calls keyctl commands in which the third and fourth
  1361  // arguments are a buffer and its length, respectively.
  1362  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  1363  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  1364  
  1365  // KeyctlString calls keyctl commands which return a string.
  1366  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1367  func KeyctlString(cmd int, id int) (string, error) {
  1368  	// We must loop as the string data may change in between the syscalls.
  1369  	// We could allocate a large buffer here to reduce the chance that the
  1370  	// syscall needs to be called twice; however, this is unnecessary as
  1371  	// the performance loss is negligible.
  1372  	var buffer []byte
  1373  	for {
  1374  		// Try to fill the buffer with data
  1375  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1376  		if err != nil {
  1377  			return "", err
  1378  		}
  1379  
  1380  		// Check if the data was written
  1381  		if length <= len(buffer) {
  1382  			// Exclude the null terminator
  1383  			return string(buffer[:length-1]), nil
  1384  		}
  1385  
  1386  		// Make a bigger buffer if needed
  1387  		buffer = make([]byte, length)
  1388  	}
  1389  }
  1390  
  1391  // Keyctl commands with special signatures.
  1392  
  1393  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1394  // See the full documentation at:
  1395  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1396  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1397  	createInt := 0
  1398  	if create {
  1399  		createInt = 1
  1400  	}
  1401  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1402  }
  1403  
  1404  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1405  // key handle permission mask as described in the "keyctl setperm" section of
  1406  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1407  // See the full documentation at:
  1408  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1409  func KeyctlSetperm(id int, perm uint32) error {
  1410  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1411  	return err
  1412  }
  1413  
  1414  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1415  
  1416  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1417  // See the full documentation at:
  1418  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1419  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1420  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1421  }
  1422  
  1423  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1424  
  1425  // KeyctlSearch implements the KEYCTL_SEARCH command.
  1426  // See the full documentation at:
  1427  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1428  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1429  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1430  }
  1431  
  1432  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1433  
  1434  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1435  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1436  // of Iovec (each of which represents a buffer) instead of a single buffer.
  1437  // See the full documentation at:
  1438  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1439  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1440  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1441  }
  1442  
  1443  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1444  
  1445  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1446  // computes a Diffie-Hellman shared secret based on the provide params. The
  1447  // secret is written to the provided buffer and the returned size is the number
  1448  // of bytes written (returning an error if there is insufficient space in the
  1449  // buffer). If a nil buffer is passed in, this function returns the minimum
  1450  // buffer length needed to store the appropriate data. Note that this differs
  1451  // from KEYCTL_READ's behavior which always returns the requested payload size.
  1452  // See the full documentation at:
  1453  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1454  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1455  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1456  }
  1457  
  1458  // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
  1459  // command limits the set of keys that can be linked to the keyring, regardless
  1460  // of keyring permissions. The command requires the "setattr" permission.
  1461  //
  1462  // When called with an empty keyType the command locks the keyring, preventing
  1463  // any further keys from being linked to the keyring.
  1464  //
  1465  // The "asymmetric" keyType defines restrictions requiring key payloads to be
  1466  // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
  1467  // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
  1468  // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
  1469  //
  1470  // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
  1471  // restrictions.
  1472  //
  1473  // See the full documentation at:
  1474  // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
  1475  // http://man7.org/linux/man-pages/man2/keyctl.2.html
  1476  func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
  1477  	if keyType == "" {
  1478  		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
  1479  	}
  1480  	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
  1481  }
  1482  
  1483  //sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
  1484  //sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
  1485  
  1486  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1487  	var msg Msghdr
  1488  	var rsa RawSockaddrAny
  1489  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1490  	msg.Namelen = uint32(SizeofSockaddrAny)
  1491  	var iov Iovec
  1492  	if len(p) > 0 {
  1493  		iov.Base = &p[0]
  1494  		iov.SetLen(len(p))
  1495  	}
  1496  	var dummy byte
  1497  	if len(oob) > 0 {
  1498  		if len(p) == 0 {
  1499  			var sockType int
  1500  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1501  			if err != nil {
  1502  				return
  1503  			}
  1504  			// receive at least one normal byte
  1505  			if sockType != SOCK_DGRAM {
  1506  				iov.Base = &dummy
  1507  				iov.SetLen(1)
  1508  			}
  1509  		}
  1510  		msg.Control = &oob[0]
  1511  		msg.SetControllen(len(oob))
  1512  	}
  1513  	msg.Iov = &iov
  1514  	msg.Iovlen = 1
  1515  	if n, err = recvmsg(fd, &msg, flags); err != nil {
  1516  		return
  1517  	}
  1518  	oobn = int(msg.Controllen)
  1519  	recvflags = int(msg.Flags)
  1520  	// source address is only specified if the socket is unconnected
  1521  	if rsa.Addr.Family != AF_UNSPEC {
  1522  		from, err = anyToSockaddr(fd, &rsa)
  1523  	}
  1524  	return
  1525  }
  1526  
  1527  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1528  	_, err = SendmsgN(fd, p, oob, to, flags)
  1529  	return
  1530  }
  1531  
  1532  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1533  	var ptr unsafe.Pointer
  1534  	var salen _Socklen
  1535  	if to != nil {
  1536  		var err error
  1537  		ptr, salen, err = to.sockaddr()
  1538  		if err != nil {
  1539  			return 0, err
  1540  		}
  1541  	}
  1542  	var msg Msghdr
  1543  	msg.Name = (*byte)(ptr)
  1544  	msg.Namelen = uint32(salen)
  1545  	var iov Iovec
  1546  	if len(p) > 0 {
  1547  		iov.Base = &p[0]
  1548  		iov.SetLen(len(p))
  1549  	}
  1550  	var dummy byte
  1551  	if len(oob) > 0 {
  1552  		if len(p) == 0 {
  1553  			var sockType int
  1554  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1555  			if err != nil {
  1556  				return 0, err
  1557  			}
  1558  			// send at least one normal byte
  1559  			if sockType != SOCK_DGRAM {
  1560  				iov.Base = &dummy
  1561  				iov.SetLen(1)
  1562  			}
  1563  		}
  1564  		msg.Control = &oob[0]
  1565  		msg.SetControllen(len(oob))
  1566  	}
  1567  	msg.Iov = &iov
  1568  	msg.Iovlen = 1
  1569  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1570  		return 0, err
  1571  	}
  1572  	if len(oob) > 0 && len(p) == 0 {
  1573  		n = 0
  1574  	}
  1575  	return n, nil
  1576  }
  1577  
  1578  // BindToDevice binds the socket associated with fd to device.
  1579  func BindToDevice(fd int, device string) (err error) {
  1580  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1581  }
  1582  
  1583  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1584  
  1585  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1586  	// The peek requests are machine-size oriented, so we wrap it
  1587  	// to retrieve arbitrary-length data.
  1588  
  1589  	// The ptrace syscall differs from glibc's ptrace.
  1590  	// Peeks returns the word in *data, not as the return value.
  1591  
  1592  	var buf [SizeofPtr]byte
  1593  
  1594  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1595  	// access (PEEKUSER warns that it might), but if we don't
  1596  	// align our reads, we might straddle an unmapped page
  1597  	// boundary and not get the bytes leading up to the page
  1598  	// boundary.
  1599  	n := 0
  1600  	if addr%SizeofPtr != 0 {
  1601  		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1602  		if err != nil {
  1603  			return 0, err
  1604  		}
  1605  		n += copy(out, buf[addr%SizeofPtr:])
  1606  		out = out[n:]
  1607  	}
  1608  
  1609  	// Remainder.
  1610  	for len(out) > 0 {
  1611  		// We use an internal buffer to guarantee alignment.
  1612  		// It's not documented if this is necessary, but we're paranoid.
  1613  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1614  		if err != nil {
  1615  			return n, err
  1616  		}
  1617  		copied := copy(out, buf[0:])
  1618  		n += copied
  1619  		out = out[copied:]
  1620  	}
  1621  
  1622  	return n, nil
  1623  }
  1624  
  1625  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1626  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1627  }
  1628  
  1629  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1630  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1631  }
  1632  
  1633  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1634  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1635  }
  1636  
  1637  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1638  	// As for ptracePeek, we need to align our accesses to deal
  1639  	// with the possibility of straddling an invalid page.
  1640  
  1641  	// Leading edge.
  1642  	n := 0
  1643  	if addr%SizeofPtr != 0 {
  1644  		var buf [SizeofPtr]byte
  1645  		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1646  		if err != nil {
  1647  			return 0, err
  1648  		}
  1649  		n += copy(buf[addr%SizeofPtr:], data)
  1650  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1651  		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1652  		if err != nil {
  1653  			return 0, err
  1654  		}
  1655  		data = data[n:]
  1656  	}
  1657  
  1658  	// Interior.
  1659  	for len(data) > SizeofPtr {
  1660  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1661  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1662  		if err != nil {
  1663  			return n, err
  1664  		}
  1665  		n += SizeofPtr
  1666  		data = data[SizeofPtr:]
  1667  	}
  1668  
  1669  	// Trailing edge.
  1670  	if len(data) > 0 {
  1671  		var buf [SizeofPtr]byte
  1672  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1673  		if err != nil {
  1674  			return n, err
  1675  		}
  1676  		copy(buf[0:], data)
  1677  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1678  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1679  		if err != nil {
  1680  			return n, err
  1681  		}
  1682  		n += len(data)
  1683  	}
  1684  
  1685  	return n, nil
  1686  }
  1687  
  1688  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1689  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1690  }
  1691  
  1692  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1693  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1694  }
  1695  
  1696  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1697  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1698  }
  1699  
  1700  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1701  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1702  }
  1703  
  1704  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1705  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1706  }
  1707  
  1708  func PtraceSetOptions(pid int, options int) (err error) {
  1709  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1710  }
  1711  
  1712  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1713  	var data _C_long
  1714  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1715  	msg = uint(data)
  1716  	return
  1717  }
  1718  
  1719  func PtraceCont(pid int, signal int) (err error) {
  1720  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1721  }
  1722  
  1723  func PtraceSyscall(pid int, signal int) (err error) {
  1724  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1725  }
  1726  
  1727  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1728  
  1729  func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
  1730  
  1731  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1732  
  1733  func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
  1734  
  1735  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1736  
  1737  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1738  
  1739  func Reboot(cmd int) (err error) {
  1740  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1741  }
  1742  
  1743  func direntIno(buf []byte) (uint64, bool) {
  1744  	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
  1745  }
  1746  
  1747  func direntReclen(buf []byte) (uint64, bool) {
  1748  	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
  1749  }
  1750  
  1751  func direntNamlen(buf []byte) (uint64, bool) {
  1752  	reclen, ok := direntReclen(buf)
  1753  	if !ok {
  1754  		return 0, false
  1755  	}
  1756  	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
  1757  }
  1758  
  1759  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1760  
  1761  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1762  	// Certain file systems get rather angry and EINVAL if you give
  1763  	// them an empty string of data, rather than NULL.
  1764  	if data == "" {
  1765  		return mount(source, target, fstype, flags, nil)
  1766  	}
  1767  	datap, err := BytePtrFromString(data)
  1768  	if err != nil {
  1769  		return err
  1770  	}
  1771  	return mount(source, target, fstype, flags, datap)
  1772  }
  1773  
  1774  func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1775  	if raceenabled {
  1776  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1777  	}
  1778  	return sendfile(outfd, infd, offset, count)
  1779  }
  1780  
  1781  // Sendto
  1782  // Recvfrom
  1783  // Socketpair
  1784  
  1785  /*
  1786   * Direct access
  1787   */
  1788  //sys	Acct(path string) (err error)
  1789  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1790  //sys	Adjtimex(buf *Timex) (state int, err error)
  1791  //sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
  1792  //sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
  1793  //sys	Chdir(path string) (err error)
  1794  //sys	Chroot(path string) (err error)
  1795  //sys	ClockGetres(clockid int32, res *Timespec) (err error)
  1796  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1797  //sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1798  //sys	Close(fd int) (err error)
  1799  //sys	CloseRange(first uint, last uint, flags uint) (err error)
  1800  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1801  //sys	DeleteModule(name string, flags int) (err error)
  1802  //sys	Dup(oldfd int) (fd int, err error)
  1803  
  1804  func Dup2(oldfd, newfd int) error {
  1805  	// Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
  1806  	if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
  1807  		return Dup3(oldfd, newfd, 0)
  1808  	}
  1809  	return dup2(oldfd, newfd)
  1810  }
  1811  
  1812  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1813  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1814  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1815  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1816  //sys	Exit(code int) = SYS_EXIT_GROUP
  1817  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1818  //sys	Fchdir(fd int) (err error)
  1819  //sys	Fchmod(fd int, mode uint32) (err error)
  1820  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1821  //sys	Fdatasync(fd int) (err error)
  1822  //sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1823  //sys	FinitModule(fd int, params string, flags int) (err error)
  1824  //sys	Flistxattr(fd int, dest []byte) (sz int, err error)
  1825  //sys	Flock(fd int, how int) (err error)
  1826  //sys	Fremovexattr(fd int, attr string) (err error)
  1827  //sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1828  //sys	Fsync(fd int) (err error)
  1829  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1830  //sysnb	Getpgid(pid int) (pgid int, err error)
  1831  
  1832  func Getpgrp() (pid int) {
  1833  	pid, _ = Getpgid(0)
  1834  	return
  1835  }
  1836  
  1837  //sysnb	Getpid() (pid int)
  1838  //sysnb	Getppid() (ppid int)
  1839  //sys	Getpriority(which int, who int) (prio int, err error)
  1840  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1841  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1842  //sysnb	Getsid(pid int) (sid int, err error)
  1843  //sysnb	Gettid() (tid int)
  1844  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1845  //sys	InitModule(moduleImage []byte, params string) (err error)
  1846  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1847  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1848  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1849  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1850  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1851  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1852  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1853  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1854  //sys	Lremovexattr(path string, attr string) (err error)
  1855  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1856  //sys	MemfdCreate(name string, flags int) (fd int, err error)
  1857  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1858  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1859  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1860  //sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1861  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1862  //sysnb	prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1863  //sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1864  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1865  //sys	read(fd int, p []byte) (n int, err error)
  1866  //sys	Removexattr(path string, attr string) (err error)
  1867  //sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1868  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1869  //sys	Setdomainname(p []byte) (err error)
  1870  //sys	Sethostname(p []byte) (err error)
  1871  //sysnb	Setpgid(pid int, pgid int) (err error)
  1872  //sysnb	Setsid() (pid int, err error)
  1873  //sysnb	Settimeofday(tv *Timeval) (err error)
  1874  //sys	Setns(fd int, nstype int) (err error)
  1875  
  1876  // PrctlRetInt performs a prctl operation specified by option and further
  1877  // optional arguments arg2 through arg5 depending on option. It returns a
  1878  // non-negative integer that is returned by the prctl syscall.
  1879  func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
  1880  	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
  1881  	if err != 0 {
  1882  		return 0, err
  1883  	}
  1884  	return int(ret), nil
  1885  }
  1886  
  1887  // issue 1435.
  1888  // On linux Setuid and Setgid only affects the current thread, not the process.
  1889  // This does not match what most callers expect so we must return an error
  1890  // here rather than letting the caller think that the call succeeded.
  1891  
  1892  func Setuid(uid int) (err error) {
  1893  	return EOPNOTSUPP
  1894  }
  1895  
  1896  func Setgid(uid int) (err error) {
  1897  	return EOPNOTSUPP
  1898  }
  1899  
  1900  // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
  1901  // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
  1902  // If the call fails due to other reasons, current fsgid will be returned.
  1903  func SetfsgidRetGid(gid int) (int, error) {
  1904  	return setfsgid(gid)
  1905  }
  1906  
  1907  // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
  1908  // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
  1909  // If the call fails due to other reasons, current fsuid will be returned.
  1910  func SetfsuidRetUid(uid int) (int, error) {
  1911  	return setfsuid(uid)
  1912  }
  1913  
  1914  func Setfsgid(gid int) error {
  1915  	_, err := setfsgid(gid)
  1916  	return err
  1917  }
  1918  
  1919  func Setfsuid(uid int) error {
  1920  	_, err := setfsuid(uid)
  1921  	return err
  1922  }
  1923  
  1924  func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
  1925  	return signalfd(fd, sigmask, _C__NSIG/8, flags)
  1926  }
  1927  
  1928  //sys	Setpriority(which int, who int, prio int) (err error)
  1929  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1930  //sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
  1931  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1932  //sys	Sync()
  1933  //sys	Syncfs(fd int) (err error)
  1934  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1935  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1936  //sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
  1937  //sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
  1938  //sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
  1939  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1940  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1941  //sysnb	Umask(mask int) (oldmask int)
  1942  //sysnb	Uname(buf *Utsname) (err error)
  1943  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1944  //sys	Unshare(flags int) (err error)
  1945  //sys	write(fd int, p []byte) (n int, err error)
  1946  //sys	exitThread(code int) (err error) = SYS_EXIT
  1947  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1948  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1949  //sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
  1950  //sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
  1951  //sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
  1952  //sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
  1953  //sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
  1954  //sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
  1955  
  1956  func bytes2iovec(bs [][]byte) []Iovec {
  1957  	iovecs := make([]Iovec, len(bs))
  1958  	for i, b := range bs {
  1959  		iovecs[i].SetLen(len(b))
  1960  		if len(b) > 0 {
  1961  			iovecs[i].Base = &b[0]
  1962  		} else {
  1963  			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
  1964  		}
  1965  	}
  1966  	return iovecs
  1967  }
  1968  
  1969  // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
  1970  // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
  1971  // preadv/pwritev chose this calling convention so they don't need to add a
  1972  // padding-register for alignment on ARM.
  1973  func offs2lohi(offs int64) (lo, hi uintptr) {
  1974  	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
  1975  }
  1976  
  1977  func Readv(fd int, iovs [][]byte) (n int, err error) {
  1978  	iovecs := bytes2iovec(iovs)
  1979  	n, err = readv(fd, iovecs)
  1980  	readvRacedetect(iovecs, n, err)
  1981  	return n, err
  1982  }
  1983  
  1984  func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1985  	iovecs := bytes2iovec(iovs)
  1986  	lo, hi := offs2lohi(offset)
  1987  	n, err = preadv(fd, iovecs, lo, hi)
  1988  	readvRacedetect(iovecs, n, err)
  1989  	return n, err
  1990  }
  1991  
  1992  func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1993  	iovecs := bytes2iovec(iovs)
  1994  	lo, hi := offs2lohi(offset)
  1995  	n, err = preadv2(fd, iovecs, lo, hi, flags)
  1996  	readvRacedetect(iovecs, n, err)
  1997  	return n, err
  1998  }
  1999  
  2000  func readvRacedetect(iovecs []Iovec, n int, err error) {
  2001  	if !raceenabled {
  2002  		return
  2003  	}
  2004  	for i := 0; n > 0 && i < len(iovecs); i++ {
  2005  		m := int(iovecs[i].Len)
  2006  		if m > n {
  2007  			m = n
  2008  		}
  2009  		n -= m
  2010  		if m > 0 {
  2011  			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
  2012  		}
  2013  	}
  2014  	if err == nil {
  2015  		raceAcquire(unsafe.Pointer(&ioSync))
  2016  	}
  2017  }
  2018  
  2019  func Writev(fd int, iovs [][]byte) (n int, err error) {
  2020  	iovecs := bytes2iovec(iovs)
  2021  	if raceenabled {
  2022  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  2023  	}
  2024  	n, err = writev(fd, iovecs)
  2025  	writevRacedetect(iovecs, n)
  2026  	return n, err
  2027  }
  2028  
  2029  func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
  2030  	iovecs := bytes2iovec(iovs)
  2031  	if raceenabled {
  2032  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  2033  	}
  2034  	lo, hi := offs2lohi(offset)
  2035  	n, err = pwritev(fd, iovecs, lo, hi)
  2036  	writevRacedetect(iovecs, n)
  2037  	return n, err
  2038  }
  2039  
  2040  func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  2041  	iovecs := bytes2iovec(iovs)
  2042  	if raceenabled {
  2043  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  2044  	}
  2045  	lo, hi := offs2lohi(offset)
  2046  	n, err = pwritev2(fd, iovecs, lo, hi, flags)
  2047  	writevRacedetect(iovecs, n)
  2048  	return n, err
  2049  }
  2050  
  2051  func writevRacedetect(iovecs []Iovec, n int) {
  2052  	if !raceenabled {
  2053  		return
  2054  	}
  2055  	for i := 0; n > 0 && i < len(iovecs); i++ {
  2056  		m := int(iovecs[i].Len)
  2057  		if m > n {
  2058  			m = n
  2059  		}
  2060  		n -= m
  2061  		if m > 0 {
  2062  			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
  2063  		}
  2064  	}
  2065  }
  2066  
  2067  // mmap varies by architecture; see syscall_linux_*.go.
  2068  //sys	munmap(addr uintptr, length uintptr) (err error)
  2069  
  2070  var mapper = &mmapper{
  2071  	active: make(map[*byte][]byte),
  2072  	mmap:   mmap,
  2073  	munmap: munmap,
  2074  }
  2075  
  2076  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  2077  	return mapper.Mmap(fd, offset, length, prot, flags)
  2078  }
  2079  
  2080  func Munmap(b []byte) (err error) {
  2081  	return mapper.Munmap(b)
  2082  }
  2083  
  2084  //sys	Madvise(b []byte, advice int) (err error)
  2085  //sys	Mprotect(b []byte, prot int) (err error)
  2086  //sys	Mlock(b []byte) (err error)
  2087  //sys	Mlockall(flags int) (err error)
  2088  //sys	Msync(b []byte, flags int) (err error)
  2089  //sys	Munlock(b []byte) (err error)
  2090  //sys	Munlockall() (err error)
  2091  
  2092  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  2093  // using the specified flags.
  2094  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  2095  	var p unsafe.Pointer
  2096  	if len(iovs) > 0 {
  2097  		p = unsafe.Pointer(&iovs[0])
  2098  	}
  2099  
  2100  	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  2101  	if errno != 0 {
  2102  		return 0, syscall.Errno(errno)
  2103  	}
  2104  
  2105  	return int(n), nil
  2106  }
  2107  
  2108  func isGroupMember(gid int) bool {
  2109  	groups, err := Getgroups()
  2110  	if err != nil {
  2111  		return false
  2112  	}
  2113  
  2114  	for _, g := range groups {
  2115  		if g == gid {
  2116  			return true
  2117  		}
  2118  	}
  2119  	return false
  2120  }
  2121  
  2122  //sys	faccessat(dirfd int, path string, mode uint32) (err error)
  2123  //sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
  2124  
  2125  func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  2126  	if flags == 0 {
  2127  		return faccessat(dirfd, path, mode)
  2128  	}
  2129  
  2130  	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
  2131  		return err
  2132  	}
  2133  
  2134  	// The Linux kernel faccessat system call does not take any flags.
  2135  	// The glibc faccessat implements the flags itself; see
  2136  	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  2137  	// Because people naturally expect syscall.Faccessat to act
  2138  	// like C faccessat, we do the same.
  2139  
  2140  	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  2141  		return EINVAL
  2142  	}
  2143  
  2144  	var st Stat_t
  2145  	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  2146  		return err
  2147  	}
  2148  
  2149  	mode &= 7
  2150  	if mode == 0 {
  2151  		return nil
  2152  	}
  2153  
  2154  	var uid int
  2155  	if flags&AT_EACCESS != 0 {
  2156  		uid = Geteuid()
  2157  	} else {
  2158  		uid = Getuid()
  2159  	}
  2160  
  2161  	if uid == 0 {
  2162  		if mode&1 == 0 {
  2163  			// Root can read and write any file.
  2164  			return nil
  2165  		}
  2166  		if st.Mode&0111 != 0 {
  2167  			// Root can execute any file that anybody can execute.
  2168  			return nil
  2169  		}
  2170  		return EACCES
  2171  	}
  2172  
  2173  	var fmode uint32
  2174  	if uint32(uid) == st.Uid {
  2175  		fmode = (st.Mode >> 6) & 7
  2176  	} else {
  2177  		var gid int
  2178  		if flags&AT_EACCESS != 0 {
  2179  			gid = Getegid()
  2180  		} else {
  2181  			gid = Getgid()
  2182  		}
  2183  
  2184  		if uint32(gid) == st.Gid || isGroupMember(gid) {
  2185  			fmode = (st.Mode >> 3) & 7
  2186  		} else {
  2187  			fmode = st.Mode & 7
  2188  		}
  2189  	}
  2190  
  2191  	if fmode&mode == mode {
  2192  		return nil
  2193  	}
  2194  
  2195  	return EACCES
  2196  }
  2197  
  2198  //sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
  2199  //sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
  2200  
  2201  // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
  2202  // originally tried to generate it via unix/linux/types.go with "type
  2203  // fileHandle C.struct_file_handle" but that generated empty structs
  2204  // for mips64 and mips64le. Instead, hard code it for now (it's the
  2205  // same everywhere else) until the mips64 generator issue is fixed.
  2206  type fileHandle struct {
  2207  	Bytes uint32
  2208  	Type  int32
  2209  }
  2210  
  2211  // FileHandle represents the C struct file_handle used by
  2212  // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
  2213  // OpenByHandleAt).
  2214  type FileHandle struct {
  2215  	*fileHandle
  2216  }
  2217  
  2218  // NewFileHandle constructs a FileHandle.
  2219  func NewFileHandle(handleType int32, handle []byte) FileHandle {
  2220  	const hdrSize = unsafe.Sizeof(fileHandle{})
  2221  	buf := make([]byte, hdrSize+uintptr(len(handle)))
  2222  	copy(buf[hdrSize:], handle)
  2223  	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  2224  	fh.Type = handleType
  2225  	fh.Bytes = uint32(len(handle))
  2226  	return FileHandle{fh}
  2227  }
  2228  
  2229  func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
  2230  func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
  2231  func (fh *FileHandle) Bytes() []byte {
  2232  	n := fh.Size()
  2233  	if n == 0 {
  2234  		return nil
  2235  	}
  2236  	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
  2237  }
  2238  
  2239  // NameToHandleAt wraps the name_to_handle_at system call; it obtains
  2240  // a handle for a path name.
  2241  func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
  2242  	var mid _C_int
  2243  	// Try first with a small buffer, assuming the handle will
  2244  	// only be 32 bytes.
  2245  	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
  2246  	didResize := false
  2247  	for {
  2248  		buf := make([]byte, size)
  2249  		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  2250  		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
  2251  		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
  2252  		if err == EOVERFLOW {
  2253  			if didResize {
  2254  				// We shouldn't need to resize more than once
  2255  				return
  2256  			}
  2257  			didResize = true
  2258  			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
  2259  			continue
  2260  		}
  2261  		if err != nil {
  2262  			return
  2263  		}
  2264  		return FileHandle{fh}, int(mid), nil
  2265  	}
  2266  }
  2267  
  2268  // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
  2269  // file via a handle as previously returned by NameToHandleAt.
  2270  func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
  2271  	return openByHandleAt(mountFD, handle.fileHandle, flags)
  2272  }
  2273  
  2274  // Klogset wraps the sys_syslog system call; it sets console_loglevel to
  2275  // the value specified by arg and passes a dummy pointer to bufp.
  2276  func Klogset(typ int, arg int) (err error) {
  2277  	var p unsafe.Pointer
  2278  	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
  2279  	if errno != 0 {
  2280  		return errnoErr(errno)
  2281  	}
  2282  	return nil
  2283  }
  2284  
  2285  // RemoteIovec is Iovec with the pointer replaced with an integer.
  2286  // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
  2287  // refers to a location in a different process' address space, which
  2288  // would confuse the Go garbage collector.
  2289  type RemoteIovec struct {
  2290  	Base uintptr
  2291  	Len  int
  2292  }
  2293  
  2294  //sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
  2295  //sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
  2296  
  2297  /*
  2298   * Unimplemented
  2299   */
  2300  // AfsSyscall
  2301  // Alarm
  2302  // ArchPrctl
  2303  // Brk
  2304  // ClockNanosleep
  2305  // ClockSettime
  2306  // Clone
  2307  // EpollCtlOld
  2308  // EpollPwait
  2309  // EpollWaitOld
  2310  // Execve
  2311  // Fork
  2312  // Futex
  2313  // GetKernelSyms
  2314  // GetMempolicy
  2315  // GetRobustList
  2316  // GetThreadArea
  2317  // Getitimer
  2318  // Getpmsg
  2319  // IoCancel
  2320  // IoDestroy
  2321  // IoGetevents
  2322  // IoSetup
  2323  // IoSubmit
  2324  // IoprioGet
  2325  // IoprioSet
  2326  // KexecLoad
  2327  // LookupDcookie
  2328  // Mbind
  2329  // MigratePages
  2330  // Mincore
  2331  // ModifyLdt
  2332  // Mount
  2333  // MovePages
  2334  // MqGetsetattr
  2335  // MqNotify
  2336  // MqOpen
  2337  // MqTimedreceive
  2338  // MqTimedsend
  2339  // MqUnlink
  2340  // Mremap
  2341  // Msgctl
  2342  // Msgget
  2343  // Msgrcv
  2344  // Msgsnd
  2345  // Nfsservctl
  2346  // Personality
  2347  // Pselect6
  2348  // Ptrace
  2349  // Putpmsg
  2350  // Quotactl
  2351  // Readahead
  2352  // Readv
  2353  // RemapFilePages
  2354  // RestartSyscall
  2355  // RtSigaction
  2356  // RtSigpending
  2357  // RtSigprocmask
  2358  // RtSigqueueinfo
  2359  // RtSigreturn
  2360  // RtSigsuspend
  2361  // RtSigtimedwait
  2362  // SchedGetPriorityMax
  2363  // SchedGetPriorityMin
  2364  // SchedGetparam
  2365  // SchedGetscheduler
  2366  // SchedRrGetInterval
  2367  // SchedSetparam
  2368  // SchedYield
  2369  // Security
  2370  // Semctl
  2371  // Semget
  2372  // Semop
  2373  // Semtimedop
  2374  // SetMempolicy
  2375  // SetRobustList
  2376  // SetThreadArea
  2377  // SetTidAddress
  2378  // Shmat
  2379  // Shmctl
  2380  // Shmdt
  2381  // Shmget
  2382  // Sigaltstack
  2383  // Swapoff
  2384  // Swapon
  2385  // Sysfs
  2386  // TimerCreate
  2387  // TimerDelete
  2388  // TimerGetoverrun
  2389  // TimerGettime
  2390  // TimerSettime
  2391  // Tkill (obsolete)
  2392  // Tuxcall
  2393  // Umount2
  2394  // Uselib
  2395  // Utimensat
  2396  // Vfork
  2397  // Vhangup
  2398  // Vserver
  2399  // Waitid
  2400  // _Sysctl