github.com/nicocha30/gvisor-ligolo@v0.0.0-20230726075806-989fa2c0a413/pkg/tcpip/tcpip.go (about)

     1  // Copyright 2018 The gVisor Authors.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Package tcpip provides the interfaces and related types that users of the
    16  // tcpip stack will use in order to create endpoints used to send and receive
    17  // data over the network stack.
    18  //
    19  // The starting point is the creation and configuration of a stack. A stack can
    20  // be created by calling the New() function of the tcpip/stack/stack package;
    21  // configuring a stack involves creating NICs (via calls to Stack.CreateNIC()),
    22  // adding network addresses (via calls to Stack.AddProtocolAddress()), and
    23  // setting a route table (via a call to Stack.SetRouteTable()).
    24  //
    25  // Once a stack is configured, endpoints can be created by calling
    26  // Stack.NewEndpoint(). Such endpoints can be used to send/receive data, connect
    27  // to peers, listen for connections, accept connections, etc., depending on the
    28  // transport protocol selected.
    29  package tcpip
    30  
    31  import (
    32  	"bytes"
    33  	"errors"
    34  	"fmt"
    35  	"io"
    36  	"math"
    37  	"math/bits"
    38  	"reflect"
    39  	"strconv"
    40  	"strings"
    41  	"time"
    42  
    43  	"github.com/nicocha30/gvisor-ligolo/pkg/atomicbitops"
    44  	"github.com/nicocha30/gvisor-ligolo/pkg/sync"
    45  	"github.com/nicocha30/gvisor-ligolo/pkg/waiter"
    46  )
    47  
    48  // Using the header package here would cause an import cycle.
    49  const (
    50  	ipv4AddressSize    = 4
    51  	ipv4ProtocolNumber = 0x0800
    52  	ipv6AddressSize    = 16
    53  	ipv6ProtocolNumber = 0x86dd
    54  )
    55  
    56  // Errors related to Subnet
    57  var (
    58  	errSubnetLengthMismatch = errors.New("subnet length of address and mask differ")
    59  	errSubnetAddressMasked  = errors.New("subnet address has bits set outside the mask")
    60  )
    61  
    62  // ErrSaveRejection indicates a failed save due to unsupported networking state.
    63  // This type of errors is only used for save logic.
    64  type ErrSaveRejection struct {
    65  	Err error
    66  }
    67  
    68  // Error returns a sensible description of the save rejection error.
    69  func (e *ErrSaveRejection) Error() string {
    70  	return "save rejected due to unsupported networking state: " + e.Err.Error()
    71  }
    72  
    73  // MonotonicTime is a monotonic clock reading.
    74  //
    75  // +stateify savable
    76  type MonotonicTime struct {
    77  	nanoseconds int64
    78  }
    79  
    80  // String implements Stringer.
    81  func (mt MonotonicTime) String() string {
    82  	return strconv.FormatInt(mt.nanoseconds, 10)
    83  }
    84  
    85  // MonotonicTimeInfinite returns the monotonic timestamp as far away in the
    86  // future as possible.
    87  func MonotonicTimeInfinite() MonotonicTime {
    88  	return MonotonicTime{nanoseconds: math.MaxInt64}
    89  }
    90  
    91  // Before reports whether the monotonic clock reading mt is before u.
    92  func (mt MonotonicTime) Before(u MonotonicTime) bool {
    93  	return mt.nanoseconds < u.nanoseconds
    94  }
    95  
    96  // After reports whether the monotonic clock reading mt is after u.
    97  func (mt MonotonicTime) After(u MonotonicTime) bool {
    98  	return mt.nanoseconds > u.nanoseconds
    99  }
   100  
   101  // Add returns the monotonic clock reading mt+d.
   102  func (mt MonotonicTime) Add(d time.Duration) MonotonicTime {
   103  	return MonotonicTime{
   104  		nanoseconds: time.Unix(0, mt.nanoseconds).Add(d).Sub(time.Unix(0, 0)).Nanoseconds(),
   105  	}
   106  }
   107  
   108  // Sub returns the duration mt-u. If the result exceeds the maximum (or minimum)
   109  // value that can be stored in a Duration, the maximum (or minimum) duration
   110  // will be returned. To compute t-d for a duration d, use t.Add(-d).
   111  func (mt MonotonicTime) Sub(u MonotonicTime) time.Duration {
   112  	return time.Unix(0, mt.nanoseconds).Sub(time.Unix(0, u.nanoseconds))
   113  }
   114  
   115  // A Clock provides the current time and schedules work for execution.
   116  //
   117  // Times returned by a Clock should always be used for application-visible
   118  // time. Only monotonic times should be used for netstack internal timekeeping.
   119  type Clock interface {
   120  	// Now returns the current local time.
   121  	Now() time.Time
   122  
   123  	// NowMonotonic returns the current monotonic clock reading.
   124  	NowMonotonic() MonotonicTime
   125  
   126  	// AfterFunc waits for the duration to elapse and then calls f in its own
   127  	// goroutine. It returns a Timer that can be used to cancel the call using
   128  	// its Stop method.
   129  	AfterFunc(d time.Duration, f func()) Timer
   130  }
   131  
   132  // Timer represents a single event. A Timer must be created with
   133  // Clock.AfterFunc.
   134  type Timer interface {
   135  	// Stop prevents the Timer from firing. It returns true if the call stops the
   136  	// timer, false if the timer has already expired or been stopped.
   137  	//
   138  	// If Stop returns false, then the timer has already expired and the function
   139  	// f of Clock.AfterFunc(d, f) has been started in its own goroutine; Stop
   140  	// does not wait for f to complete before returning. If the caller needs to
   141  	// know whether f is completed, it must coordinate with f explicitly.
   142  	Stop() bool
   143  
   144  	// Reset changes the timer to expire after duration d.
   145  	//
   146  	// Reset should be invoked only on stopped or expired timers. If the timer is
   147  	// known to have expired, Reset can be used directly. Otherwise, the caller
   148  	// must coordinate with the function f of Clock.AfterFunc(d, f).
   149  	Reset(d time.Duration)
   150  }
   151  
   152  // Address is a byte slice cast as a string that represents the address of a
   153  // network node. Or, in the case of unix endpoints, it may represent a path.
   154  //
   155  // +stateify savable
   156  type Address struct {
   157  	addr   [16]byte
   158  	length int
   159  }
   160  
   161  // AddrFrom4 converts addr to an Address.
   162  func AddrFrom4(addr [4]byte) Address {
   163  	ret := Address{
   164  		length: 4,
   165  	}
   166  	// It's guaranteed that copy will return 4.
   167  	copy(ret.addr[:], addr[:])
   168  	return ret
   169  }
   170  
   171  // AddrFrom4Slice converts addr to an Address. It panics if len(addr) != 4.
   172  func AddrFrom4Slice(addr []byte) Address {
   173  	if len(addr) != 4 {
   174  		panic(fmt.Sprintf("bad address length for address %v", addr))
   175  	}
   176  	ret := Address{
   177  		length: 4,
   178  	}
   179  	// It's guaranteed that copy will return 4.
   180  	copy(ret.addr[:], addr)
   181  	return ret
   182  }
   183  
   184  // AddrFrom16 converts addr to an Address.
   185  func AddrFrom16(addr [16]byte) Address {
   186  	ret := Address{
   187  		length: 16,
   188  	}
   189  	// It's guaranteed that copy will return 16.
   190  	copy(ret.addr[:], addr[:])
   191  	return ret
   192  }
   193  
   194  // AddrFrom16Slice converts addr to an Address. It panics if len(addr) != 16.
   195  func AddrFrom16Slice(addr []byte) Address {
   196  	if len(addr) != 16 {
   197  		panic(fmt.Sprintf("bad address length for address %v", addr))
   198  	}
   199  	ret := Address{
   200  		length: 16,
   201  	}
   202  	// It's guaranteed that copy will return 16.
   203  	copy(ret.addr[:], addr)
   204  	return ret
   205  }
   206  
   207  // AddrFromSlice converts addr to an Address. It returns the Address zero value
   208  // if len(addr) != 4 or 16.
   209  func AddrFromSlice(addr []byte) Address {
   210  	switch len(addr) {
   211  	case ipv4AddressSize:
   212  		return AddrFrom4Slice(addr)
   213  	case ipv6AddressSize:
   214  		return AddrFrom16Slice(addr)
   215  	}
   216  	return Address{}
   217  }
   218  
   219  // As4 returns a as a 4 byte array. It panics if the address length is not 4.
   220  func (a Address) As4() [4]byte {
   221  	if a.Len() != 4 {
   222  		panic(fmt.Sprintf("bad address length for address %v", a.addr))
   223  	}
   224  	return [4]byte(a.addr[:4])
   225  }
   226  
   227  // As16 returns a as a 16 byte array. It panics if the address length is not 16.
   228  func (a Address) As16() [16]byte {
   229  	if a.Len() != 16 {
   230  		panic(fmt.Sprintf("bad address length for address %v", a.addr))
   231  	}
   232  	return [16]byte(a.addr[:16])
   233  }
   234  
   235  // AsSlice returns a as a byte slice. Callers should be careful as it can
   236  // return a window into existing memory.
   237  //
   238  // +checkescape
   239  func (a *Address) AsSlice() []byte {
   240  	return a.addr[:a.length]
   241  }
   242  
   243  // BitLen returns the length in bits of a.
   244  func (a Address) BitLen() int {
   245  	return a.Len() * 8
   246  }
   247  
   248  // Len returns the length in bytes of a.
   249  func (a Address) Len() int {
   250  	return a.length
   251  }
   252  
   253  // WithPrefix returns the address with a prefix that represents a point subnet.
   254  func (a Address) WithPrefix() AddressWithPrefix {
   255  	return AddressWithPrefix{
   256  		Address:   a,
   257  		PrefixLen: a.BitLen(),
   258  	}
   259  }
   260  
   261  // Unspecified returns true if the address is unspecified.
   262  func (a Address) Unspecified() bool {
   263  	for _, b := range a.addr {
   264  		if b != 0 {
   265  			return false
   266  		}
   267  	}
   268  	return true
   269  }
   270  
   271  // Equal returns whether a and other are equal. It exists for use by the cmp
   272  // library.
   273  func (a Address) Equal(other Address) bool {
   274  	return a == other
   275  }
   276  
   277  // MatchingPrefix returns the matching prefix length in bits.
   278  //
   279  // Panics if b and a have different lengths.
   280  func (a Address) MatchingPrefix(b Address) uint8 {
   281  	const bitsInAByte = 8
   282  
   283  	if a.Len() != b.Len() {
   284  		panic(fmt.Sprintf("addresses %s and %s do not have the same length", a, b))
   285  	}
   286  
   287  	var prefix uint8
   288  	for i := 0; i < a.length; i++ {
   289  		aByte := a.addr[i]
   290  		bByte := b.addr[i]
   291  
   292  		if aByte == bByte {
   293  			prefix += bitsInAByte
   294  			continue
   295  		}
   296  
   297  		// Count the remaining matching bits in the byte from MSbit to LSBbit.
   298  		mask := uint8(1) << (bitsInAByte - 1)
   299  		for {
   300  			if aByte&mask == bByte&mask {
   301  				prefix++
   302  				mask >>= 1
   303  				continue
   304  			}
   305  
   306  			break
   307  		}
   308  
   309  		break
   310  	}
   311  
   312  	return prefix
   313  }
   314  
   315  // AddressMask is a bitmask for an address.
   316  //
   317  // +stateify savable
   318  type AddressMask struct {
   319  	mask string
   320  }
   321  
   322  // MaskFrom returns a Mask based on str.
   323  func MaskFrom(str string) AddressMask {
   324  	return AddressMask{mask: str}
   325  }
   326  
   327  // MaskFromBytes returns a Mask based on bs.
   328  func MaskFromBytes(bs []byte) AddressMask {
   329  	return AddressMask{mask: string(bs)}
   330  }
   331  
   332  // String implements Stringer.
   333  func (m AddressMask) String() string {
   334  	return fmt.Sprintf("%x", m.mask)
   335  }
   336  
   337  // AsSlice returns a as a byte slice. Callers should be careful as it can
   338  // return a window into existing memory.
   339  func (m *AddressMask) AsSlice() []byte {
   340  	return []byte(m.mask)
   341  }
   342  
   343  // BitLen returns the length of the mask in bits.
   344  func (m AddressMask) BitLen() int {
   345  	return len(m.mask) * 8
   346  }
   347  
   348  // Len returns the length of the mask in bytes.
   349  func (m AddressMask) Len() int {
   350  	return len(m.mask)
   351  }
   352  
   353  // Prefix returns the number of bits before the first host bit.
   354  func (m AddressMask) Prefix() int {
   355  	p := 0
   356  	for _, b := range []byte(m.mask) {
   357  		p += bits.LeadingZeros8(^b)
   358  	}
   359  	return p
   360  }
   361  
   362  // Equal returns whether m and other are equal. It exists for use by the cmp
   363  // library.
   364  func (m AddressMask) Equal(other AddressMask) bool {
   365  	return m == other
   366  }
   367  
   368  // Subnet is a subnet defined by its address and mask.
   369  type Subnet struct {
   370  	address Address
   371  	mask    AddressMask
   372  }
   373  
   374  // NewSubnet creates a new Subnet, checking that the address and mask are the same length.
   375  func NewSubnet(a Address, m AddressMask) (Subnet, error) {
   376  	if a.Len() != m.Len() {
   377  		return Subnet{}, errSubnetLengthMismatch
   378  	}
   379  	for i := 0; i < a.Len(); i++ {
   380  		if a.addr[i]&^m.mask[i] != 0 {
   381  			return Subnet{}, errSubnetAddressMasked
   382  		}
   383  	}
   384  	return Subnet{a, m}, nil
   385  }
   386  
   387  // String implements Stringer.
   388  func (s Subnet) String() string {
   389  	return fmt.Sprintf("%s/%d", s.ID(), s.Prefix())
   390  }
   391  
   392  // Contains returns true iff the address is of the same length and matches the
   393  // subnet address and mask.
   394  func (s *Subnet) Contains(a Address) bool {
   395  	if a.Len() != s.address.Len() {
   396  		return false
   397  	}
   398  	for i := 0; i < a.Len(); i++ {
   399  		if a.addr[i]&s.mask.mask[i] != s.address.addr[i] {
   400  			return false
   401  		}
   402  	}
   403  	return true
   404  }
   405  
   406  // ID returns the subnet ID.
   407  func (s *Subnet) ID() Address {
   408  	return s.address
   409  }
   410  
   411  // Bits returns the number of ones (network bits) and zeros (host bits) in the
   412  // subnet mask.
   413  func (s *Subnet) Bits() (ones int, zeros int) {
   414  	ones = s.mask.Prefix()
   415  	return ones, s.mask.BitLen() - ones
   416  }
   417  
   418  // Prefix returns the number of bits before the first host bit.
   419  func (s *Subnet) Prefix() int {
   420  	return s.mask.Prefix()
   421  }
   422  
   423  // Mask returns the subnet mask.
   424  func (s *Subnet) Mask() AddressMask {
   425  	return s.mask
   426  }
   427  
   428  // Broadcast returns the subnet's broadcast address.
   429  func (s *Subnet) Broadcast() Address {
   430  	addrCopy := s.address
   431  	for i := 0; i < addrCopy.Len(); i++ {
   432  		addrCopy.addr[i] |= ^s.mask.mask[i]
   433  	}
   434  	return addrCopy
   435  }
   436  
   437  // IsBroadcast returns true if the address is considered a broadcast address.
   438  func (s *Subnet) IsBroadcast(address Address) bool {
   439  	// Only IPv4 supports the notion of a broadcast address.
   440  	if address.Len() != ipv4AddressSize {
   441  		return false
   442  	}
   443  
   444  	// Normally, we would just compare address with the subnet's broadcast
   445  	// address but there is an exception where a simple comparison is not
   446  	// correct. This exception is for /31 and /32 IPv4 subnets where all
   447  	// addresses are considered valid host addresses.
   448  	//
   449  	// For /31 subnets, the case is easy. RFC 3021 Section 2.1 states that
   450  	// both addresses in a /31 subnet "MUST be interpreted as host addresses."
   451  	//
   452  	// For /32, the case is a bit more vague. RFC 3021 makes no mention of /32
   453  	// subnets. However, the same reasoning applies - if an exception is not
   454  	// made, then there do not exist any host addresses in a /32 subnet. RFC
   455  	// 4632 Section 3.1 also vaguely implies this interpretation by referring
   456  	// to addresses in /32 subnets as "host routes."
   457  	return s.Prefix() <= 30 && s.Broadcast() == address
   458  }
   459  
   460  // Equal returns true if this Subnet is equal to the given Subnet.
   461  func (s Subnet) Equal(o Subnet) bool {
   462  	// If this changes, update Route.Equal accordingly.
   463  	return s == o
   464  }
   465  
   466  // NICID is a number that uniquely identifies a NIC.
   467  type NICID int32
   468  
   469  // ShutdownFlags represents flags that can be passed to the Shutdown() method
   470  // of the Endpoint interface.
   471  type ShutdownFlags int
   472  
   473  // Values of the flags that can be passed to the Shutdown() method. They can
   474  // be OR'ed together.
   475  const (
   476  	ShutdownRead ShutdownFlags = 1 << iota
   477  	ShutdownWrite
   478  )
   479  
   480  // PacketType is used to indicate the destination of the packet.
   481  type PacketType uint8
   482  
   483  const (
   484  	// PacketHost indicates a packet addressed to the local host.
   485  	PacketHost PacketType = iota
   486  
   487  	// PacketOtherHost indicates an outgoing packet addressed to
   488  	// another host caught by a NIC in promiscuous mode.
   489  	PacketOtherHost
   490  
   491  	// PacketOutgoing for a packet originating from the local host
   492  	// that is looped back to a packet socket.
   493  	PacketOutgoing
   494  
   495  	// PacketBroadcast indicates a link layer broadcast packet.
   496  	PacketBroadcast
   497  
   498  	// PacketMulticast indicates a link layer multicast packet.
   499  	PacketMulticast
   500  )
   501  
   502  // FullAddress represents a full transport node address, as required by the
   503  // Connect() and Bind() methods.
   504  //
   505  // +stateify savable
   506  type FullAddress struct {
   507  	// NIC is the ID of the NIC this address refers to.
   508  	//
   509  	// This may not be used by all endpoint types.
   510  	NIC NICID
   511  
   512  	// Addr is the network address.
   513  	Addr Address
   514  
   515  	// Port is the transport port.
   516  	//
   517  	// This may not be used by all endpoint types.
   518  	Port uint16
   519  
   520  	// LinkAddr is the link layer address.
   521  	LinkAddr LinkAddress
   522  }
   523  
   524  // Payloader is an interface that provides data.
   525  //
   526  // This interface allows the endpoint to request the amount of data it needs
   527  // based on internal buffers without exposing them.
   528  type Payloader interface {
   529  	io.Reader
   530  
   531  	// Len returns the number of bytes of the unread portion of the
   532  	// Reader.
   533  	Len() int
   534  }
   535  
   536  var _ Payloader = (*bytes.Buffer)(nil)
   537  var _ Payloader = (*bytes.Reader)(nil)
   538  
   539  var _ io.Writer = (*SliceWriter)(nil)
   540  
   541  // SliceWriter implements io.Writer for slices.
   542  type SliceWriter []byte
   543  
   544  // Write implements io.Writer.Write.
   545  func (s *SliceWriter) Write(b []byte) (int, error) {
   546  	n := copy(*s, b)
   547  	*s = (*s)[n:]
   548  	var err error
   549  	if n != len(b) {
   550  		err = io.ErrShortWrite
   551  	}
   552  	return n, err
   553  }
   554  
   555  var _ io.Writer = (*LimitedWriter)(nil)
   556  
   557  // A LimitedWriter writes to W but limits the amount of data copied to just N
   558  // bytes. Each call to Write updates N to reflect the new amount remaining.
   559  type LimitedWriter struct {
   560  	W io.Writer
   561  	N int64
   562  }
   563  
   564  func (l *LimitedWriter) Write(p []byte) (int, error) {
   565  	pLen := int64(len(p))
   566  	if pLen > l.N {
   567  		p = p[:l.N]
   568  	}
   569  	n, err := l.W.Write(p)
   570  	n64 := int64(n)
   571  	if err == nil && n64 != pLen {
   572  		err = io.ErrShortWrite
   573  	}
   574  	l.N -= n64
   575  	return n, err
   576  }
   577  
   578  // SendableControlMessages contains socket control messages that can be written.
   579  //
   580  // +stateify savable
   581  type SendableControlMessages struct {
   582  	// HasTTL indicates whether TTL is valid/set.
   583  	HasTTL bool
   584  
   585  	// TTL is the IPv4 Time To Live of the associated packet.
   586  	TTL uint8
   587  
   588  	// HasHopLimit indicates whether HopLimit is valid/set.
   589  	HasHopLimit bool
   590  
   591  	// HopLimit is the IPv6 Hop Limit of the associated packet.
   592  	HopLimit uint8
   593  
   594  	// HasIPv6PacketInfo indicates whether IPv6PacketInfo is set.
   595  	HasIPv6PacketInfo bool
   596  
   597  	// IPv6PacketInfo holds interface and address data on an incoming packet.
   598  	IPv6PacketInfo IPv6PacketInfo
   599  }
   600  
   601  // ReceivableControlMessages contains socket control messages that can be
   602  // received.
   603  //
   604  // +stateify savable
   605  type ReceivableControlMessages struct {
   606  	// Timestamp is the time that the last packet used to create the read data
   607  	// was received.
   608  	Timestamp time.Time `state:".(int64)"`
   609  
   610  	// HasInq indicates whether Inq is valid/set.
   611  	HasInq bool
   612  
   613  	// Inq is the number of bytes ready to be received.
   614  	Inq int32
   615  
   616  	// HasTOS indicates whether TOS is valid/set.
   617  	HasTOS bool
   618  
   619  	// TOS is the IPv4 type of service of the associated packet.
   620  	TOS uint8
   621  
   622  	// HasTTL indicates whether TTL is valid/set.
   623  	HasTTL bool
   624  
   625  	// TTL is the IPv4 Time To Live of the associated packet.
   626  	TTL uint8
   627  
   628  	// HasHopLimit indicates whether HopLimit is valid/set.
   629  	HasHopLimit bool
   630  
   631  	// HopLimit is the IPv6 Hop Limit of the associated packet.
   632  	HopLimit uint8
   633  
   634  	// HasTimestamp indicates whether Timestamp is valid/set.
   635  	HasTimestamp bool
   636  
   637  	// HasTClass indicates whether TClass is valid/set.
   638  	HasTClass bool
   639  
   640  	// TClass is the IPv6 traffic class of the associated packet.
   641  	TClass uint32
   642  
   643  	// HasIPPacketInfo indicates whether PacketInfo is set.
   644  	HasIPPacketInfo bool
   645  
   646  	// PacketInfo holds interface and address data on an incoming packet.
   647  	PacketInfo IPPacketInfo
   648  
   649  	// HasIPv6PacketInfo indicates whether IPv6PacketInfo is set.
   650  	HasIPv6PacketInfo bool
   651  
   652  	// IPv6PacketInfo holds interface and address data on an incoming packet.
   653  	IPv6PacketInfo IPv6PacketInfo
   654  
   655  	// HasOriginalDestinationAddress indicates whether OriginalDstAddress is
   656  	// set.
   657  	HasOriginalDstAddress bool
   658  
   659  	// OriginalDestinationAddress holds the original destination address
   660  	// and port of the incoming packet.
   661  	OriginalDstAddress FullAddress
   662  
   663  	// SockErr is the dequeued socket error on recvmsg(MSG_ERRQUEUE).
   664  	SockErr *SockError
   665  }
   666  
   667  // PacketOwner is used to get UID and GID of the packet.
   668  type PacketOwner interface {
   669  	// KUID returns KUID of the packet.
   670  	KUID() uint32
   671  
   672  	// KGID returns KGID of the packet.
   673  	KGID() uint32
   674  }
   675  
   676  // ReadOptions contains options for Endpoint.Read.
   677  type ReadOptions struct {
   678  	// Peek indicates whether this read is a peek.
   679  	Peek bool
   680  
   681  	// NeedRemoteAddr indicates whether to return the remote address, if
   682  	// supported.
   683  	NeedRemoteAddr bool
   684  
   685  	// NeedLinkPacketInfo indicates whether to return the link-layer information,
   686  	// if supported.
   687  	NeedLinkPacketInfo bool
   688  }
   689  
   690  // ReadResult represents result for a successful Endpoint.Read.
   691  type ReadResult struct {
   692  	// Count is the number of bytes received and written to the buffer.
   693  	Count int
   694  
   695  	// Total is the number of bytes of the received packet. This can be used to
   696  	// determine whether the read is truncated.
   697  	Total int
   698  
   699  	// ControlMessages is the control messages received.
   700  	ControlMessages ReceivableControlMessages
   701  
   702  	// RemoteAddr is the remote address if ReadOptions.NeedAddr is true.
   703  	RemoteAddr FullAddress
   704  
   705  	// LinkPacketInfo is the link-layer information of the received packet if
   706  	// ReadOptions.NeedLinkPacketInfo is true.
   707  	LinkPacketInfo LinkPacketInfo
   708  }
   709  
   710  // Endpoint is the interface implemented by transport protocols (e.g., tcp, udp)
   711  // that exposes functionality like read, write, connect, etc. to users of the
   712  // networking stack.
   713  type Endpoint interface {
   714  	// Close puts the endpoint in a closed state and frees all resources
   715  	// associated with it. Close initiates the teardown process, the
   716  	// Endpoint may not be fully closed when Close returns.
   717  	Close()
   718  
   719  	// Abort initiates an expedited endpoint teardown. As compared to
   720  	// Close, Abort prioritizes closing the Endpoint quickly over cleanly.
   721  	// Abort is best effort; implementing Abort with Close is acceptable.
   722  	Abort()
   723  
   724  	// Read reads data from the endpoint and optionally writes to dst.
   725  	//
   726  	// This method does not block if there is no data pending; in this case,
   727  	// ErrWouldBlock is returned.
   728  	//
   729  	// If non-zero number of bytes are successfully read and written to dst, err
   730  	// must be nil. Otherwise, if dst failed to write anything, ErrBadBuffer
   731  	// should be returned.
   732  	Read(io.Writer, ReadOptions) (ReadResult, Error)
   733  
   734  	// Write writes data to the endpoint's peer. This method does not block if
   735  	// the data cannot be written.
   736  	//
   737  	// Unlike io.Writer.Write, Endpoint.Write transfers ownership of any bytes
   738  	// successfully written to the Endpoint. That is, if a call to
   739  	// Write(SlicePayload{data}) returns (n, err), it may retain data[:n], and
   740  	// the caller should not use data[:n] after Write returns.
   741  	//
   742  	// Note that unlike io.Writer.Write, it is not an error for Write to
   743  	// perform a partial write (if n > 0, no error may be returned). Only
   744  	// stream (TCP) Endpoints may return partial writes, and even then only
   745  	// in the case where writing additional data would block. Other Endpoints
   746  	// will either write the entire message or return an error.
   747  	Write(Payloader, WriteOptions) (int64, Error)
   748  
   749  	// Connect connects the endpoint to its peer. Specifying a NIC is
   750  	// optional.
   751  	//
   752  	// There are three classes of return values:
   753  	//	nil -- the attempt to connect succeeded.
   754  	//	ErrConnectStarted/ErrAlreadyConnecting -- the connect attempt started
   755  	//		but hasn't completed yet. In this case, the caller must call Connect
   756  	//		or GetSockOpt(ErrorOption) when the endpoint becomes writable to
   757  	//		get the actual result. The first call to Connect after the socket has
   758  	//		connected returns nil. Calling connect again results in ErrAlreadyConnected.
   759  	//	Anything else -- the attempt to connect failed.
   760  	//
   761  	// If address.Addr is empty, this means that Endpoint has to be
   762  	// disconnected if this is supported, otherwise
   763  	// ErrAddressFamilyNotSupported must be returned.
   764  	Connect(address FullAddress) Error
   765  
   766  	// Disconnect disconnects the endpoint from its peer.
   767  	Disconnect() Error
   768  
   769  	// Shutdown closes the read and/or write end of the endpoint connection
   770  	// to its peer.
   771  	Shutdown(flags ShutdownFlags) Error
   772  
   773  	// Listen puts the endpoint in "listen" mode, which allows it to accept
   774  	// new connections.
   775  	Listen(backlog int) Error
   776  
   777  	// Accept returns a new endpoint if a peer has established a connection
   778  	// to an endpoint previously set to listen mode. This method does not
   779  	// block if no new connections are available.
   780  	//
   781  	// The returned Queue is the wait queue for the newly created endpoint.
   782  	//
   783  	// If peerAddr is not nil then it is populated with the peer address of the
   784  	// returned endpoint.
   785  	Accept(peerAddr *FullAddress) (Endpoint, *waiter.Queue, Error)
   786  
   787  	// Bind binds the endpoint to a specific local address and port.
   788  	// Specifying a NIC is optional.
   789  	Bind(address FullAddress) Error
   790  
   791  	// GetLocalAddress returns the address to which the endpoint is bound.
   792  	GetLocalAddress() (FullAddress, Error)
   793  
   794  	// GetRemoteAddress returns the address to which the endpoint is
   795  	// connected.
   796  	GetRemoteAddress() (FullAddress, Error)
   797  
   798  	// Readiness returns the current readiness of the endpoint. For example,
   799  	// if waiter.EventIn is set, the endpoint is immediately readable.
   800  	Readiness(mask waiter.EventMask) waiter.EventMask
   801  
   802  	// SetSockOpt sets a socket option.
   803  	SetSockOpt(opt SettableSocketOption) Error
   804  
   805  	// SetSockOptInt sets a socket option, for simple cases where a value
   806  	// has the int type.
   807  	SetSockOptInt(opt SockOptInt, v int) Error
   808  
   809  	// GetSockOpt gets a socket option.
   810  	GetSockOpt(opt GettableSocketOption) Error
   811  
   812  	// GetSockOptInt gets a socket option for simple cases where a return
   813  	// value has the int type.
   814  	GetSockOptInt(SockOptInt) (int, Error)
   815  
   816  	// State returns a socket's lifecycle state. The returned value is
   817  	// protocol-specific and is primarily used for diagnostics.
   818  	State() uint32
   819  
   820  	// ModerateRecvBuf should be called everytime data is copied to the user
   821  	// space. This allows for dynamic tuning of recv buffer space for a
   822  	// given socket.
   823  	//
   824  	// NOTE: This method is a no-op for sockets other than TCP.
   825  	ModerateRecvBuf(copied int)
   826  
   827  	// Info returns a copy to the transport endpoint info.
   828  	Info() EndpointInfo
   829  
   830  	// Stats returns a reference to the endpoint stats.
   831  	Stats() EndpointStats
   832  
   833  	// SetOwner sets the task owner to the endpoint owner.
   834  	SetOwner(owner PacketOwner)
   835  
   836  	// LastError clears and returns the last error reported by the endpoint.
   837  	LastError() Error
   838  
   839  	// SocketOptions returns the structure which contains all the socket
   840  	// level options.
   841  	SocketOptions() *SocketOptions
   842  }
   843  
   844  // EndpointWithPreflight is the interface implemented by endpoints that need
   845  // to expose the `Preflight` method for preparing the endpoint prior to
   846  // calling `Write`.
   847  type EndpointWithPreflight interface {
   848  	// Prepares the endpoint for writes using the provided WriteOptions,
   849  	// returning an error if the options were incompatible with the endpoint's
   850  	// current state.
   851  	Preflight(WriteOptions) Error
   852  }
   853  
   854  // LinkPacketInfo holds Link layer information for a received packet.
   855  //
   856  // +stateify savable
   857  type LinkPacketInfo struct {
   858  	// Protocol is the NetworkProtocolNumber for the packet.
   859  	Protocol NetworkProtocolNumber
   860  
   861  	// PktType is used to indicate the destination of the packet.
   862  	PktType PacketType
   863  }
   864  
   865  // EndpointInfo is the interface implemented by each endpoint info struct.
   866  type EndpointInfo interface {
   867  	// IsEndpointInfo is an empty method to implement the tcpip.EndpointInfo
   868  	// marker interface.
   869  	IsEndpointInfo()
   870  }
   871  
   872  // EndpointStats is the interface implemented by each endpoint stats struct.
   873  type EndpointStats interface {
   874  	// IsEndpointStats is an empty method to implement the tcpip.EndpointStats
   875  	// marker interface.
   876  	IsEndpointStats()
   877  }
   878  
   879  // WriteOptions contains options for Endpoint.Write.
   880  type WriteOptions struct {
   881  	// If To is not nil, write to the given address instead of the endpoint's
   882  	// peer.
   883  	To *FullAddress
   884  
   885  	// More has the same semantics as Linux's MSG_MORE.
   886  	More bool
   887  
   888  	// EndOfRecord has the same semantics as Linux's MSG_EOR.
   889  	EndOfRecord bool
   890  
   891  	// Atomic means that all data fetched from Payloader must be written to the
   892  	// endpoint. If Atomic is false, then data fetched from the Payloader may be
   893  	// discarded if available endpoint buffer space is unsufficient.
   894  	Atomic bool
   895  
   896  	// ControlMessages contains optional overrides used when writing a packet.
   897  	ControlMessages SendableControlMessages
   898  }
   899  
   900  // SockOptInt represents socket options which values have the int type.
   901  type SockOptInt int
   902  
   903  const (
   904  	// KeepaliveCountOption is used by SetSockOptInt/GetSockOptInt to
   905  	// specify the number of un-ACKed TCP keepalives that will be sent
   906  	// before the connection is closed.
   907  	KeepaliveCountOption SockOptInt = iota
   908  
   909  	// IPv4TOSOption is used by SetSockOptInt/GetSockOptInt to specify TOS
   910  	// for all subsequent outgoing IPv4 packets from the endpoint.
   911  	IPv4TOSOption
   912  
   913  	// IPv6TrafficClassOption is used by SetSockOptInt/GetSockOptInt to
   914  	// specify TOS for all subsequent outgoing IPv6 packets from the
   915  	// endpoint.
   916  	IPv6TrafficClassOption
   917  
   918  	// MaxSegOption is used by SetSockOptInt/GetSockOptInt to set/get the
   919  	// current Maximum Segment Size(MSS) value as specified using the
   920  	// TCP_MAXSEG option.
   921  	MaxSegOption
   922  
   923  	// MTUDiscoverOption is used to set/get the path MTU discovery setting.
   924  	//
   925  	// NOTE: Setting this option to any other value than PMTUDiscoveryDont
   926  	// is not supported and will fail as such, and getting this option will
   927  	// always return PMTUDiscoveryDont.
   928  	MTUDiscoverOption
   929  
   930  	// MulticastTTLOption is used by SetSockOptInt/GetSockOptInt to control
   931  	// the default TTL value for multicast messages. The default is 1.
   932  	MulticastTTLOption
   933  
   934  	// ReceiveQueueSizeOption is used in GetSockOptInt to specify that the
   935  	// number of unread bytes in the input buffer should be returned.
   936  	ReceiveQueueSizeOption
   937  
   938  	// SendQueueSizeOption is used in GetSockOptInt to specify that the
   939  	// number of unread bytes in the output buffer should be returned.
   940  	SendQueueSizeOption
   941  
   942  	// IPv4TTLOption is used by SetSockOptInt/GetSockOptInt to control the default
   943  	// TTL value for unicast messages.
   944  	//
   945  	// The default is configured by DefaultTTLOption. A UseDefaultIPv4TTL value
   946  	// configures the endpoint to use the default.
   947  	IPv4TTLOption
   948  
   949  	// IPv6HopLimitOption is used by SetSockOptInt/GetSockOptInt to control the
   950  	// default hop limit value for unicast messages.
   951  	//
   952  	// The default is configured by DefaultTTLOption. A UseDefaultIPv6HopLimit
   953  	// value configures the endpoint to use the default.
   954  	IPv6HopLimitOption
   955  
   956  	// TCPSynCountOption is used by SetSockOptInt/GetSockOptInt to specify
   957  	// the number of SYN retransmits that TCP should send before aborting
   958  	// the attempt to connect. It cannot exceed 255.
   959  	//
   960  	// NOTE: This option is currently only stubbed out and is no-op.
   961  	TCPSynCountOption
   962  
   963  	// TCPWindowClampOption is used by SetSockOptInt/GetSockOptInt to bound
   964  	// the size of the advertised window to this value.
   965  	//
   966  	// NOTE: This option is currently only stubed out and is a no-op
   967  	TCPWindowClampOption
   968  
   969  	// IPv6Checksum is used to request the stack to populate and validate the IPv6
   970  	// checksum for transport level headers.
   971  	IPv6Checksum
   972  )
   973  
   974  const (
   975  	// UseDefaultIPv4TTL is the IPv4TTLOption value that configures an endpoint to
   976  	// use the default ttl currently configured by the IPv4 protocol (see
   977  	// DefaultTTLOption).
   978  	UseDefaultIPv4TTL = 0
   979  
   980  	// UseDefaultIPv6HopLimit is the IPv6HopLimitOption value that configures an
   981  	// endpoint to use the default hop limit currently configured by the IPv6
   982  	// protocol (see DefaultTTLOption).
   983  	UseDefaultIPv6HopLimit = -1
   984  )
   985  
   986  const (
   987  	// PMTUDiscoveryWant is a setting of the MTUDiscoverOption to use
   988  	// per-route settings.
   989  	PMTUDiscoveryWant int = iota
   990  
   991  	// PMTUDiscoveryDont is a setting of the MTUDiscoverOption to disable
   992  	// path MTU discovery.
   993  	PMTUDiscoveryDont
   994  
   995  	// PMTUDiscoveryDo is a setting of the MTUDiscoverOption to always do
   996  	// path MTU discovery.
   997  	PMTUDiscoveryDo
   998  
   999  	// PMTUDiscoveryProbe is a setting of the MTUDiscoverOption to set DF
  1000  	// but ignore path MTU.
  1001  	PMTUDiscoveryProbe
  1002  )
  1003  
  1004  // GettableNetworkProtocolOption is a marker interface for network protocol
  1005  // options that may be queried.
  1006  type GettableNetworkProtocolOption interface {
  1007  	isGettableNetworkProtocolOption()
  1008  }
  1009  
  1010  // SettableNetworkProtocolOption is a marker interface for network protocol
  1011  // options that may be set.
  1012  type SettableNetworkProtocolOption interface {
  1013  	isSettableNetworkProtocolOption()
  1014  }
  1015  
  1016  // DefaultTTLOption is used by stack.(*Stack).NetworkProtocolOption to specify
  1017  // a default TTL.
  1018  type DefaultTTLOption uint8
  1019  
  1020  func (*DefaultTTLOption) isGettableNetworkProtocolOption() {}
  1021  
  1022  func (*DefaultTTLOption) isSettableNetworkProtocolOption() {}
  1023  
  1024  // GettableTransportProtocolOption is a marker interface for transport protocol
  1025  // options that may be queried.
  1026  type GettableTransportProtocolOption interface {
  1027  	isGettableTransportProtocolOption()
  1028  }
  1029  
  1030  // SettableTransportProtocolOption is a marker interface for transport protocol
  1031  // options that may be set.
  1032  type SettableTransportProtocolOption interface {
  1033  	isSettableTransportProtocolOption()
  1034  }
  1035  
  1036  // TCPSACKEnabled the SACK option for TCP.
  1037  //
  1038  // See: https://tools.ietf.org/html/rfc2018.
  1039  type TCPSACKEnabled bool
  1040  
  1041  func (*TCPSACKEnabled) isGettableTransportProtocolOption() {}
  1042  
  1043  func (*TCPSACKEnabled) isSettableTransportProtocolOption() {}
  1044  
  1045  // TCPRecovery is the loss deteoction algorithm used by TCP.
  1046  type TCPRecovery int32
  1047  
  1048  func (*TCPRecovery) isGettableTransportProtocolOption() {}
  1049  
  1050  func (*TCPRecovery) isSettableTransportProtocolOption() {}
  1051  
  1052  // TCPAlwaysUseSynCookies indicates unconditional usage of syncookies.
  1053  type TCPAlwaysUseSynCookies bool
  1054  
  1055  func (*TCPAlwaysUseSynCookies) isGettableTransportProtocolOption() {}
  1056  
  1057  func (*TCPAlwaysUseSynCookies) isSettableTransportProtocolOption() {}
  1058  
  1059  const (
  1060  	// TCPRACKLossDetection indicates RACK is used for loss detection and
  1061  	// recovery.
  1062  	TCPRACKLossDetection TCPRecovery = 1 << iota
  1063  
  1064  	// TCPRACKStaticReoWnd indicates the reordering window should not be
  1065  	// adjusted when DSACK is received.
  1066  	TCPRACKStaticReoWnd
  1067  
  1068  	// TCPRACKNoDupTh indicates RACK should not consider the classic three
  1069  	// duplicate acknowledgements rule to mark the segments as lost. This
  1070  	// is used when reordering is not detected.
  1071  	TCPRACKNoDupTh
  1072  )
  1073  
  1074  // TCPDelayEnabled enables/disables Nagle's algorithm in TCP.
  1075  type TCPDelayEnabled bool
  1076  
  1077  func (*TCPDelayEnabled) isGettableTransportProtocolOption() {}
  1078  
  1079  func (*TCPDelayEnabled) isSettableTransportProtocolOption() {}
  1080  
  1081  // TCPSendBufferSizeRangeOption is the send buffer size range for TCP.
  1082  type TCPSendBufferSizeRangeOption struct {
  1083  	Min     int
  1084  	Default int
  1085  	Max     int
  1086  }
  1087  
  1088  func (*TCPSendBufferSizeRangeOption) isGettableTransportProtocolOption() {}
  1089  
  1090  func (*TCPSendBufferSizeRangeOption) isSettableTransportProtocolOption() {}
  1091  
  1092  // TCPReceiveBufferSizeRangeOption is the receive buffer size range for TCP.
  1093  type TCPReceiveBufferSizeRangeOption struct {
  1094  	Min     int
  1095  	Default int
  1096  	Max     int
  1097  }
  1098  
  1099  func (*TCPReceiveBufferSizeRangeOption) isGettableTransportProtocolOption() {}
  1100  
  1101  func (*TCPReceiveBufferSizeRangeOption) isSettableTransportProtocolOption() {}
  1102  
  1103  // TCPAvailableCongestionControlOption is the supported congestion control
  1104  // algorithms for TCP
  1105  type TCPAvailableCongestionControlOption string
  1106  
  1107  func (*TCPAvailableCongestionControlOption) isGettableTransportProtocolOption() {}
  1108  
  1109  func (*TCPAvailableCongestionControlOption) isSettableTransportProtocolOption() {}
  1110  
  1111  // TCPModerateReceiveBufferOption enables/disables receive buffer moderation
  1112  // for TCP.
  1113  type TCPModerateReceiveBufferOption bool
  1114  
  1115  func (*TCPModerateReceiveBufferOption) isGettableTransportProtocolOption() {}
  1116  
  1117  func (*TCPModerateReceiveBufferOption) isSettableTransportProtocolOption() {}
  1118  
  1119  // GettableSocketOption is a marker interface for socket options that may be
  1120  // queried.
  1121  type GettableSocketOption interface {
  1122  	isGettableSocketOption()
  1123  }
  1124  
  1125  // SettableSocketOption is a marker interface for socket options that may be
  1126  // configured.
  1127  type SettableSocketOption interface {
  1128  	isSettableSocketOption()
  1129  }
  1130  
  1131  // ICMPv6Filter specifes a filter for ICMPv6 types.
  1132  //
  1133  // +stateify savable
  1134  type ICMPv6Filter struct {
  1135  	// DenyType indicates if an ICMP type should be blocked.
  1136  	//
  1137  	// The ICMPv6 type field is 8 bits so there are up to 256 different ICMPv6
  1138  	// types.
  1139  	DenyType [8]uint32
  1140  }
  1141  
  1142  // ShouldDeny returns true iff the ICMPv6 Type should be denied.
  1143  func (f *ICMPv6Filter) ShouldDeny(icmpType uint8) bool {
  1144  	const bitsInUint32 = 32
  1145  	i := icmpType / bitsInUint32
  1146  	b := icmpType % bitsInUint32
  1147  	return f.DenyType[i]&(1<<b) != 0
  1148  }
  1149  
  1150  func (*ICMPv6Filter) isGettableSocketOption() {}
  1151  
  1152  func (*ICMPv6Filter) isSettableSocketOption() {}
  1153  
  1154  // EndpointState represents the state of an endpoint.
  1155  type EndpointState uint8
  1156  
  1157  // CongestionControlState indicates the current congestion control state for
  1158  // TCP sender.
  1159  type CongestionControlState int
  1160  
  1161  const (
  1162  	// Open indicates that the sender is receiving acks in order and
  1163  	// no loss or dupACK's etc have been detected.
  1164  	Open CongestionControlState = iota
  1165  	// RTORecovery indicates that an RTO has occurred and the sender
  1166  	// has entered an RTO based recovery phase.
  1167  	RTORecovery
  1168  	// FastRecovery indicates that the sender has entered FastRecovery
  1169  	// based on receiving nDupAck's. This state is entered only when
  1170  	// SACK is not in use.
  1171  	FastRecovery
  1172  	// SACKRecovery indicates that the sender has entered SACK based
  1173  	// recovery.
  1174  	SACKRecovery
  1175  	// Disorder indicates the sender either received some SACK blocks
  1176  	// or dupACK's.
  1177  	Disorder
  1178  )
  1179  
  1180  // TCPInfoOption is used by GetSockOpt to expose TCP statistics.
  1181  //
  1182  // TODO(b/64800844): Add and populate stat fields.
  1183  type TCPInfoOption struct {
  1184  	// RTT is the smoothed round trip time.
  1185  	RTT time.Duration
  1186  
  1187  	// RTTVar is the round trip time variation.
  1188  	RTTVar time.Duration
  1189  
  1190  	// RTO is the retransmission timeout for the endpoint.
  1191  	RTO time.Duration
  1192  
  1193  	// State is the current endpoint protocol state.
  1194  	State EndpointState
  1195  
  1196  	// CcState is the congestion control state.
  1197  	CcState CongestionControlState
  1198  
  1199  	// SndCwnd is the congestion window, in packets.
  1200  	SndCwnd uint32
  1201  
  1202  	// SndSsthresh is the threshold between slow start and congestion
  1203  	// avoidance.
  1204  	SndSsthresh uint32
  1205  
  1206  	// ReorderSeen indicates if reordering is seen in the endpoint.
  1207  	ReorderSeen bool
  1208  }
  1209  
  1210  func (*TCPInfoOption) isGettableSocketOption() {}
  1211  
  1212  // KeepaliveIdleOption is used by SetSockOpt/GetSockOpt to specify the time a
  1213  // connection must remain idle before the first TCP keepalive packet is sent.
  1214  // Once this time is reached, KeepaliveIntervalOption is used instead.
  1215  type KeepaliveIdleOption time.Duration
  1216  
  1217  func (*KeepaliveIdleOption) isGettableSocketOption() {}
  1218  
  1219  func (*KeepaliveIdleOption) isSettableSocketOption() {}
  1220  
  1221  // KeepaliveIntervalOption is used by SetSockOpt/GetSockOpt to specify the
  1222  // interval between sending TCP keepalive packets.
  1223  type KeepaliveIntervalOption time.Duration
  1224  
  1225  func (*KeepaliveIntervalOption) isGettableSocketOption() {}
  1226  
  1227  func (*KeepaliveIntervalOption) isSettableSocketOption() {}
  1228  
  1229  // TCPUserTimeoutOption is used by SetSockOpt/GetSockOpt to specify a user
  1230  // specified timeout for a given TCP connection.
  1231  // See: RFC5482 for details.
  1232  type TCPUserTimeoutOption time.Duration
  1233  
  1234  func (*TCPUserTimeoutOption) isGettableSocketOption() {}
  1235  
  1236  func (*TCPUserTimeoutOption) isSettableSocketOption() {}
  1237  
  1238  // CongestionControlOption is used by SetSockOpt/GetSockOpt to set/get
  1239  // the current congestion control algorithm.
  1240  type CongestionControlOption string
  1241  
  1242  func (*CongestionControlOption) isGettableSocketOption() {}
  1243  
  1244  func (*CongestionControlOption) isSettableSocketOption() {}
  1245  
  1246  func (*CongestionControlOption) isGettableTransportProtocolOption() {}
  1247  
  1248  func (*CongestionControlOption) isSettableTransportProtocolOption() {}
  1249  
  1250  // TCPLingerTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the
  1251  // maximum duration for which a socket lingers in the TCP_FIN_WAIT_2 state
  1252  // before being marked closed.
  1253  type TCPLingerTimeoutOption time.Duration
  1254  
  1255  func (*TCPLingerTimeoutOption) isGettableSocketOption() {}
  1256  
  1257  func (*TCPLingerTimeoutOption) isSettableSocketOption() {}
  1258  
  1259  func (*TCPLingerTimeoutOption) isGettableTransportProtocolOption() {}
  1260  
  1261  func (*TCPLingerTimeoutOption) isSettableTransportProtocolOption() {}
  1262  
  1263  // TCPTimeWaitTimeoutOption is used by SetSockOpt/GetSockOpt to set/get the
  1264  // maximum duration for which a socket lingers in the TIME_WAIT state
  1265  // before being marked closed.
  1266  type TCPTimeWaitTimeoutOption time.Duration
  1267  
  1268  func (*TCPTimeWaitTimeoutOption) isGettableSocketOption() {}
  1269  
  1270  func (*TCPTimeWaitTimeoutOption) isSettableSocketOption() {}
  1271  
  1272  func (*TCPTimeWaitTimeoutOption) isGettableTransportProtocolOption() {}
  1273  
  1274  func (*TCPTimeWaitTimeoutOption) isSettableTransportProtocolOption() {}
  1275  
  1276  // TCPDeferAcceptOption is used by SetSockOpt/GetSockOpt to allow a
  1277  // accept to return a completed connection only when there is data to be
  1278  // read. This usually means the listening socket will drop the final ACK
  1279  // for a handshake till the specified timeout until a segment with data arrives.
  1280  type TCPDeferAcceptOption time.Duration
  1281  
  1282  func (*TCPDeferAcceptOption) isGettableSocketOption() {}
  1283  
  1284  func (*TCPDeferAcceptOption) isSettableSocketOption() {}
  1285  
  1286  // TCPMinRTOOption is use by SetSockOpt/GetSockOpt to allow overriding
  1287  // default MinRTO used by the Stack.
  1288  type TCPMinRTOOption time.Duration
  1289  
  1290  func (*TCPMinRTOOption) isGettableSocketOption() {}
  1291  
  1292  func (*TCPMinRTOOption) isSettableSocketOption() {}
  1293  
  1294  func (*TCPMinRTOOption) isGettableTransportProtocolOption() {}
  1295  
  1296  func (*TCPMinRTOOption) isSettableTransportProtocolOption() {}
  1297  
  1298  // TCPMaxRTOOption is use by SetSockOpt/GetSockOpt to allow overriding
  1299  // default MaxRTO used by the Stack.
  1300  type TCPMaxRTOOption time.Duration
  1301  
  1302  func (*TCPMaxRTOOption) isGettableSocketOption() {}
  1303  
  1304  func (*TCPMaxRTOOption) isSettableSocketOption() {}
  1305  
  1306  func (*TCPMaxRTOOption) isGettableTransportProtocolOption() {}
  1307  
  1308  func (*TCPMaxRTOOption) isSettableTransportProtocolOption() {}
  1309  
  1310  // TCPMaxRetriesOption is used by SetSockOpt/GetSockOpt to set/get the
  1311  // maximum number of retransmits after which we time out the connection.
  1312  type TCPMaxRetriesOption uint64
  1313  
  1314  func (*TCPMaxRetriesOption) isGettableSocketOption() {}
  1315  
  1316  func (*TCPMaxRetriesOption) isSettableSocketOption() {}
  1317  
  1318  func (*TCPMaxRetriesOption) isGettableTransportProtocolOption() {}
  1319  
  1320  func (*TCPMaxRetriesOption) isSettableTransportProtocolOption() {}
  1321  
  1322  // TCPSynRetriesOption is used by SetSockOpt/GetSockOpt to specify stack-wide
  1323  // default for number of times SYN is retransmitted before aborting a connect.
  1324  type TCPSynRetriesOption uint8
  1325  
  1326  func (*TCPSynRetriesOption) isGettableSocketOption() {}
  1327  
  1328  func (*TCPSynRetriesOption) isSettableSocketOption() {}
  1329  
  1330  func (*TCPSynRetriesOption) isGettableTransportProtocolOption() {}
  1331  
  1332  func (*TCPSynRetriesOption) isSettableTransportProtocolOption() {}
  1333  
  1334  // MulticastInterfaceOption is used by SetSockOpt/GetSockOpt to specify a
  1335  // default interface for multicast.
  1336  type MulticastInterfaceOption struct {
  1337  	NIC           NICID
  1338  	InterfaceAddr Address
  1339  }
  1340  
  1341  func (*MulticastInterfaceOption) isGettableSocketOption() {}
  1342  
  1343  func (*MulticastInterfaceOption) isSettableSocketOption() {}
  1344  
  1345  // MembershipOption is used to identify a multicast membership on an interface.
  1346  type MembershipOption struct {
  1347  	NIC           NICID
  1348  	InterfaceAddr Address
  1349  	MulticastAddr Address
  1350  }
  1351  
  1352  // AddMembershipOption identifies a multicast group to join on some interface.
  1353  type AddMembershipOption MembershipOption
  1354  
  1355  func (*AddMembershipOption) isSettableSocketOption() {}
  1356  
  1357  // RemoveMembershipOption identifies a multicast group to leave on some
  1358  // interface.
  1359  type RemoveMembershipOption MembershipOption
  1360  
  1361  func (*RemoveMembershipOption) isSettableSocketOption() {}
  1362  
  1363  // SocketDetachFilterOption is used by SetSockOpt to detach a previously attached
  1364  // classic BPF filter on a given endpoint.
  1365  type SocketDetachFilterOption int
  1366  
  1367  func (*SocketDetachFilterOption) isSettableSocketOption() {}
  1368  
  1369  // OriginalDestinationOption is used to get the original destination address
  1370  // and port of a redirected packet.
  1371  type OriginalDestinationOption FullAddress
  1372  
  1373  func (*OriginalDestinationOption) isGettableSocketOption() {}
  1374  
  1375  // TCPTimeWaitReuseOption is used stack.(*Stack).TransportProtocolOption to
  1376  // specify if the stack can reuse the port bound by an endpoint in TIME-WAIT for
  1377  // new connections when it is safe from protocol viewpoint.
  1378  type TCPTimeWaitReuseOption uint8
  1379  
  1380  func (*TCPTimeWaitReuseOption) isGettableSocketOption() {}
  1381  
  1382  func (*TCPTimeWaitReuseOption) isSettableSocketOption() {}
  1383  
  1384  func (*TCPTimeWaitReuseOption) isGettableTransportProtocolOption() {}
  1385  
  1386  func (*TCPTimeWaitReuseOption) isSettableTransportProtocolOption() {}
  1387  
  1388  const (
  1389  	// TCPTimeWaitReuseDisabled indicates reuse of port bound by endponts in TIME-WAIT cannot
  1390  	// be reused for new connections.
  1391  	TCPTimeWaitReuseDisabled TCPTimeWaitReuseOption = iota
  1392  
  1393  	// TCPTimeWaitReuseGlobal indicates reuse of port bound by endponts in TIME-WAIT can
  1394  	// be reused for new connections irrespective of the src/dest addresses.
  1395  	TCPTimeWaitReuseGlobal
  1396  
  1397  	// TCPTimeWaitReuseLoopbackOnly indicates reuse of port bound by endpoint in TIME-WAIT can
  1398  	// only be reused if the connection was a connection over loopback. i.e src/dest adddresses
  1399  	// are loopback addresses.
  1400  	TCPTimeWaitReuseLoopbackOnly
  1401  )
  1402  
  1403  // LingerOption is used by SetSockOpt/GetSockOpt to set/get the
  1404  // duration for which a socket lingers before returning from Close.
  1405  //
  1406  // +marshal
  1407  // +stateify savable
  1408  type LingerOption struct {
  1409  	Enabled bool
  1410  	Timeout time.Duration
  1411  }
  1412  
  1413  // IPPacketInfo is the message structure for IP_PKTINFO.
  1414  //
  1415  // +stateify savable
  1416  type IPPacketInfo struct {
  1417  	// NIC is the ID of the NIC to be used.
  1418  	NIC NICID
  1419  
  1420  	// LocalAddr is the local address.
  1421  	LocalAddr Address
  1422  
  1423  	// DestinationAddr is the destination address found in the IP header.
  1424  	DestinationAddr Address
  1425  }
  1426  
  1427  // IPv6PacketInfo is the message structure for IPV6_PKTINFO.
  1428  //
  1429  // +stateify savable
  1430  type IPv6PacketInfo struct {
  1431  	Addr Address
  1432  	NIC  NICID
  1433  }
  1434  
  1435  // SendBufferSizeOption is used by stack.(Stack*).Option/SetOption to
  1436  // get/set the default, min and max send buffer sizes.
  1437  type SendBufferSizeOption struct {
  1438  	// Min is the minimum size for send buffer.
  1439  	Min int
  1440  
  1441  	// Default is the default size for send buffer.
  1442  	Default int
  1443  
  1444  	// Max is the maximum size for send buffer.
  1445  	Max int
  1446  }
  1447  
  1448  // ReceiveBufferSizeOption is used by stack.(Stack*).Option/SetOption to
  1449  // get/set the default, min and max receive buffer sizes.
  1450  type ReceiveBufferSizeOption struct {
  1451  	// Min is the minimum size for send buffer.
  1452  	Min int
  1453  
  1454  	// Default is the default size for send buffer.
  1455  	Default int
  1456  
  1457  	// Max is the maximum size for send buffer.
  1458  	Max int
  1459  }
  1460  
  1461  // GetSendBufferLimits is used to get the send buffer size limits.
  1462  type GetSendBufferLimits func(StackHandler) SendBufferSizeOption
  1463  
  1464  // GetStackSendBufferLimits is used to get default, min and max send buffer size.
  1465  func GetStackSendBufferLimits(so StackHandler) SendBufferSizeOption {
  1466  	var ss SendBufferSizeOption
  1467  	if err := so.Option(&ss); err != nil {
  1468  		panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err))
  1469  	}
  1470  	return ss
  1471  }
  1472  
  1473  // GetReceiveBufferLimits is used to get the send buffer size limits.
  1474  type GetReceiveBufferLimits func(StackHandler) ReceiveBufferSizeOption
  1475  
  1476  // GetStackReceiveBufferLimits is used to get default, min and max send buffer size.
  1477  func GetStackReceiveBufferLimits(so StackHandler) ReceiveBufferSizeOption {
  1478  	var ss ReceiveBufferSizeOption
  1479  	if err := so.Option(&ss); err != nil {
  1480  		panic(fmt.Sprintf("s.Option(%#v) = %s", ss, err))
  1481  	}
  1482  	return ss
  1483  }
  1484  
  1485  // Route is a row in the routing table. It specifies through which NIC (and
  1486  // gateway) sets of packets should be routed. A row is considered viable if the
  1487  // masked target address matches the destination address in the row.
  1488  type Route struct {
  1489  	// Destination must contain the target address for this row to be viable.
  1490  	Destination Subnet
  1491  
  1492  	// Gateway is the gateway to be used if this row is viable.
  1493  	Gateway Address
  1494  
  1495  	// NIC is the id of the nic to be used if this row is viable.
  1496  	NIC NICID
  1497  }
  1498  
  1499  // String implements the fmt.Stringer interface.
  1500  func (r Route) String() string {
  1501  	var out strings.Builder
  1502  	_, _ = fmt.Fprintf(&out, "%s", r.Destination)
  1503  	if r.Gateway.length > 0 {
  1504  		_, _ = fmt.Fprintf(&out, " via %s", r.Gateway)
  1505  	}
  1506  	_, _ = fmt.Fprintf(&out, " nic %d", r.NIC)
  1507  	return out.String()
  1508  }
  1509  
  1510  // Equal returns true if the given Route is equal to this Route.
  1511  func (r Route) Equal(to Route) bool {
  1512  	// NOTE: This relies on the fact that r.Destination == to.Destination
  1513  	return r.Destination.Equal(to.Destination) && r.Gateway == to.Gateway && r.NIC == to.NIC
  1514  }
  1515  
  1516  // TransportProtocolNumber is the number of a transport protocol.
  1517  type TransportProtocolNumber uint32
  1518  
  1519  // NetworkProtocolNumber is the EtherType of a network protocol in an Ethernet
  1520  // frame.
  1521  //
  1522  // See: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
  1523  type NetworkProtocolNumber uint32
  1524  
  1525  // A StatCounter keeps track of a statistic.
  1526  //
  1527  // +stateify savable
  1528  type StatCounter struct {
  1529  	count atomicbitops.Uint64
  1530  }
  1531  
  1532  // Increment adds one to the counter.
  1533  func (s *StatCounter) Increment() {
  1534  	s.IncrementBy(1)
  1535  }
  1536  
  1537  // Decrement minuses one to the counter.
  1538  func (s *StatCounter) Decrement() {
  1539  	s.IncrementBy(^uint64(0))
  1540  }
  1541  
  1542  // Value returns the current value of the counter.
  1543  func (s *StatCounter) Value() uint64 {
  1544  	return s.count.Load()
  1545  }
  1546  
  1547  // IncrementBy increments the counter by v.
  1548  func (s *StatCounter) IncrementBy(v uint64) {
  1549  	s.count.Add(v)
  1550  }
  1551  
  1552  func (s *StatCounter) String() string {
  1553  	return strconv.FormatUint(s.Value(), 10)
  1554  }
  1555  
  1556  // A MultiCounterStat keeps track of two counters at once.
  1557  type MultiCounterStat struct {
  1558  	a *StatCounter
  1559  	b *StatCounter
  1560  }
  1561  
  1562  // Init sets both internal counters to point to a and b.
  1563  func (m *MultiCounterStat) Init(a, b *StatCounter) {
  1564  	m.a = a
  1565  	m.b = b
  1566  }
  1567  
  1568  // Increment adds one to the counters.
  1569  func (m *MultiCounterStat) Increment() {
  1570  	m.a.Increment()
  1571  	m.b.Increment()
  1572  }
  1573  
  1574  // IncrementBy increments the counters by v.
  1575  func (m *MultiCounterStat) IncrementBy(v uint64) {
  1576  	m.a.IncrementBy(v)
  1577  	m.b.IncrementBy(v)
  1578  }
  1579  
  1580  // ICMPv4PacketStats enumerates counts for all ICMPv4 packet types.
  1581  type ICMPv4PacketStats struct {
  1582  	// LINT.IfChange(ICMPv4PacketStats)
  1583  
  1584  	// EchoRequest is the number of ICMPv4 echo packets counted.
  1585  	EchoRequest *StatCounter
  1586  
  1587  	// EchoReply is the number of ICMPv4 echo reply packets counted.
  1588  	EchoReply *StatCounter
  1589  
  1590  	// DstUnreachable is the number of ICMPv4 destination unreachable packets
  1591  	// counted.
  1592  	DstUnreachable *StatCounter
  1593  
  1594  	// SrcQuench is the number of ICMPv4 source quench packets counted.
  1595  	SrcQuench *StatCounter
  1596  
  1597  	// Redirect is the number of ICMPv4 redirect packets counted.
  1598  	Redirect *StatCounter
  1599  
  1600  	// TimeExceeded is the number of ICMPv4 time exceeded packets counted.
  1601  	TimeExceeded *StatCounter
  1602  
  1603  	// ParamProblem is the number of ICMPv4 parameter problem packets counted.
  1604  	ParamProblem *StatCounter
  1605  
  1606  	// Timestamp is the number of ICMPv4 timestamp packets counted.
  1607  	Timestamp *StatCounter
  1608  
  1609  	// TimestampReply is the number of ICMPv4 timestamp reply packets counted.
  1610  	TimestampReply *StatCounter
  1611  
  1612  	// InfoRequest is the number of ICMPv4 information request packets counted.
  1613  	InfoRequest *StatCounter
  1614  
  1615  	// InfoReply is the number of ICMPv4 information reply packets counted.
  1616  	InfoReply *StatCounter
  1617  
  1618  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4PacketStats)
  1619  }
  1620  
  1621  // ICMPv4SentPacketStats collects outbound ICMPv4-specific stats.
  1622  type ICMPv4SentPacketStats struct {
  1623  	// LINT.IfChange(ICMPv4SentPacketStats)
  1624  
  1625  	ICMPv4PacketStats
  1626  
  1627  	// Dropped is the number of ICMPv4 packets dropped due to link layer errors.
  1628  	Dropped *StatCounter
  1629  
  1630  	// RateLimited is the number of ICMPv4 packets dropped due to rate limit being
  1631  	// exceeded.
  1632  	RateLimited *StatCounter
  1633  
  1634  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4SentPacketStats)
  1635  }
  1636  
  1637  // ICMPv4ReceivedPacketStats collects inbound ICMPv4-specific stats.
  1638  type ICMPv4ReceivedPacketStats struct {
  1639  	// LINT.IfChange(ICMPv4ReceivedPacketStats)
  1640  
  1641  	ICMPv4PacketStats
  1642  
  1643  	// Invalid is the number of invalid ICMPv4 packets received.
  1644  	Invalid *StatCounter
  1645  
  1646  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4ReceivedPacketStats)
  1647  }
  1648  
  1649  // ICMPv4Stats collects ICMPv4-specific stats.
  1650  type ICMPv4Stats struct {
  1651  	// LINT.IfChange(ICMPv4Stats)
  1652  
  1653  	// PacketsSent contains statistics about sent packets.
  1654  	PacketsSent ICMPv4SentPacketStats
  1655  
  1656  	// PacketsReceived contains statistics about received packets.
  1657  	PacketsReceived ICMPv4ReceivedPacketStats
  1658  
  1659  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterICMPv4Stats)
  1660  }
  1661  
  1662  // ICMPv6PacketStats enumerates counts for all ICMPv6 packet types.
  1663  type ICMPv6PacketStats struct {
  1664  	// LINT.IfChange(ICMPv6PacketStats)
  1665  
  1666  	// EchoRequest is the number of ICMPv6 echo request packets counted.
  1667  	EchoRequest *StatCounter
  1668  
  1669  	// EchoReply is the number of ICMPv6 echo reply packets counted.
  1670  	EchoReply *StatCounter
  1671  
  1672  	// DstUnreachable is the number of ICMPv6 destination unreachable packets
  1673  	// counted.
  1674  	DstUnreachable *StatCounter
  1675  
  1676  	// PacketTooBig is the number of ICMPv6 packet too big packets counted.
  1677  	PacketTooBig *StatCounter
  1678  
  1679  	// TimeExceeded is the number of ICMPv6 time exceeded packets counted.
  1680  	TimeExceeded *StatCounter
  1681  
  1682  	// ParamProblem is the number of ICMPv6 parameter problem packets counted.
  1683  	ParamProblem *StatCounter
  1684  
  1685  	// RouterSolicit is the number of ICMPv6 router solicit packets counted.
  1686  	RouterSolicit *StatCounter
  1687  
  1688  	// RouterAdvert is the number of ICMPv6 router advert packets counted.
  1689  	RouterAdvert *StatCounter
  1690  
  1691  	// NeighborSolicit is the number of ICMPv6 neighbor solicit packets counted.
  1692  	NeighborSolicit *StatCounter
  1693  
  1694  	// NeighborAdvert is the number of ICMPv6 neighbor advert packets counted.
  1695  	NeighborAdvert *StatCounter
  1696  
  1697  	// RedirectMsg is the number of ICMPv6 redirect message packets counted.
  1698  	RedirectMsg *StatCounter
  1699  
  1700  	// MulticastListenerQuery is the number of Multicast Listener Query messages
  1701  	// counted.
  1702  	MulticastListenerQuery *StatCounter
  1703  
  1704  	// MulticastListenerReport is the number of Multicast Listener Report messages
  1705  	// counted.
  1706  	MulticastListenerReport *StatCounter
  1707  
  1708  	// MulticastListenerReportV2 is the number of Multicast Listener Report
  1709  	// messages counted.
  1710  	MulticastListenerReportV2 *StatCounter
  1711  
  1712  	// MulticastListenerDone is the number of Multicast Listener Done messages
  1713  	// counted.
  1714  	MulticastListenerDone *StatCounter
  1715  
  1716  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6PacketStats)
  1717  }
  1718  
  1719  // ICMPv6SentPacketStats collects outbound ICMPv6-specific stats.
  1720  type ICMPv6SentPacketStats struct {
  1721  	// LINT.IfChange(ICMPv6SentPacketStats)
  1722  
  1723  	ICMPv6PacketStats
  1724  
  1725  	// Dropped is the number of ICMPv6 packets dropped due to link layer errors.
  1726  	Dropped *StatCounter
  1727  
  1728  	// RateLimited is the number of ICMPv6 packets dropped due to rate limit being
  1729  	// exceeded.
  1730  	RateLimited *StatCounter
  1731  
  1732  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6SentPacketStats)
  1733  }
  1734  
  1735  // ICMPv6ReceivedPacketStats collects inbound ICMPv6-specific stats.
  1736  type ICMPv6ReceivedPacketStats struct {
  1737  	// LINT.IfChange(ICMPv6ReceivedPacketStats)
  1738  
  1739  	ICMPv6PacketStats
  1740  
  1741  	// Unrecognized is the number of ICMPv6 packets received that the transport
  1742  	// layer does not know how to parse.
  1743  	Unrecognized *StatCounter
  1744  
  1745  	// Invalid is the number of invalid ICMPv6 packets received.
  1746  	Invalid *StatCounter
  1747  
  1748  	// RouterOnlyPacketsDroppedByHost is the number of ICMPv6 packets dropped due
  1749  	// to being router-specific packets.
  1750  	RouterOnlyPacketsDroppedByHost *StatCounter
  1751  
  1752  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6ReceivedPacketStats)
  1753  }
  1754  
  1755  // ICMPv6Stats collects ICMPv6-specific stats.
  1756  type ICMPv6Stats struct {
  1757  	// LINT.IfChange(ICMPv6Stats)
  1758  
  1759  	// PacketsSent contains statistics about sent packets.
  1760  	PacketsSent ICMPv6SentPacketStats
  1761  
  1762  	// PacketsReceived contains statistics about received packets.
  1763  	PacketsReceived ICMPv6ReceivedPacketStats
  1764  
  1765  	// LINT.ThenChange(network/ipv6/stats.go:multiCounterICMPv6Stats)
  1766  }
  1767  
  1768  // ICMPStats collects ICMP-specific stats (both v4 and v6).
  1769  type ICMPStats struct {
  1770  	// V4 contains the ICMPv4-specifics stats.
  1771  	V4 ICMPv4Stats
  1772  
  1773  	// V6 contains the ICMPv4-specifics stats.
  1774  	V6 ICMPv6Stats
  1775  }
  1776  
  1777  // IGMPPacketStats enumerates counts for all IGMP packet types.
  1778  type IGMPPacketStats struct {
  1779  	// LINT.IfChange(IGMPPacketStats)
  1780  
  1781  	// MembershipQuery is the number of Membership Query messages counted.
  1782  	MembershipQuery *StatCounter
  1783  
  1784  	// V1MembershipReport is the number of Version 1 Membership Report messages
  1785  	// counted.
  1786  	V1MembershipReport *StatCounter
  1787  
  1788  	// V2MembershipReport is the number of Version 2 Membership Report messages
  1789  	// counted.
  1790  	V2MembershipReport *StatCounter
  1791  
  1792  	// V3MembershipReport is the number of Version 3 Membership Report messages
  1793  	// counted.
  1794  	V3MembershipReport *StatCounter
  1795  
  1796  	// LeaveGroup is the number of Leave Group messages counted.
  1797  	LeaveGroup *StatCounter
  1798  
  1799  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPPacketStats)
  1800  }
  1801  
  1802  // IGMPSentPacketStats collects outbound IGMP-specific stats.
  1803  type IGMPSentPacketStats struct {
  1804  	// LINT.IfChange(IGMPSentPacketStats)
  1805  
  1806  	IGMPPacketStats
  1807  
  1808  	// Dropped is the number of IGMP packets dropped.
  1809  	Dropped *StatCounter
  1810  
  1811  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPSentPacketStats)
  1812  }
  1813  
  1814  // IGMPReceivedPacketStats collects inbound IGMP-specific stats.
  1815  type IGMPReceivedPacketStats struct {
  1816  	// LINT.IfChange(IGMPReceivedPacketStats)
  1817  
  1818  	IGMPPacketStats
  1819  
  1820  	// Invalid is the number of invalid IGMP packets received.
  1821  	Invalid *StatCounter
  1822  
  1823  	// ChecksumErrors is the number of IGMP packets dropped due to bad checksums.
  1824  	ChecksumErrors *StatCounter
  1825  
  1826  	// Unrecognized is the number of unrecognized messages counted, these are
  1827  	// silently ignored for forward-compatibilty.
  1828  	Unrecognized *StatCounter
  1829  
  1830  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPReceivedPacketStats)
  1831  }
  1832  
  1833  // IGMPStats collects IGMP-specific stats.
  1834  type IGMPStats struct {
  1835  	// LINT.IfChange(IGMPStats)
  1836  
  1837  	// PacketsSent contains statistics about sent packets.
  1838  	PacketsSent IGMPSentPacketStats
  1839  
  1840  	// PacketsReceived contains statistics about received packets.
  1841  	PacketsReceived IGMPReceivedPacketStats
  1842  
  1843  	// LINT.ThenChange(network/ipv4/stats.go:multiCounterIGMPStats)
  1844  }
  1845  
  1846  // IPForwardingStats collects stats related to IP forwarding (both v4 and v6).
  1847  type IPForwardingStats struct {
  1848  	// LINT.IfChange(IPForwardingStats)
  1849  
  1850  	// Unrouteable is the number of IP packets received which were dropped
  1851  	// because a route to their destination could not be constructed.
  1852  	Unrouteable *StatCounter
  1853  
  1854  	// ExhaustedTTL is the number of IP packets received which were dropped
  1855  	// because their TTL was exhausted.
  1856  	ExhaustedTTL *StatCounter
  1857  
  1858  	// InitializingSource is the number of IP packets which were dropped
  1859  	// because they contained a source address that may only be used on the local
  1860  	// network as part of initialization work.
  1861  	InitializingSource *StatCounter
  1862  
  1863  	// LinkLocalSource is the number of IP packets which were dropped
  1864  	// because they contained a link-local source address.
  1865  	LinkLocalSource *StatCounter
  1866  
  1867  	// LinkLocalDestination is the number of IP packets which were dropped
  1868  	// because they contained a link-local destination address.
  1869  	LinkLocalDestination *StatCounter
  1870  
  1871  	// PacketTooBig is the number of IP packets which were dropped because they
  1872  	// were too big for the outgoing MTU.
  1873  	PacketTooBig *StatCounter
  1874  
  1875  	// HostUnreachable is the number of IP packets received which could not be
  1876  	// successfully forwarded due to an unresolvable next hop.
  1877  	HostUnreachable *StatCounter
  1878  
  1879  	// ExtensionHeaderProblem is the number of IP packets which were dropped
  1880  	// because of a problem encountered when processing an IPv6 extension
  1881  	// header.
  1882  	ExtensionHeaderProblem *StatCounter
  1883  
  1884  	// UnexpectedMulticastInputInterface is the number of multicast packets that
  1885  	// were received on an interface that did not match the corresponding route's
  1886  	// expected input interface.
  1887  	UnexpectedMulticastInputInterface *StatCounter
  1888  
  1889  	// UnknownOutputEndpoint is the number of packets that could not be forwarded
  1890  	// because the output endpoint could not be found.
  1891  	UnknownOutputEndpoint *StatCounter
  1892  
  1893  	// NoMulticastPendingQueueBufferSpace is the number of multicast packets that
  1894  	// were dropped due to insufficent buffer space in the pending packet queue.
  1895  	NoMulticastPendingQueueBufferSpace *StatCounter
  1896  
  1897  	// OutgoingDeviceNoBufferSpace is the number of packets that were dropped due
  1898  	// to insufficient space in the outgoing device.
  1899  	OutgoingDeviceNoBufferSpace *StatCounter
  1900  
  1901  	// Errors is the number of IP packets received which could not be
  1902  	// successfully forwarded.
  1903  	Errors *StatCounter
  1904  
  1905  	// LINT.ThenChange(network/internal/ip/stats.go:MultiCounterIPForwardingStats)
  1906  }
  1907  
  1908  // IPStats collects IP-specific stats (both v4 and v6).
  1909  type IPStats struct {
  1910  	// LINT.IfChange(IPStats)
  1911  
  1912  	// PacketsReceived is the number of IP packets received from the link layer.
  1913  	PacketsReceived *StatCounter
  1914  
  1915  	// ValidPacketsReceived is the number of valid IP packets that reached the IP
  1916  	// layer.
  1917  	ValidPacketsReceived *StatCounter
  1918  
  1919  	// DisabledPacketsReceived is the number of IP packets received from the link
  1920  	// layer when the IP layer is disabled.
  1921  	DisabledPacketsReceived *StatCounter
  1922  
  1923  	// InvalidDestinationAddressesReceived is the number of IP packets received
  1924  	// with an unknown or invalid destination address.
  1925  	InvalidDestinationAddressesReceived *StatCounter
  1926  
  1927  	// InvalidSourceAddressesReceived is the number of IP packets received with a
  1928  	// source address that should never have been received on the wire.
  1929  	InvalidSourceAddressesReceived *StatCounter
  1930  
  1931  	// PacketsDelivered is the number of incoming IP packets that are successfully
  1932  	// delivered to the transport layer.
  1933  	PacketsDelivered *StatCounter
  1934  
  1935  	// PacketsSent is the number of IP packets sent via WritePacket.
  1936  	PacketsSent *StatCounter
  1937  
  1938  	// OutgoingPacketErrors is the number of IP packets which failed to write to a
  1939  	// link-layer endpoint.
  1940  	OutgoingPacketErrors *StatCounter
  1941  
  1942  	// MalformedPacketsReceived is the number of IP Packets that were dropped due
  1943  	// to the IP packet header failing validation checks.
  1944  	MalformedPacketsReceived *StatCounter
  1945  
  1946  	// MalformedFragmentsReceived is the number of IP Fragments that were dropped
  1947  	// due to the fragment failing validation checks.
  1948  	MalformedFragmentsReceived *StatCounter
  1949  
  1950  	// IPTablesPreroutingDropped is the number of IP packets dropped in the
  1951  	// Prerouting chain.
  1952  	IPTablesPreroutingDropped *StatCounter
  1953  
  1954  	// IPTablesInputDropped is the number of IP packets dropped in the Input
  1955  	// chain.
  1956  	IPTablesInputDropped *StatCounter
  1957  
  1958  	// IPTablesForwardDropped is the number of IP packets dropped in the Forward
  1959  	// chain.
  1960  	IPTablesForwardDropped *StatCounter
  1961  
  1962  	// IPTablesOutputDropped is the number of IP packets dropped in the Output
  1963  	// chain.
  1964  	IPTablesOutputDropped *StatCounter
  1965  
  1966  	// IPTablesPostroutingDropped is the number of IP packets dropped in the
  1967  	// Postrouting chain.
  1968  	IPTablesPostroutingDropped *StatCounter
  1969  
  1970  	// TODO(https://gvisor.dev/issues/5529): Move the IPv4-only option stats out
  1971  	// of IPStats.
  1972  	// OptionTimestampReceived is the number of Timestamp options seen.
  1973  	OptionTimestampReceived *StatCounter
  1974  
  1975  	// OptionRecordRouteReceived is the number of Record Route options seen.
  1976  	OptionRecordRouteReceived *StatCounter
  1977  
  1978  	// OptionRouterAlertReceived is the number of Router Alert options seen.
  1979  	OptionRouterAlertReceived *StatCounter
  1980  
  1981  	// OptionUnknownReceived is the number of unknown IP options seen.
  1982  	OptionUnknownReceived *StatCounter
  1983  
  1984  	// Forwarding collects stats related to IP forwarding.
  1985  	Forwarding IPForwardingStats
  1986  
  1987  	// LINT.ThenChange(network/internal/ip/stats.go:MultiCounterIPStats)
  1988  }
  1989  
  1990  // ARPStats collects ARP-specific stats.
  1991  type ARPStats struct {
  1992  	// LINT.IfChange(ARPStats)
  1993  
  1994  	// PacketsReceived is the number of ARP packets received from the link layer.
  1995  	PacketsReceived *StatCounter
  1996  
  1997  	// DisabledPacketsReceived is the number of ARP packets received from the link
  1998  	// layer when the ARP layer is disabled.
  1999  	DisabledPacketsReceived *StatCounter
  2000  
  2001  	// MalformedPacketsReceived is the number of ARP packets that were dropped due
  2002  	// to being malformed.
  2003  	MalformedPacketsReceived *StatCounter
  2004  
  2005  	// RequestsReceived is the number of ARP requests received.
  2006  	RequestsReceived *StatCounter
  2007  
  2008  	// RequestsReceivedUnknownTargetAddress is the number of ARP requests that
  2009  	// were targeted to an interface different from the one it was received on.
  2010  	RequestsReceivedUnknownTargetAddress *StatCounter
  2011  
  2012  	// OutgoingRequestInterfaceHasNoLocalAddressErrors is the number of failures
  2013  	// to send an ARP request because the interface has no network address
  2014  	// assigned to it.
  2015  	OutgoingRequestInterfaceHasNoLocalAddressErrors *StatCounter
  2016  
  2017  	// OutgoingRequestBadLocalAddressErrors is the number of failures to send an
  2018  	// ARP request with a bad local address.
  2019  	OutgoingRequestBadLocalAddressErrors *StatCounter
  2020  
  2021  	// OutgoingRequestsDropped is the number of ARP requests which failed to write
  2022  	// to a link-layer endpoint.
  2023  	OutgoingRequestsDropped *StatCounter
  2024  
  2025  	// OutgoingRequestSent is the number of ARP requests successfully written to a
  2026  	// link-layer endpoint.
  2027  	OutgoingRequestsSent *StatCounter
  2028  
  2029  	// RepliesReceived is the number of ARP replies received.
  2030  	RepliesReceived *StatCounter
  2031  
  2032  	// OutgoingRepliesDropped is the number of ARP replies which failed to write
  2033  	// to a link-layer endpoint.
  2034  	OutgoingRepliesDropped *StatCounter
  2035  
  2036  	// OutgoingRepliesSent is the number of ARP replies successfully written to a
  2037  	// link-layer endpoint.
  2038  	OutgoingRepliesSent *StatCounter
  2039  
  2040  	// LINT.ThenChange(network/arp/stats.go:multiCounterARPStats)
  2041  }
  2042  
  2043  // TCPStats collects TCP-specific stats.
  2044  type TCPStats struct {
  2045  	// ActiveConnectionOpenings is the number of connections opened
  2046  	// successfully via Connect.
  2047  	ActiveConnectionOpenings *StatCounter
  2048  
  2049  	// PassiveConnectionOpenings is the number of connections opened
  2050  	// successfully via Listen.
  2051  	PassiveConnectionOpenings *StatCounter
  2052  
  2053  	// CurrentEstablished is the number of TCP connections for which the
  2054  	// current state is ESTABLISHED.
  2055  	CurrentEstablished *StatCounter
  2056  
  2057  	// CurrentConnected is the number of TCP connections that
  2058  	// are in connected state.
  2059  	CurrentConnected *StatCounter
  2060  
  2061  	// EstablishedResets is the number of times TCP connections have made
  2062  	// a direct transition to the CLOSED state from either the
  2063  	// ESTABLISHED state or the CLOSE-WAIT state.
  2064  	EstablishedResets *StatCounter
  2065  
  2066  	// EstablishedClosed is the number of times established TCP connections
  2067  	// made a transition to CLOSED state.
  2068  	EstablishedClosed *StatCounter
  2069  
  2070  	// EstablishedTimedout is the number of times an established connection
  2071  	// was reset because of keep-alive time out.
  2072  	EstablishedTimedout *StatCounter
  2073  
  2074  	// ListenOverflowSynDrop is the number of times the listen queue overflowed
  2075  	// and a SYN was dropped.
  2076  	ListenOverflowSynDrop *StatCounter
  2077  
  2078  	// ListenOverflowAckDrop is the number of times the final ACK
  2079  	// in the handshake was dropped due to overflow.
  2080  	ListenOverflowAckDrop *StatCounter
  2081  
  2082  	// ListenOverflowCookieSent is the number of times a SYN cookie was sent.
  2083  	ListenOverflowSynCookieSent *StatCounter
  2084  
  2085  	// ListenOverflowSynCookieRcvd is the number of times a valid SYN
  2086  	// cookie was received.
  2087  	ListenOverflowSynCookieRcvd *StatCounter
  2088  
  2089  	// ListenOverflowInvalidSynCookieRcvd is the number of times an invalid SYN cookie
  2090  	// was received.
  2091  	ListenOverflowInvalidSynCookieRcvd *StatCounter
  2092  
  2093  	// FailedConnectionAttempts is the number of calls to Connect or Listen
  2094  	// (active and passive openings, respectively) that end in an error.
  2095  	FailedConnectionAttempts *StatCounter
  2096  
  2097  	// ValidSegmentsReceived is the number of TCP segments received that
  2098  	// the transport layer successfully parsed.
  2099  	ValidSegmentsReceived *StatCounter
  2100  
  2101  	// InvalidSegmentsReceived is the number of TCP segments received that
  2102  	// the transport layer could not parse.
  2103  	InvalidSegmentsReceived *StatCounter
  2104  
  2105  	// SegmentsSent is the number of TCP segments sent.
  2106  	SegmentsSent *StatCounter
  2107  
  2108  	// SegmentSendErrors is the number of TCP segments failed to be sent.
  2109  	SegmentSendErrors *StatCounter
  2110  
  2111  	// ResetsSent is the number of TCP resets sent.
  2112  	ResetsSent *StatCounter
  2113  
  2114  	// ResetsReceived is the number of TCP resets received.
  2115  	ResetsReceived *StatCounter
  2116  
  2117  	// Retransmits is the number of TCP segments retransmitted.
  2118  	Retransmits *StatCounter
  2119  
  2120  	// FastRecovery is the number of times Fast Recovery was used to
  2121  	// recover from packet loss.
  2122  	FastRecovery *StatCounter
  2123  
  2124  	// SACKRecovery is the number of times SACK Recovery was used to
  2125  	// recover from packet loss.
  2126  	SACKRecovery *StatCounter
  2127  
  2128  	// TLPRecovery is the number of times recovery was accomplished by the tail
  2129  	// loss probe.
  2130  	TLPRecovery *StatCounter
  2131  
  2132  	// SlowStartRetransmits is the number of segments retransmitted in slow
  2133  	// start.
  2134  	SlowStartRetransmits *StatCounter
  2135  
  2136  	// FastRetransmit is the number of segments retransmitted in fast
  2137  	// recovery.
  2138  	FastRetransmit *StatCounter
  2139  
  2140  	// Timeouts is the number of times the RTO expired.
  2141  	Timeouts *StatCounter
  2142  
  2143  	// ChecksumErrors is the number of segments dropped due to bad checksums.
  2144  	ChecksumErrors *StatCounter
  2145  
  2146  	// FailedPortReservations is the number of times TCP failed to reserve
  2147  	// a port.
  2148  	FailedPortReservations *StatCounter
  2149  
  2150  	// SegmentsAckedWithDSACK is the number of segments acknowledged with
  2151  	// DSACK.
  2152  	SegmentsAckedWithDSACK *StatCounter
  2153  
  2154  	// SpuriousRecovery is the number of times the connection entered loss
  2155  	// recovery spuriously.
  2156  	SpuriousRecovery *StatCounter
  2157  
  2158  	// SpuriousRTORecovery is the number of spurious RTOs.
  2159  	SpuriousRTORecovery *StatCounter
  2160  
  2161  	// ForwardMaxInFlightDrop is the number of connection requests that are
  2162  	// dropped due to exceeding the maximum number of in-flight connection
  2163  	// requests.
  2164  	ForwardMaxInFlightDrop *StatCounter
  2165  }
  2166  
  2167  // UDPStats collects UDP-specific stats.
  2168  type UDPStats struct {
  2169  	// PacketsReceived is the number of UDP datagrams received via
  2170  	// HandlePacket.
  2171  	PacketsReceived *StatCounter
  2172  
  2173  	// UnknownPortErrors is the number of incoming UDP datagrams dropped
  2174  	// because they did not have a known destination port.
  2175  	UnknownPortErrors *StatCounter
  2176  
  2177  	// ReceiveBufferErrors is the number of incoming UDP datagrams dropped
  2178  	// due to the receiving buffer being in an invalid state.
  2179  	ReceiveBufferErrors *StatCounter
  2180  
  2181  	// MalformedPacketsReceived is the number of incoming UDP datagrams
  2182  	// dropped due to the UDP header being in a malformed state.
  2183  	MalformedPacketsReceived *StatCounter
  2184  
  2185  	// PacketsSent is the number of UDP datagrams sent via sendUDP.
  2186  	PacketsSent *StatCounter
  2187  
  2188  	// PacketSendErrors is the number of datagrams failed to be sent.
  2189  	PacketSendErrors *StatCounter
  2190  
  2191  	// ChecksumErrors is the number of datagrams dropped due to bad checksums.
  2192  	ChecksumErrors *StatCounter
  2193  }
  2194  
  2195  // NICNeighborStats holds metrics for the neighbor table.
  2196  type NICNeighborStats struct {
  2197  	// LINT.IfChange(NICNeighborStats)
  2198  
  2199  	// UnreachableEntryLookups counts the number of lookups performed on an
  2200  	// entry in Unreachable state.
  2201  	UnreachableEntryLookups *StatCounter
  2202  
  2203  	// DroppedConfirmationForNoninitiatedNeighbor counts the number of neighbor
  2204  	// responses that were dropped because they didn't match an entry in the
  2205  	// cache.
  2206  	DroppedConfirmationForNoninitiatedNeighbor *StatCounter
  2207  
  2208  	// DroppedInvalidLinkAddressConfirmations counts the number of neighbor
  2209  	// responses that were ignored because they had an invalid source link-layer
  2210  	// address.
  2211  	DroppedInvalidLinkAddressConfirmations *StatCounter
  2212  
  2213  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICNeighborStats)
  2214  }
  2215  
  2216  // NICPacketStats holds basic packet statistics.
  2217  type NICPacketStats struct {
  2218  	// LINT.IfChange(NICPacketStats)
  2219  
  2220  	// Packets is the number of packets counted.
  2221  	Packets *StatCounter
  2222  
  2223  	// Bytes is the number of bytes counted.
  2224  	Bytes *StatCounter
  2225  
  2226  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICPacketStats)
  2227  }
  2228  
  2229  // IntegralStatCounterMap holds a map associating integral keys with
  2230  // StatCounters.
  2231  type IntegralStatCounterMap struct {
  2232  	mu sync.RWMutex
  2233  	// +checklocks:mu
  2234  	counterMap map[uint64]*StatCounter
  2235  }
  2236  
  2237  // Keys returns all keys present in the map.
  2238  func (m *IntegralStatCounterMap) Keys() []uint64 {
  2239  	m.mu.RLock()
  2240  	defer m.mu.RUnlock()
  2241  	var keys []uint64
  2242  	for k := range m.counterMap {
  2243  		keys = append(keys, k)
  2244  	}
  2245  	return keys
  2246  }
  2247  
  2248  // Get returns the counter mapped by the provided key.
  2249  func (m *IntegralStatCounterMap) Get(key uint64) (*StatCounter, bool) {
  2250  	m.mu.RLock()
  2251  	defer m.mu.RUnlock()
  2252  	counter, ok := m.counterMap[key]
  2253  	return counter, ok
  2254  }
  2255  
  2256  // Init initializes the map.
  2257  func (m *IntegralStatCounterMap) Init() {
  2258  	m.mu.Lock()
  2259  	defer m.mu.Unlock()
  2260  	m.counterMap = make(map[uint64]*StatCounter)
  2261  }
  2262  
  2263  // Increment increments the counter associated with the provided key.
  2264  func (m *IntegralStatCounterMap) Increment(key uint64) {
  2265  	m.mu.RLock()
  2266  	counter, ok := m.counterMap[key]
  2267  	m.mu.RUnlock()
  2268  
  2269  	if !ok {
  2270  		m.mu.Lock()
  2271  		counter, ok = m.counterMap[key]
  2272  		if !ok {
  2273  			counter = new(StatCounter)
  2274  			m.counterMap[key] = counter
  2275  		}
  2276  		m.mu.Unlock()
  2277  	}
  2278  	counter.Increment()
  2279  }
  2280  
  2281  // A MultiIntegralStatCounterMap keeps track of two integral counter maps at
  2282  // once.
  2283  type MultiIntegralStatCounterMap struct {
  2284  	a *IntegralStatCounterMap
  2285  	b *IntegralStatCounterMap
  2286  }
  2287  
  2288  // Init sets the internal integral counter maps to point to a and b.
  2289  func (m *MultiIntegralStatCounterMap) Init(a, b *IntegralStatCounterMap) {
  2290  	m.a = a
  2291  	m.b = b
  2292  }
  2293  
  2294  // Increment increments the counter in each map corresponding to the
  2295  // provided key.
  2296  func (m *MultiIntegralStatCounterMap) Increment(key uint64) {
  2297  	m.a.Increment(key)
  2298  	m.b.Increment(key)
  2299  }
  2300  
  2301  // NICStats holds NIC statistics.
  2302  type NICStats struct {
  2303  	// LINT.IfChange(NICStats)
  2304  
  2305  	// UnknownL3ProtocolRcvdPacketCounts records the number of packets recieved
  2306  	// for each unknown or unsupported netowrk protocol number.
  2307  	UnknownL3ProtocolRcvdPacketCounts *IntegralStatCounterMap
  2308  
  2309  	// UnknownL4ProtocolRcvdPacketCounts records the number of packets recieved
  2310  	// for each unknown or unsupported transport protocol number.
  2311  	UnknownL4ProtocolRcvdPacketCounts *IntegralStatCounterMap
  2312  
  2313  	// MalformedL4RcvdPackets is the number of packets received by a NIC that
  2314  	// could not be delivered to a transport endpoint because the L4 header could
  2315  	// not be parsed.
  2316  	MalformedL4RcvdPackets *StatCounter
  2317  
  2318  	// Tx contains statistics about transmitted packets.
  2319  	Tx NICPacketStats
  2320  
  2321  	// TxPacketsDroppedNoBufferSpace is the number of packets dropepd due to the
  2322  	// NIC not having enough buffer space to send the packet.
  2323  	//
  2324  	// Packets may be dropped with a no buffer space error when the device TX
  2325  	// queue is full.
  2326  	TxPacketsDroppedNoBufferSpace *StatCounter
  2327  
  2328  	// Rx contains statistics about received packets.
  2329  	Rx NICPacketStats
  2330  
  2331  	// DisabledRx contains statistics about received packets on disabled NICs.
  2332  	DisabledRx NICPacketStats
  2333  
  2334  	// Neighbor contains statistics about neighbor entries.
  2335  	Neighbor NICNeighborStats
  2336  
  2337  	// LINT.ThenChange(stack/nic_stats.go:multiCounterNICStats)
  2338  }
  2339  
  2340  // FillIn returns a copy of s with nil fields initialized to new StatCounters.
  2341  func (s NICStats) FillIn() NICStats {
  2342  	InitStatCounters(reflect.ValueOf(&s).Elem())
  2343  	return s
  2344  }
  2345  
  2346  // Stats holds statistics about the networking stack.
  2347  type Stats struct {
  2348  	// TODO(https://gvisor.dev/issues/5986): Make the DroppedPackets stat less
  2349  	// ambiguous.
  2350  
  2351  	// DroppedPackets is the number of packets dropped at the transport layer.
  2352  	DroppedPackets *StatCounter
  2353  
  2354  	// NICs is an aggregation of every NIC's statistics. These should not be
  2355  	// incremented using this field, but using the relevant NIC multicounters.
  2356  	NICs NICStats
  2357  
  2358  	// ICMP is an aggregation of every NetworkEndpoint's ICMP statistics (both v4
  2359  	// and v6). These should not be incremented using this field, but using the
  2360  	// relevant NetworkEndpoint ICMP multicounters.
  2361  	ICMP ICMPStats
  2362  
  2363  	// IGMP is an aggregation of every NetworkEndpoint's IGMP statistics. These
  2364  	// should not be incremented using this field, but using the relevant
  2365  	// NetworkEndpoint IGMP multicounters.
  2366  	IGMP IGMPStats
  2367  
  2368  	// IP is an aggregation of every NetworkEndpoint's IP statistics. These should
  2369  	// not be incremented using this field, but using the relevant NetworkEndpoint
  2370  	// IP multicounters.
  2371  	IP IPStats
  2372  
  2373  	// ARP is an aggregation of every NetworkEndpoint's ARP statistics. These
  2374  	// should not be incremented using this field, but using the relevant
  2375  	// NetworkEndpoint ARP multicounters.
  2376  	ARP ARPStats
  2377  
  2378  	// TCP holds TCP-specific stats.
  2379  	TCP TCPStats
  2380  
  2381  	// UDP holds UDP-specific stats.
  2382  	UDP UDPStats
  2383  }
  2384  
  2385  // ReceiveErrors collects packet receive errors within transport endpoint.
  2386  //
  2387  // +stateify savable
  2388  type ReceiveErrors struct {
  2389  	// ReceiveBufferOverflow is the number of received packets dropped
  2390  	// due to the receive buffer being full.
  2391  	ReceiveBufferOverflow StatCounter
  2392  
  2393  	// MalformedPacketsReceived is the number of incoming packets
  2394  	// dropped due to the packet header being in a malformed state.
  2395  	MalformedPacketsReceived StatCounter
  2396  
  2397  	// ClosedReceiver is the number of received packets dropped because
  2398  	// of receiving endpoint state being closed.
  2399  	ClosedReceiver StatCounter
  2400  
  2401  	// ChecksumErrors is the number of packets dropped due to bad checksums.
  2402  	ChecksumErrors StatCounter
  2403  }
  2404  
  2405  // SendErrors collects packet send errors within the transport layer for an
  2406  // endpoint.
  2407  //
  2408  // +stateify savable
  2409  type SendErrors struct {
  2410  	// SendToNetworkFailed is the number of packets failed to be written to
  2411  	// the network endpoint.
  2412  	SendToNetworkFailed StatCounter
  2413  
  2414  	// NoRoute is the number of times we failed to resolve IP route.
  2415  	NoRoute StatCounter
  2416  }
  2417  
  2418  // ReadErrors collects segment read errors from an endpoint read call.
  2419  //
  2420  // +stateify savable
  2421  type ReadErrors struct {
  2422  	// ReadClosed is the number of received packet drops because the endpoint
  2423  	// was shutdown for read.
  2424  	ReadClosed StatCounter
  2425  
  2426  	// InvalidEndpointState is the number of times we found the endpoint state
  2427  	// to be unexpected.
  2428  	InvalidEndpointState StatCounter
  2429  
  2430  	// NotConnected is the number of times we tried to read but found that the
  2431  	// endpoint was not connected.
  2432  	NotConnected StatCounter
  2433  }
  2434  
  2435  // WriteErrors collects packet write errors from an endpoint write call.
  2436  //
  2437  // +stateify savable
  2438  type WriteErrors struct {
  2439  	// WriteClosed is the number of packet drops because the endpoint
  2440  	// was shutdown for write.
  2441  	WriteClosed StatCounter
  2442  
  2443  	// InvalidEndpointState is the number of times we found the endpoint state
  2444  	// to be unexpected.
  2445  	InvalidEndpointState StatCounter
  2446  
  2447  	// InvalidArgs is the number of times invalid input arguments were
  2448  	// provided for endpoint Write call.
  2449  	InvalidArgs StatCounter
  2450  }
  2451  
  2452  // TransportEndpointStats collects statistics about the endpoint.
  2453  //
  2454  // +stateify savable
  2455  type TransportEndpointStats struct {
  2456  	// PacketsReceived is the number of successful packet receives.
  2457  	PacketsReceived StatCounter
  2458  
  2459  	// PacketsSent is the number of successful packet sends.
  2460  	PacketsSent StatCounter
  2461  
  2462  	// ReceiveErrors collects packet receive errors within transport layer.
  2463  	ReceiveErrors ReceiveErrors
  2464  
  2465  	// ReadErrors collects packet read errors from an endpoint read call.
  2466  	ReadErrors ReadErrors
  2467  
  2468  	// SendErrors collects packet send errors within the transport layer.
  2469  	SendErrors SendErrors
  2470  
  2471  	// WriteErrors collects packet write errors from an endpoint write call.
  2472  	WriteErrors WriteErrors
  2473  }
  2474  
  2475  // IsEndpointStats is an empty method to implement the tcpip.EndpointStats
  2476  // marker interface.
  2477  func (*TransportEndpointStats) IsEndpointStats() {}
  2478  
  2479  // InitStatCounters initializes v's fields with nil StatCounter fields to new
  2480  // StatCounters.
  2481  func InitStatCounters(v reflect.Value) {
  2482  	for i := 0; i < v.NumField(); i++ {
  2483  		v := v.Field(i)
  2484  		if s, ok := v.Addr().Interface().(**StatCounter); ok {
  2485  			if *s == nil {
  2486  				*s = new(StatCounter)
  2487  			}
  2488  		} else if s, ok := v.Addr().Interface().(**IntegralStatCounterMap); ok {
  2489  			if *s == nil {
  2490  				*s = new(IntegralStatCounterMap)
  2491  				(*s).Init()
  2492  			}
  2493  		} else {
  2494  			InitStatCounters(v)
  2495  		}
  2496  	}
  2497  }
  2498  
  2499  // FillIn returns a copy of s with nil fields initialized to new StatCounters.
  2500  func (s Stats) FillIn() Stats {
  2501  	InitStatCounters(reflect.ValueOf(&s).Elem())
  2502  	return s
  2503  }
  2504  
  2505  // Clone clones a copy of the TransportEndpointStats into dst by atomically
  2506  // reading each field.
  2507  func (src *TransportEndpointStats) Clone(dst *TransportEndpointStats) {
  2508  	clone(reflect.ValueOf(dst).Elem(), reflect.ValueOf(src).Elem())
  2509  }
  2510  
  2511  func clone(dst reflect.Value, src reflect.Value) {
  2512  	for i := 0; i < dst.NumField(); i++ {
  2513  		d := dst.Field(i)
  2514  		s := src.Field(i)
  2515  		if c, ok := s.Addr().Interface().(*StatCounter); ok {
  2516  			d.Addr().Interface().(*StatCounter).IncrementBy(c.Value())
  2517  		} else {
  2518  			clone(d, s)
  2519  		}
  2520  	}
  2521  }
  2522  
  2523  // String implements the fmt.Stringer interface.
  2524  func (a Address) String() string {
  2525  	switch l := a.Len(); l {
  2526  	case 4:
  2527  		return fmt.Sprintf("%d.%d.%d.%d", int(a.addr[0]), int(a.addr[1]), int(a.addr[2]), int(a.addr[3]))
  2528  	case 16:
  2529  		// Find the longest subsequence of hexadecimal zeros.
  2530  		start, end := -1, -1
  2531  		for i := 0; i < a.Len(); i += 2 {
  2532  			j := i
  2533  			for j < a.Len() && a.addr[j] == 0 && a.addr[j+1] == 0 {
  2534  				j += 2
  2535  			}
  2536  			if j > i+2 && j-i > end-start {
  2537  				start, end = i, j
  2538  			}
  2539  		}
  2540  
  2541  		var b strings.Builder
  2542  		for i := 0; i < a.Len(); i += 2 {
  2543  			if i == start {
  2544  				b.WriteString("::")
  2545  				i = end
  2546  				if end >= a.Len() {
  2547  					break
  2548  				}
  2549  			} else if i > 0 {
  2550  				b.WriteByte(':')
  2551  			}
  2552  			v := uint16(a.addr[i+0])<<8 | uint16(a.addr[i+1])
  2553  			if v == 0 {
  2554  				b.WriteByte('0')
  2555  			} else {
  2556  				const digits = "0123456789abcdef"
  2557  				for i := uint(3); i < 4; i-- {
  2558  					if v := v >> (i * 4); v != 0 {
  2559  						b.WriteByte(digits[v&0xf])
  2560  					}
  2561  				}
  2562  			}
  2563  		}
  2564  		return b.String()
  2565  	default:
  2566  		return fmt.Sprintf("%x", a.addr[:l])
  2567  	}
  2568  }
  2569  
  2570  // To4 converts the IPv4 address to a 4-byte representation.
  2571  // If the address is not an IPv4 address, To4 returns the empty Address.
  2572  func (a Address) To4() Address {
  2573  	const (
  2574  		ipv4len = 4
  2575  		ipv6len = 16
  2576  	)
  2577  	if a.Len() == ipv4len {
  2578  		return a
  2579  	}
  2580  	if a.Len() == ipv6len &&
  2581  		isZeros(a.addr[:10]) &&
  2582  		a.addr[10] == 0xff &&
  2583  		a.addr[11] == 0xff {
  2584  		return AddrFrom4Slice(a.addr[12:16])
  2585  	}
  2586  	return Address{}
  2587  }
  2588  
  2589  // isZeros reports whether addr is all zeros.
  2590  func isZeros(addr []byte) bool {
  2591  	for _, b := range addr {
  2592  		if b != 0 {
  2593  			return false
  2594  		}
  2595  	}
  2596  	return true
  2597  }
  2598  
  2599  // LinkAddress is a byte slice cast as a string that represents a link address.
  2600  // It is typically a 6-byte MAC address.
  2601  type LinkAddress string
  2602  
  2603  // String implements the fmt.Stringer interface.
  2604  func (a LinkAddress) String() string {
  2605  	switch len(a) {
  2606  	case 6:
  2607  		return fmt.Sprintf("%02x:%02x:%02x:%02x:%02x:%02x", a[0], a[1], a[2], a[3], a[4], a[5])
  2608  	default:
  2609  		return fmt.Sprintf("%x", []byte(a))
  2610  	}
  2611  }
  2612  
  2613  // ParseMACAddress parses an IEEE 802 address.
  2614  //
  2615  // It must be in the format aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff.
  2616  func ParseMACAddress(s string) (LinkAddress, error) {
  2617  	parts := strings.FieldsFunc(s, func(c rune) bool {
  2618  		return c == ':' || c == '-'
  2619  	})
  2620  	if len(parts) != 6 {
  2621  		return "", fmt.Errorf("inconsistent parts: %s", s)
  2622  	}
  2623  	addr := make([]byte, 0, len(parts))
  2624  	for _, part := range parts {
  2625  		u, err := strconv.ParseUint(part, 16, 8)
  2626  		if err != nil {
  2627  			return "", fmt.Errorf("invalid hex digits: %s", s)
  2628  		}
  2629  		addr = append(addr, byte(u))
  2630  	}
  2631  	return LinkAddress(addr), nil
  2632  }
  2633  
  2634  // AddressWithPrefix is an address with its subnet prefix length.
  2635  //
  2636  // +stateify savable
  2637  type AddressWithPrefix struct {
  2638  	// Address is a network address.
  2639  	Address Address
  2640  
  2641  	// PrefixLen is the subnet prefix length.
  2642  	PrefixLen int
  2643  }
  2644  
  2645  // String implements the fmt.Stringer interface.
  2646  func (a AddressWithPrefix) String() string {
  2647  	return fmt.Sprintf("%s/%d", a.Address, a.PrefixLen)
  2648  }
  2649  
  2650  // Subnet converts the address and prefix into a Subnet value and returns it.
  2651  func (a AddressWithPrefix) Subnet() Subnet {
  2652  	addrLen := a.Address.length
  2653  	if a.PrefixLen <= 0 {
  2654  		return Subnet{
  2655  			address: AddrFromSlice(bytes.Repeat([]byte{0}, addrLen)),
  2656  			mask:    MaskFromBytes(bytes.Repeat([]byte{0}, addrLen)),
  2657  		}
  2658  	}
  2659  	if a.PrefixLen >= addrLen*8 {
  2660  		return Subnet{
  2661  			address: a.Address,
  2662  			mask:    MaskFromBytes(bytes.Repeat([]byte{0xff}, addrLen)),
  2663  		}
  2664  	}
  2665  
  2666  	sa := make([]byte, addrLen)
  2667  	sm := make([]byte, addrLen)
  2668  	n := uint(a.PrefixLen)
  2669  	for i := 0; i < addrLen; i++ {
  2670  		if n >= 8 {
  2671  			sa[i] = a.Address.addr[i]
  2672  			sm[i] = 0xff
  2673  			n -= 8
  2674  			continue
  2675  		}
  2676  		sm[i] = ^byte(0xff >> n)
  2677  		sa[i] = a.Address.addr[i] & sm[i]
  2678  		n = 0
  2679  	}
  2680  
  2681  	// For extra caution, call NewSubnet rather than directly creating the Subnet
  2682  	// value. If that fails it indicates a serious bug in this code, so panic is
  2683  	// in order.
  2684  	s, err := NewSubnet(AddrFromSlice(sa), MaskFromBytes(sm))
  2685  	if err != nil {
  2686  		panic("invalid subnet: " + err.Error())
  2687  	}
  2688  	return s
  2689  }
  2690  
  2691  // ProtocolAddress is an address and the network protocol it is associated
  2692  // with.
  2693  type ProtocolAddress struct {
  2694  	// Protocol is the protocol of the address.
  2695  	Protocol NetworkProtocolNumber
  2696  
  2697  	// AddressWithPrefix is a network address with its subnet prefix length.
  2698  	AddressWithPrefix AddressWithPrefix
  2699  }
  2700  
  2701  var (
  2702  	// danglingEndpointsMu protects access to danglingEndpoints.
  2703  	danglingEndpointsMu sync.Mutex
  2704  
  2705  	// danglingEndpoints tracks all dangling endpoints no longer owned by the app.
  2706  	danglingEndpoints = make(map[Endpoint]struct{})
  2707  )
  2708  
  2709  // GetDanglingEndpoints returns all dangling endpoints.
  2710  func GetDanglingEndpoints() []Endpoint {
  2711  	danglingEndpointsMu.Lock()
  2712  	es := make([]Endpoint, 0, len(danglingEndpoints))
  2713  	for e := range danglingEndpoints {
  2714  		es = append(es, e)
  2715  	}
  2716  	danglingEndpointsMu.Unlock()
  2717  	return es
  2718  }
  2719  
  2720  // ReleaseDanglingEndpoints clears out all all reference counted objects held by
  2721  // dangling endpoints.
  2722  func ReleaseDanglingEndpoints() {
  2723  	// Get the dangling endpoints first to avoid locking around Release(), which
  2724  	// can cause a lock inversion with endpoint.mu and danglingEndpointsMu.
  2725  	// Calling Release on a dangling endpoint that has been deleted is a noop.
  2726  	eps := GetDanglingEndpoints()
  2727  	for _, ep := range eps {
  2728  		ep.Abort()
  2729  	}
  2730  }
  2731  
  2732  // AddDanglingEndpoint adds a dangling endpoint.
  2733  func AddDanglingEndpoint(e Endpoint) {
  2734  	danglingEndpointsMu.Lock()
  2735  	danglingEndpoints[e] = struct{}{}
  2736  	danglingEndpointsMu.Unlock()
  2737  }
  2738  
  2739  // DeleteDanglingEndpoint removes a dangling endpoint.
  2740  func DeleteDanglingEndpoint(e Endpoint) {
  2741  	danglingEndpointsMu.Lock()
  2742  	delete(danglingEndpoints, e)
  2743  	danglingEndpointsMu.Unlock()
  2744  }
  2745  
  2746  // AsyncLoading is the global barrier for asynchronous endpoint loading
  2747  // activities.
  2748  var AsyncLoading sync.WaitGroup