github.com/nitinawathare/ethereumassignment3@v0.0.0-20211021213010-f07344c2b868/go-ethereum/signer/core/signed_data.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of go-ethereum.
     3  //
     4  // go-ethereum is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // go-ethereum is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU General Public License
    15  // along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
    16  //
    17  package core
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  	"mime"
    26  	"regexp"
    27  	"sort"
    28  	"strconv"
    29  	"strings"
    30  	"unicode"
    31  
    32  	"github.com/ethereum/go-ethereum/accounts"
    33  	"github.com/ethereum/go-ethereum/accounts/abi"
    34  	"github.com/ethereum/go-ethereum/common"
    35  	"github.com/ethereum/go-ethereum/common/hexutil"
    36  	"github.com/ethereum/go-ethereum/common/math"
    37  	"github.com/ethereum/go-ethereum/consensus/clique"
    38  	"github.com/ethereum/go-ethereum/core/types"
    39  	"github.com/ethereum/go-ethereum/crypto"
    40  	"github.com/ethereum/go-ethereum/rlp"
    41  )
    42  
    43  type SigFormat struct {
    44  	Mime        string
    45  	ByteVersion byte
    46  }
    47  
    48  var (
    49  	TextValidator = SigFormat{
    50  		accounts.MimetypeTextWithValidator,
    51  		0x00,
    52  	}
    53  	DataTyped = SigFormat{
    54  		accounts.MimetypeTypedData,
    55  		0x01,
    56  	}
    57  	ApplicationClique = SigFormat{
    58  		accounts.MimetypeClique,
    59  		0x02,
    60  	}
    61  	TextPlain = SigFormat{
    62  		accounts.MimetypeTextPlain,
    63  		0x45,
    64  	}
    65  )
    66  
    67  type ValidatorData struct {
    68  	Address common.Address
    69  	Message hexutil.Bytes
    70  }
    71  
    72  type TypedData struct {
    73  	Types       Types            `json:"types"`
    74  	PrimaryType string           `json:"primaryType"`
    75  	Domain      TypedDataDomain  `json:"domain"`
    76  	Message     TypedDataMessage `json:"message"`
    77  }
    78  
    79  type Type struct {
    80  	Name string `json:"name"`
    81  	Type string `json:"type"`
    82  }
    83  
    84  func (t *Type) isArray() bool {
    85  	return strings.HasSuffix(t.Type, "[]")
    86  }
    87  
    88  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    89  // this method returns 'Person'
    90  func (t *Type) typeName() string {
    91  	if strings.HasSuffix(t.Type, "[]") {
    92  		return strings.TrimSuffix(t.Type, "[]")
    93  	}
    94  	return t.Type
    95  }
    96  
    97  func (t *Type) isReferenceType() bool {
    98  	// Reference types must have a leading uppercase characer
    99  	return unicode.IsUpper([]rune(t.Type)[0])
   100  }
   101  
   102  type Types map[string][]Type
   103  
   104  type TypePriority struct {
   105  	Type  string
   106  	Value uint
   107  }
   108  
   109  type TypedDataMessage = map[string]interface{}
   110  
   111  type TypedDataDomain struct {
   112  	Name              string   `json:"name"`
   113  	Version           string   `json:"version"`
   114  	ChainId           *big.Int `json:"chainId"`
   115  	VerifyingContract string   `json:"verifyingContract"`
   116  	Salt              string   `json:"salt"`
   117  }
   118  
   119  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   120  
   121  // sign receives a request and produces a signature
   122  
   123  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   124  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   125  func (api *SignerAPI) sign(addr common.MixedcaseAddress, req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   126  
   127  	// We make the request prior to looking up if we actually have the account, to prevent
   128  	// account-enumeration via the API
   129  	res, err := api.UI.ApproveSignData(req)
   130  	if err != nil {
   131  		return nil, err
   132  	}
   133  	if !res.Approved {
   134  		return nil, ErrRequestDenied
   135  	}
   136  	// Look up the wallet containing the requested signer
   137  	account := accounts.Account{Address: addr.Address()}
   138  	wallet, err := api.am.Find(account)
   139  	if err != nil {
   140  		return nil, err
   141  	}
   142  	pw, err := api.lookupOrQueryPassword(account.Address,
   143  		"Password for signing",
   144  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   145  	if err != nil {
   146  		return nil, err
   147  	}
   148  	// Sign the data with the wallet
   149  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   150  	if err != nil {
   151  		return nil, err
   152  	}
   153  	if legacyV {
   154  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   155  	}
   156  	return signature, nil
   157  }
   158  
   159  // SignData signs the hash of the provided data, but does so differently
   160  // depending on the content-type specified.
   161  //
   162  // Different types of validation occur.
   163  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   164  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   165  	if err != nil {
   166  		return nil, err
   167  	}
   168  
   169  	signature, err := api.sign(addr, req, transformV)
   170  	if err != nil {
   171  		api.UI.ShowError(err.Error())
   172  		return nil, err
   173  	}
   174  	return signature, nil
   175  }
   176  
   177  // determineSignatureFormat determines which signature method should be used based upon the mime type
   178  // In the cases where it matters ensure that the charset is handled. The charset
   179  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   180  // charset, ok := params["charset"]
   181  // As it is now, we accept any charset and just treat it as 'raw'.
   182  // This method returns the mimetype for signing along with the request
   183  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   184  	var (
   185  		req          *SignDataRequest
   186  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   187  	)
   188  	mediaType, _, err := mime.ParseMediaType(contentType)
   189  	if err != nil {
   190  		return nil, useEthereumV, err
   191  	}
   192  
   193  	switch mediaType {
   194  	case TextValidator.Mime:
   195  		// Data with an intended validator
   196  		validatorData, err := UnmarshalValidatorData(data)
   197  		if err != nil {
   198  			return nil, useEthereumV, err
   199  		}
   200  		sighash, msg := SignTextValidator(validatorData)
   201  		message := []*NameValueType{
   202  			{
   203  				Name:  "message",
   204  				Typ:   "text",
   205  				Value: msg,
   206  			},
   207  		}
   208  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Message: message, Hash: sighash}
   209  	case ApplicationClique.Mime:
   210  		// Clique is the Ethereum PoA standard
   211  		stringData, ok := data.(string)
   212  		if !ok {
   213  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   214  		}
   215  		cliqueData, err := hexutil.Decode(stringData)
   216  		if err != nil {
   217  			return nil, useEthereumV, err
   218  		}
   219  		header := &types.Header{}
   220  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   221  			return nil, useEthereumV, err
   222  		}
   223  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   224  		if len(header.Extra) < 65 {
   225  			// Need to add it back, to get a suitable length for hashing
   226  			newExtra := make([]byte, len(header.Extra)+65)
   227  			copy(newExtra, header.Extra)
   228  			header.Extra = newExtra
   229  		}
   230  		// Get back the rlp data, encoded by us
   231  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   232  		if err != nil {
   233  			return nil, useEthereumV, err
   234  		}
   235  		message := []*NameValueType{
   236  			{
   237  				Name:  "Clique header",
   238  				Typ:   "clique",
   239  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   240  			},
   241  		}
   242  		// Clique uses V on the form 0 or 1
   243  		useEthereumV = false
   244  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Message: message, Hash: sighash}
   245  	default: // also case TextPlain.Mime:
   246  		// Calculates an Ethereum ECDSA signature for:
   247  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   248  		// We expect it to be a string
   249  		if stringData, ok := data.(string); !ok {
   250  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   251  		} else {
   252  			if textData, err := hexutil.Decode(stringData); err != nil {
   253  				return nil, useEthereumV, err
   254  			} else {
   255  				sighash, msg := accounts.TextAndHash(textData)
   256  				message := []*NameValueType{
   257  					{
   258  						Name:  "message",
   259  						Typ:   accounts.MimetypeTextPlain,
   260  						Value: msg,
   261  					},
   262  				}
   263  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Message: message, Hash: sighash}
   264  			}
   265  		}
   266  	}
   267  	req.Address = addr
   268  	req.Meta = MetadataFromContext(ctx)
   269  	return req, useEthereumV, nil
   270  
   271  }
   272  
   273  // SignTextWithValidator signs the given message which can be further recovered
   274  // with the given validator.
   275  // hash = keccak256("\x19\x00"${address}${data}).
   276  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   277  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   278  	fmt.Printf("SignTextValidator:%s\n", msg)
   279  	return crypto.Keccak256([]byte(msg)), msg
   280  }
   281  
   282  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   283  // signing. It is the hash of the entire header apart from the 65 byte signature
   284  // contained at the end of the extra data.
   285  //
   286  // The method requires the extra data to be at least 65 bytes -- the original implementation
   287  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   288  // and simply return an error instead
   289  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   290  	if len(header.Extra) < 65 {
   291  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   292  		return
   293  	}
   294  	rlp = clique.CliqueRLP(header)
   295  	hash = clique.SealHash(header).Bytes()
   296  	return hash, rlp, err
   297  }
   298  
   299  // SignTypedData signs EIP-712 conformant typed data
   300  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   301  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   302  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   303  	if err != nil {
   304  		return nil, err
   305  	}
   306  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   307  	if err != nil {
   308  		return nil, err
   309  	}
   310  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   311  	sighash := crypto.Keccak256(rawData)
   312  	message := typedData.Format()
   313  	req := &SignDataRequest{ContentType: DataTyped.Mime, Rawdata: rawData, Message: message, Hash: sighash}
   314  	signature, err := api.sign(addr, req, true)
   315  	if err != nil {
   316  		api.UI.ShowError(err.Error())
   317  		return nil, err
   318  	}
   319  	return signature, nil
   320  }
   321  
   322  // HashStruct generates a keccak256 hash of the encoding of the provided data
   323  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   324  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   325  	if err != nil {
   326  		return nil, err
   327  	}
   328  	return crypto.Keccak256(encodedData), nil
   329  }
   330  
   331  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   332  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   333  	includes := func(arr []string, str string) bool {
   334  		for _, obj := range arr {
   335  			if obj == str {
   336  				return true
   337  			}
   338  		}
   339  		return false
   340  	}
   341  
   342  	if includes(found, primaryType) {
   343  		return found
   344  	}
   345  	if typedData.Types[primaryType] == nil {
   346  		return found
   347  	}
   348  	found = append(found, primaryType)
   349  	for _, field := range typedData.Types[primaryType] {
   350  		for _, dep := range typedData.Dependencies(field.Type, found) {
   351  			if !includes(found, dep) {
   352  				found = append(found, dep)
   353  			}
   354  		}
   355  	}
   356  	return found
   357  }
   358  
   359  // EncodeType generates the following encoding:
   360  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   361  //
   362  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   363  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   364  	// Get dependencies primary first, then alphabetical
   365  	deps := typedData.Dependencies(primaryType, []string{})
   366  	slicedDeps := deps[1:]
   367  	sort.Strings(slicedDeps)
   368  	deps = append([]string{primaryType}, slicedDeps...)
   369  
   370  	// Format as a string with fields
   371  	var buffer bytes.Buffer
   372  	for _, dep := range deps {
   373  		buffer.WriteString(dep)
   374  		buffer.WriteString("(")
   375  		for _, obj := range typedData.Types[dep] {
   376  			buffer.WriteString(obj.Type)
   377  			buffer.WriteString(" ")
   378  			buffer.WriteString(obj.Name)
   379  			buffer.WriteString(",")
   380  		}
   381  		buffer.Truncate(buffer.Len() - 1)
   382  		buffer.WriteString(")")
   383  	}
   384  	return buffer.Bytes()
   385  }
   386  
   387  // TypeHash creates the keccak256 hash  of the data
   388  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   389  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   390  }
   391  
   392  // EncodeData generates the following encoding:
   393  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   394  //
   395  // each encoded member is 32-byte long
   396  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   397  	if err := typedData.validate(); err != nil {
   398  		return nil, err
   399  	}
   400  
   401  	buffer := bytes.Buffer{}
   402  
   403  	// Verify extra data
   404  	if len(typedData.Types[primaryType]) < len(data) {
   405  		return nil, errors.New("there is extra data provided in the message")
   406  	}
   407  
   408  	// Add typehash
   409  	buffer.Write(typedData.TypeHash(primaryType))
   410  
   411  	// Add field contents. Structs and arrays have special handlers.
   412  	for _, field := range typedData.Types[primaryType] {
   413  		encType := field.Type
   414  		encValue := data[field.Name]
   415  		if encType[len(encType)-1:] == "]" {
   416  			arrayValue, ok := encValue.([]interface{})
   417  			if !ok {
   418  				return nil, dataMismatchError(encType, encValue)
   419  			}
   420  
   421  			arrayBuffer := bytes.Buffer{}
   422  			parsedType := strings.Split(encType, "[")[0]
   423  			for _, item := range arrayValue {
   424  				if typedData.Types[parsedType] != nil {
   425  					mapValue, ok := item.(map[string]interface{})
   426  					if !ok {
   427  						return nil, dataMismatchError(parsedType, item)
   428  					}
   429  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   430  					if err != nil {
   431  						return nil, err
   432  					}
   433  					arrayBuffer.Write(encodedData)
   434  				} else {
   435  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   436  					if err != nil {
   437  						return nil, err
   438  					}
   439  					arrayBuffer.Write(bytesValue)
   440  				}
   441  			}
   442  
   443  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   444  		} else if typedData.Types[field.Type] != nil {
   445  			mapValue, ok := encValue.(map[string]interface{})
   446  			if !ok {
   447  				return nil, dataMismatchError(encType, encValue)
   448  			}
   449  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   450  			if err != nil {
   451  				return nil, err
   452  			}
   453  			buffer.Write(crypto.Keccak256(encodedData))
   454  		} else {
   455  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   456  			if err != nil {
   457  				return nil, err
   458  			}
   459  			buffer.Write(byteValue)
   460  		}
   461  	}
   462  	return buffer.Bytes(), nil
   463  }
   464  
   465  // EncodePrimitiveValue deals with the primitive values found
   466  // while searching through the typed data
   467  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   468  
   469  	switch encType {
   470  	case "address":
   471  		stringValue, ok := encValue.(string)
   472  		if !ok || !common.IsHexAddress(stringValue) {
   473  			return nil, dataMismatchError(encType, encValue)
   474  		}
   475  		retval := make([]byte, 32)
   476  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   477  		return retval, nil
   478  	case "bool":
   479  		boolValue, ok := encValue.(bool)
   480  		if !ok {
   481  			return nil, dataMismatchError(encType, encValue)
   482  		}
   483  		if boolValue {
   484  			return math.PaddedBigBytes(common.Big1, 32), nil
   485  		}
   486  		return math.PaddedBigBytes(common.Big0, 32), nil
   487  	case "string":
   488  		strVal, ok := encValue.(string)
   489  		if !ok {
   490  			return nil, dataMismatchError(encType, encValue)
   491  		}
   492  		return crypto.Keccak256([]byte(strVal)), nil
   493  	case "bytes":
   494  		bytesValue, ok := encValue.([]byte)
   495  		if !ok {
   496  			return nil, dataMismatchError(encType, encValue)
   497  		}
   498  		return crypto.Keccak256(bytesValue), nil
   499  	}
   500  	if strings.HasPrefix(encType, "bytes") {
   501  		lengthStr := strings.TrimPrefix(encType, "bytes")
   502  		length, err := strconv.Atoi(lengthStr)
   503  		if err != nil {
   504  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   505  		}
   506  		if length < 0 || length > 32 {
   507  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   508  		}
   509  		if byteValue, ok := encValue.(hexutil.Bytes); !ok {
   510  			return nil, dataMismatchError(encType, encValue)
   511  		} else {
   512  			return math.PaddedBigBytes(new(big.Int).SetBytes(byteValue), 32), nil
   513  		}
   514  	}
   515  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   516  		length := 0
   517  		if encType == "int" || encType == "uint" {
   518  			length = 256
   519  		} else {
   520  			lengthStr := ""
   521  			if strings.HasPrefix(encType, "uint") {
   522  				lengthStr = strings.TrimPrefix(encType, "uint")
   523  			} else {
   524  				lengthStr = strings.TrimPrefix(encType, "int")
   525  			}
   526  			atoiSize, err := strconv.Atoi(lengthStr)
   527  			if err != nil {
   528  				return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   529  			}
   530  			length = atoiSize
   531  		}
   532  		bigIntValue, ok := encValue.(*big.Int)
   533  		if bigIntValue.BitLen() > length {
   534  			return nil, fmt.Errorf("integer larger than '%v'", encType)
   535  		}
   536  		if !ok {
   537  			return nil, dataMismatchError(encType, encValue)
   538  		}
   539  		return abi.U256(bigIntValue), nil
   540  	}
   541  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   542  
   543  }
   544  
   545  // dataMismatchError generates an error for a mismatch between
   546  // the provided type and data
   547  func dataMismatchError(encType string, encValue interface{}) error {
   548  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   549  }
   550  
   551  // EcRecover recovers the address associated with the given sig.
   552  // Only compatible with `text/plain`
   553  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   554  	// Returns the address for the Account that was used to create the signature.
   555  	//
   556  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   557  	// the address of:
   558  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   559  	// addr = ecrecover(hash, signature)
   560  	//
   561  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   562  	// the V value must be be 27 or 28 for legacy reasons.
   563  	//
   564  	// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
   565  	if len(sig) != 65 {
   566  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   567  	}
   568  	if sig[64] != 27 && sig[64] != 28 {
   569  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   570  	}
   571  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   572  	hash := accounts.TextHash(data)
   573  	rpk, err := crypto.SigToPub(hash, sig)
   574  	if err != nil {
   575  		return common.Address{}, err
   576  	}
   577  	return crypto.PubkeyToAddress(*rpk), nil
   578  }
   579  
   580  // UnmarshalValidatorData converts the bytes input to typed data
   581  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   582  	raw, ok := data.(map[string]interface{})
   583  	if !ok {
   584  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   585  	}
   586  	addr, ok := raw["address"].(string)
   587  	if !ok {
   588  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   589  	}
   590  	addrBytes, err := hexutil.Decode(addr)
   591  	if err != nil {
   592  		return ValidatorData{}, err
   593  	}
   594  	if !ok || len(addrBytes) == 0 {
   595  		return ValidatorData{}, errors.New("validator address is undefined")
   596  	}
   597  
   598  	message, ok := raw["message"].(string)
   599  	if !ok {
   600  		return ValidatorData{}, errors.New("message is not sent as a string")
   601  	}
   602  	messageBytes, err := hexutil.Decode(message)
   603  	if err != nil {
   604  		return ValidatorData{}, err
   605  	}
   606  	if !ok || len(messageBytes) == 0 {
   607  		return ValidatorData{}, errors.New("message is undefined")
   608  	}
   609  
   610  	return ValidatorData{
   611  		Address: common.BytesToAddress(addrBytes),
   612  		Message: messageBytes,
   613  	}, nil
   614  }
   615  
   616  // validate makes sure the types are sound
   617  func (typedData *TypedData) validate() error {
   618  	if err := typedData.Types.validate(); err != nil {
   619  		return err
   620  	}
   621  	if err := typedData.Domain.validate(); err != nil {
   622  		return err
   623  	}
   624  	return nil
   625  }
   626  
   627  // Map generates a map version of the typed data
   628  func (typedData *TypedData) Map() map[string]interface{} {
   629  	dataMap := map[string]interface{}{
   630  		"types":       typedData.Types,
   631  		"domain":      typedData.Domain.Map(),
   632  		"primaryType": typedData.PrimaryType,
   633  		"message":     typedData.Message,
   634  	}
   635  	return dataMap
   636  }
   637  
   638  // PrettyPrint generates a nice output to help the users
   639  // of clef present data in their apps
   640  func (typedData *TypedData) PrettyPrint() string {
   641  	output := bytes.Buffer{}
   642  	formatted := typedData.Format()
   643  	for _, item := range formatted {
   644  		output.WriteString(fmt.Sprintf("%v\n", item.Pprint(0)))
   645  	}
   646  	return output.String()
   647  }
   648  
   649  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   650  // without in-depth knowledge about 712 rules
   651  func (typedData *TypedData) Format() []*NameValueType {
   652  	var nvts []*NameValueType
   653  	nvts = append(nvts, &NameValueType{
   654  		Name:  "EIP712Domain",
   655  		Value: typedData.formatData("EIP712Domain", typedData.Domain.Map()),
   656  		Typ:   "domain",
   657  	})
   658  	nvts = append(nvts, &NameValueType{
   659  		Name:  typedData.PrimaryType,
   660  		Value: typedData.formatData(typedData.PrimaryType, typedData.Message),
   661  		Typ:   "primary type",
   662  	})
   663  	return nvts
   664  }
   665  
   666  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) []*NameValueType {
   667  	var output []*NameValueType
   668  
   669  	// Add field contents. Structs and arrays have special handlers.
   670  	for _, field := range typedData.Types[primaryType] {
   671  		encName := field.Name
   672  		encValue := data[encName]
   673  		item := &NameValueType{
   674  			Name: encName,
   675  			Typ:  field.Type,
   676  		}
   677  		if field.isArray() {
   678  			arrayValue, _ := encValue.([]interface{})
   679  			parsedType := field.typeName()
   680  			for _, v := range arrayValue {
   681  				if typedData.Types[parsedType] != nil {
   682  					mapValue, _ := v.(map[string]interface{})
   683  					mapOutput := typedData.formatData(parsedType, mapValue)
   684  					item.Value = mapOutput
   685  				} else {
   686  					primitiveOutput := formatPrimitiveValue(field.Type, encValue)
   687  					item.Value = primitiveOutput
   688  				}
   689  			}
   690  		} else if typedData.Types[field.Type] != nil {
   691  			mapValue, _ := encValue.(map[string]interface{})
   692  			mapOutput := typedData.formatData(field.Type, mapValue)
   693  			item.Value = mapOutput
   694  		} else {
   695  			primitiveOutput := formatPrimitiveValue(field.Type, encValue)
   696  			item.Value = primitiveOutput
   697  		}
   698  		output = append(output, item)
   699  	}
   700  	return output
   701  }
   702  
   703  func formatPrimitiveValue(encType string, encValue interface{}) string {
   704  	switch encType {
   705  	case "address":
   706  		stringValue, _ := encValue.(string)
   707  		return common.HexToAddress(stringValue).String()
   708  	case "bool":
   709  		boolValue, _ := encValue.(bool)
   710  		return fmt.Sprintf("%t", boolValue)
   711  	case "bytes", "string":
   712  		return fmt.Sprintf("%s", encValue)
   713  	}
   714  	if strings.HasPrefix(encType, "bytes") {
   715  		return fmt.Sprintf("%s", encValue)
   716  	} else if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   717  		bigIntValue, _ := encValue.(*big.Int)
   718  		return fmt.Sprintf("%d (0x%x)", bigIntValue, bigIntValue)
   719  	}
   720  	return "NA"
   721  }
   722  
   723  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   724  // json structures used to communicate signing-info about typed data with the UI
   725  type NameValueType struct {
   726  	Name  string      `json:"name"`
   727  	Value interface{} `json:"value"`
   728  	Typ   string      `json:"type"`
   729  }
   730  
   731  // Pprint returns a pretty-printed version of nvt
   732  func (nvt *NameValueType) Pprint(depth int) string {
   733  	output := bytes.Buffer{}
   734  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   735  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   736  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   737  		output.WriteString("\n")
   738  		for _, next := range nvts {
   739  			sublevel := next.Pprint(depth + 1)
   740  			output.WriteString(sublevel)
   741  		}
   742  	} else {
   743  		output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   744  	}
   745  	return output.String()
   746  }
   747  
   748  // Validate checks if the types object is conformant to the specs
   749  func (t Types) validate() error {
   750  	for typeKey, typeArr := range t {
   751  		for _, typeObj := range typeArr {
   752  			if typeKey == typeObj.Type {
   753  				return fmt.Errorf("type '%s' cannot reference itself", typeObj.Type)
   754  			}
   755  			if typeObj.isReferenceType() {
   756  				if _, exist := t[typeObj.Type]; !exist {
   757  					return fmt.Errorf("reference type '%s' is undefined", typeObj.Type)
   758  				}
   759  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   760  					return fmt.Errorf("unknown reference type '%s", typeObj.Type)
   761  				}
   762  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   763  				return fmt.Errorf("unknown type '%s'", typeObj.Type)
   764  			}
   765  		}
   766  	}
   767  	return nil
   768  }
   769  
   770  // Checks if the primitive value is valid
   771  func isPrimitiveTypeValid(primitiveType string) bool {
   772  	if primitiveType == "address" ||
   773  		primitiveType == "address[]" ||
   774  		primitiveType == "bool" ||
   775  		primitiveType == "bool[]" ||
   776  		primitiveType == "string" ||
   777  		primitiveType == "string[]" {
   778  		return true
   779  	}
   780  	if primitiveType == "bytes" ||
   781  		primitiveType == "bytes[]" ||
   782  		primitiveType == "bytes1" ||
   783  		primitiveType == "bytes1[]" ||
   784  		primitiveType == "bytes2" ||
   785  		primitiveType == "bytes2[]" ||
   786  		primitiveType == "bytes3" ||
   787  		primitiveType == "bytes3[]" ||
   788  		primitiveType == "bytes4" ||
   789  		primitiveType == "bytes4[]" ||
   790  		primitiveType == "bytes5" ||
   791  		primitiveType == "bytes5[]" ||
   792  		primitiveType == "bytes6" ||
   793  		primitiveType == "bytes6[]" ||
   794  		primitiveType == "bytes7" ||
   795  		primitiveType == "bytes7[]" ||
   796  		primitiveType == "bytes8" ||
   797  		primitiveType == "bytes8[]" ||
   798  		primitiveType == "bytes9" ||
   799  		primitiveType == "bytes9[]" ||
   800  		primitiveType == "bytes10" ||
   801  		primitiveType == "bytes10[]" ||
   802  		primitiveType == "bytes11" ||
   803  		primitiveType == "bytes11[]" ||
   804  		primitiveType == "bytes12" ||
   805  		primitiveType == "bytes12[]" ||
   806  		primitiveType == "bytes13" ||
   807  		primitiveType == "bytes13[]" ||
   808  		primitiveType == "bytes14" ||
   809  		primitiveType == "bytes14[]" ||
   810  		primitiveType == "bytes15" ||
   811  		primitiveType == "bytes15[]" ||
   812  		primitiveType == "bytes16" ||
   813  		primitiveType == "bytes16[]" ||
   814  		primitiveType == "bytes17" ||
   815  		primitiveType == "bytes17[]" ||
   816  		primitiveType == "bytes18" ||
   817  		primitiveType == "bytes18[]" ||
   818  		primitiveType == "bytes19" ||
   819  		primitiveType == "bytes19[]" ||
   820  		primitiveType == "bytes20" ||
   821  		primitiveType == "bytes20[]" ||
   822  		primitiveType == "bytes21" ||
   823  		primitiveType == "bytes21[]" ||
   824  		primitiveType == "bytes22" ||
   825  		primitiveType == "bytes22[]" ||
   826  		primitiveType == "bytes23" ||
   827  		primitiveType == "bytes23[]" ||
   828  		primitiveType == "bytes24" ||
   829  		primitiveType == "bytes24[]" ||
   830  		primitiveType == "bytes25" ||
   831  		primitiveType == "bytes25[]" ||
   832  		primitiveType == "bytes26" ||
   833  		primitiveType == "bytes26[]" ||
   834  		primitiveType == "bytes27" ||
   835  		primitiveType == "bytes27[]" ||
   836  		primitiveType == "bytes28" ||
   837  		primitiveType == "bytes28[]" ||
   838  		primitiveType == "bytes29" ||
   839  		primitiveType == "bytes29[]" ||
   840  		primitiveType == "bytes30" ||
   841  		primitiveType == "bytes30[]" ||
   842  		primitiveType == "bytes31" ||
   843  		primitiveType == "bytes31[]" {
   844  		return true
   845  	}
   846  	if primitiveType == "int" ||
   847  		primitiveType == "int[]" ||
   848  		primitiveType == "int8" ||
   849  		primitiveType == "int8[]" ||
   850  		primitiveType == "int16" ||
   851  		primitiveType == "int16[]" ||
   852  		primitiveType == "int32" ||
   853  		primitiveType == "int32[]" ||
   854  		primitiveType == "int64" ||
   855  		primitiveType == "int64[]" ||
   856  		primitiveType == "int128" ||
   857  		primitiveType == "int128[]" ||
   858  		primitiveType == "int256" ||
   859  		primitiveType == "int256[]" {
   860  		return true
   861  	}
   862  	if primitiveType == "uint" ||
   863  		primitiveType == "uint[]" ||
   864  		primitiveType == "uint8" ||
   865  		primitiveType == "uint8[]" ||
   866  		primitiveType == "uint16" ||
   867  		primitiveType == "uint16[]" ||
   868  		primitiveType == "uint32" ||
   869  		primitiveType == "uint32[]" ||
   870  		primitiveType == "uint64" ||
   871  		primitiveType == "uint64[]" ||
   872  		primitiveType == "uint128" ||
   873  		primitiveType == "uint128[]" ||
   874  		primitiveType == "uint256" ||
   875  		primitiveType == "uint256[]" {
   876  		return true
   877  	}
   878  	return false
   879  }
   880  
   881  // validate checks if the given domain is valid, i.e. contains at least
   882  // the minimum viable keys and values
   883  func (domain *TypedDataDomain) validate() error {
   884  	if domain.ChainId == big.NewInt(0) {
   885  		return errors.New("chainId must be specified according to EIP-155")
   886  	}
   887  
   888  	if len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
   889  		return errors.New("domain is undefined")
   890  	}
   891  
   892  	return nil
   893  }
   894  
   895  // Map is a helper function to generate a map version of the domain
   896  func (domain *TypedDataDomain) Map() map[string]interface{} {
   897  	dataMap := map[string]interface{}{}
   898  
   899  	if domain.ChainId != nil {
   900  		dataMap["chainId"] = domain.ChainId
   901  	}
   902  
   903  	if len(domain.Name) > 0 {
   904  		dataMap["name"] = domain.Name
   905  	}
   906  
   907  	if len(domain.Version) > 0 {
   908  		dataMap["version"] = domain.Version
   909  	}
   910  
   911  	if len(domain.VerifyingContract) > 0 {
   912  		dataMap["verifyingContract"] = domain.VerifyingContract
   913  	}
   914  
   915  	if len(domain.Salt) > 0 {
   916  		dataMap["salt"] = domain.Salt
   917  	}
   918  	return dataMap
   919  }