github.com/nnlgsakib/mind-dpos@v0.0.0-20230606105614-f3c8ca06f808/crypto/bn256/google/bn256.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package bn256 implements a particular bilinear group.
     6  //
     7  // Bilinear groups are the basis of many of the new cryptographic protocols
     8  // that have been proposed over the past decade. They consist of a triplet of
     9  // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
    10  // (where gₓ is a generator of the respective group). That function is called
    11  // a pairing function.
    12  //
    13  // This package specifically implements the Optimal Ate pairing over a 256-bit
    14  // Barreto-Naehrig curve as described in
    15  // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
    16  // with the implementation described in that paper.
    17  //
    18  // (This package previously claimed to operate at a 128-bit security level.
    19  // However, recent improvements in attacks mean that is no longer true. See
    20  // https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
    21  package bn256
    22  
    23  import (
    24  	"crypto/rand"
    25  	"errors"
    26  	"io"
    27  	"math/big"
    28  )
    29  
    30  // BUG(agl): this implementation is not constant time.
    31  // TODO(agl): keep GF(p²) elements in Mongomery form.
    32  
    33  // G1 is an abstract cyclic group. The zero value is suitable for use as the
    34  // output of an operation, but cannot be used as an input.
    35  type G1 struct {
    36  	p *curvePoint
    37  }
    38  
    39  // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
    40  func RandomG1(r io.Reader) (*big.Int, *G1, error) {
    41  	var k *big.Int
    42  	var err error
    43  
    44  	for {
    45  		k, err = rand.Int(r, Order)
    46  		if err != nil {
    47  			return nil, nil, err
    48  		}
    49  		if k.Sign() > 0 {
    50  			break
    51  		}
    52  	}
    53  
    54  	return k, new(G1).ScalarBaseMult(k), nil
    55  }
    56  
    57  func (e *G1) String() string {
    58  	return "bn256.G1" + e.p.String()
    59  }
    60  
    61  // CurvePoints returns p's curve points in big integer
    62  func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
    63  	return e.p.x, e.p.y, e.p.z, e.p.t
    64  }
    65  
    66  // ScalarBaseMult sets e to g*k where g is the generator of the group and
    67  // then returns e.
    68  func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
    69  	if e.p == nil {
    70  		e.p = newCurvePoint(nil)
    71  	}
    72  	e.p.Mul(curveGen, k, new(bnPool))
    73  	return e
    74  }
    75  
    76  // ScalarMult sets e to a*k and then returns e.
    77  func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
    78  	if e.p == nil {
    79  		e.p = newCurvePoint(nil)
    80  	}
    81  	e.p.Mul(a.p, k, new(bnPool))
    82  	return e
    83  }
    84  
    85  // Add sets e to a+b and then returns e.
    86  // BUG(agl): this function is not complete: a==b fails.
    87  func (e *G1) Add(a, b *G1) *G1 {
    88  	if e.p == nil {
    89  		e.p = newCurvePoint(nil)
    90  	}
    91  	e.p.Add(a.p, b.p, new(bnPool))
    92  	return e
    93  }
    94  
    95  // Neg sets e to -a and then returns e.
    96  func (e *G1) Neg(a *G1) *G1 {
    97  	if e.p == nil {
    98  		e.p = newCurvePoint(nil)
    99  	}
   100  	e.p.Negative(a.p)
   101  	return e
   102  }
   103  
   104  // Marshal converts n to a byte slice.
   105  func (e *G1) Marshal() []byte {
   106  	// Each value is a 256-bit number.
   107  	const numBytes = 256 / 8
   108  
   109  	if e.p.IsInfinity() {
   110  		return make([]byte, numBytes*2)
   111  	}
   112  	e.p.MakeAffine(nil)
   113  	xBytes := new(big.Int).Mod(e.p.x, P).Bytes()
   114  	yBytes := new(big.Int).Mod(e.p.y, P).Bytes()
   115  
   116  	ret := make([]byte, numBytes*2)
   117  	copy(ret[1*numBytes-len(xBytes):], xBytes)
   118  	copy(ret[2*numBytes-len(yBytes):], yBytes)
   119  
   120  	return ret
   121  }
   122  
   123  // Unmarshal sets e to the result of converting the output of Marshal back into
   124  // a group element and then returns e.
   125  func (e *G1) Unmarshal(m []byte) ([]byte, error) {
   126  	// Each value is a 256-bit number.
   127  	const numBytes = 256 / 8
   128  	if len(m) != 2*numBytes {
   129  		return nil, errors.New("bn256: not enough data")
   130  	}
   131  	// Unmarshal the points and check their caps
   132  	if e.p == nil {
   133  		e.p = newCurvePoint(nil)
   134  	}
   135  	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
   136  	if e.p.x.Cmp(P) >= 0 {
   137  		return nil, errors.New("bn256: coordinate exceeds modulus")
   138  	}
   139  	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
   140  	if e.p.y.Cmp(P) >= 0 {
   141  		return nil, errors.New("bn256: coordinate exceeds modulus")
   142  	}
   143  	// Ensure the point is on the curve
   144  	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
   145  		// This is the point at infinity.
   146  		e.p.y.SetInt64(1)
   147  		e.p.z.SetInt64(0)
   148  		e.p.t.SetInt64(0)
   149  	} else {
   150  		e.p.z.SetInt64(1)
   151  		e.p.t.SetInt64(1)
   152  
   153  		if !e.p.IsOnCurve() {
   154  			return nil, errors.New("bn256: malformed point")
   155  		}
   156  	}
   157  	return m[2*numBytes:], nil
   158  }
   159  
   160  // G2 is an abstract cyclic group. The zero value is suitable for use as the
   161  // output of an operation, but cannot be used as an input.
   162  type G2 struct {
   163  	p *twistPoint
   164  }
   165  
   166  // RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
   167  func RandomG2(r io.Reader) (*big.Int, *G2, error) {
   168  	var k *big.Int
   169  	var err error
   170  
   171  	for {
   172  		k, err = rand.Int(r, Order)
   173  		if err != nil {
   174  			return nil, nil, err
   175  		}
   176  		if k.Sign() > 0 {
   177  			break
   178  		}
   179  	}
   180  
   181  	return k, new(G2).ScalarBaseMult(k), nil
   182  }
   183  
   184  func (e *G2) String() string {
   185  	return "bn256.G2" + e.p.String()
   186  }
   187  
   188  // CurvePoints returns the curve points of p which includes the real
   189  // and imaginary parts of the curve point.
   190  func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
   191  	return e.p.x, e.p.y, e.p.z, e.p.t
   192  }
   193  
   194  // ScalarBaseMult sets e to g*k where g is the generator of the group and
   195  // then returns out.
   196  func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
   197  	if e.p == nil {
   198  		e.p = newTwistPoint(nil)
   199  	}
   200  	e.p.Mul(twistGen, k, new(bnPool))
   201  	return e
   202  }
   203  
   204  // ScalarMult sets e to a*k and then returns e.
   205  func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
   206  	if e.p == nil {
   207  		e.p = newTwistPoint(nil)
   208  	}
   209  	e.p.Mul(a.p, k, new(bnPool))
   210  	return e
   211  }
   212  
   213  // Add sets e to a+b and then returns e.
   214  // BUG(agl): this function is not complete: a==b fails.
   215  func (e *G2) Add(a, b *G2) *G2 {
   216  	if e.p == nil {
   217  		e.p = newTwistPoint(nil)
   218  	}
   219  	e.p.Add(a.p, b.p, new(bnPool))
   220  	return e
   221  }
   222  
   223  // Marshal converts n into a byte slice.
   224  func (n *G2) Marshal() []byte {
   225  	// Each value is a 256-bit number.
   226  	const numBytes = 256 / 8
   227  	if n.p.IsInfinity() {
   228  		return make([]byte, numBytes*4)
   229  	}
   230  
   231  	n.p.MakeAffine(nil)
   232  
   233  	xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
   234  	xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
   235  	yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
   236  	yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
   237  
   238  	ret := make([]byte, numBytes*4)
   239  	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
   240  	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
   241  	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
   242  	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
   243  
   244  	return ret
   245  }
   246  
   247  // Unmarshal sets e to the result of converting the output of Marshal back into
   248  // a group element and then returns e.
   249  func (e *G2) Unmarshal(m []byte) ([]byte, error) {
   250  	// Each value is a 256-bit number.
   251  	const numBytes = 256 / 8
   252  	if len(m) != 4*numBytes {
   253  		return nil, errors.New("bn256: not enough data")
   254  	}
   255  	// Unmarshal the points and check their caps
   256  	if e.p == nil {
   257  		e.p = newTwistPoint(nil)
   258  	}
   259  	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   260  	if e.p.x.x.Cmp(P) >= 0 {
   261  		return nil, errors.New("bn256: coordinate exceeds modulus")
   262  	}
   263  	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   264  	if e.p.x.y.Cmp(P) >= 0 {
   265  		return nil, errors.New("bn256: coordinate exceeds modulus")
   266  	}
   267  	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   268  	if e.p.y.x.Cmp(P) >= 0 {
   269  		return nil, errors.New("bn256: coordinate exceeds modulus")
   270  	}
   271  	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   272  	if e.p.y.y.Cmp(P) >= 0 {
   273  		return nil, errors.New("bn256: coordinate exceeds modulus")
   274  	}
   275  	// Ensure the point is on the curve
   276  	if e.p.x.x.Sign() == 0 &&
   277  		e.p.x.y.Sign() == 0 &&
   278  		e.p.y.x.Sign() == 0 &&
   279  		e.p.y.y.Sign() == 0 {
   280  		// This is the point at infinity.
   281  		e.p.y.SetOne()
   282  		e.p.z.SetZero()
   283  		e.p.t.SetZero()
   284  	} else {
   285  		e.p.z.SetOne()
   286  		e.p.t.SetOne()
   287  
   288  		if !e.p.IsOnCurve() {
   289  			return nil, errors.New("bn256: malformed point")
   290  		}
   291  	}
   292  	return m[4*numBytes:], nil
   293  }
   294  
   295  // GT is an abstract cyclic group. The zero value is suitable for use as the
   296  // output of an operation, but cannot be used as an input.
   297  type GT struct {
   298  	p *gfP12
   299  }
   300  
   301  func (g *GT) String() string {
   302  	return "bn256.GT" + g.p.String()
   303  }
   304  
   305  // ScalarMult sets e to a*k and then returns e.
   306  func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
   307  	if e.p == nil {
   308  		e.p = newGFp12(nil)
   309  	}
   310  	e.p.Exp(a.p, k, new(bnPool))
   311  	return e
   312  }
   313  
   314  // Add sets e to a+b and then returns e.
   315  func (e *GT) Add(a, b *GT) *GT {
   316  	if e.p == nil {
   317  		e.p = newGFp12(nil)
   318  	}
   319  	e.p.Mul(a.p, b.p, new(bnPool))
   320  	return e
   321  }
   322  
   323  // Neg sets e to -a and then returns e.
   324  func (e *GT) Neg(a *GT) *GT {
   325  	if e.p == nil {
   326  		e.p = newGFp12(nil)
   327  	}
   328  	e.p.Invert(a.p, new(bnPool))
   329  	return e
   330  }
   331  
   332  // Marshal converts n into a byte slice.
   333  func (n *GT) Marshal() []byte {
   334  	n.p.Minimal()
   335  
   336  	xxxBytes := n.p.x.x.x.Bytes()
   337  	xxyBytes := n.p.x.x.y.Bytes()
   338  	xyxBytes := n.p.x.y.x.Bytes()
   339  	xyyBytes := n.p.x.y.y.Bytes()
   340  	xzxBytes := n.p.x.z.x.Bytes()
   341  	xzyBytes := n.p.x.z.y.Bytes()
   342  	yxxBytes := n.p.y.x.x.Bytes()
   343  	yxyBytes := n.p.y.x.y.Bytes()
   344  	yyxBytes := n.p.y.y.x.Bytes()
   345  	yyyBytes := n.p.y.y.y.Bytes()
   346  	yzxBytes := n.p.y.z.x.Bytes()
   347  	yzyBytes := n.p.y.z.y.Bytes()
   348  
   349  	// Each value is a 256-bit number.
   350  	const numBytes = 256 / 8
   351  
   352  	ret := make([]byte, numBytes*12)
   353  	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
   354  	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
   355  	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
   356  	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
   357  	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
   358  	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
   359  	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
   360  	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
   361  	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
   362  	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
   363  	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
   364  	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
   365  
   366  	return ret
   367  }
   368  
   369  // Unmarshal sets e to the result of converting the output of Marshal back into
   370  // a group element and then returns e.
   371  func (e *GT) Unmarshal(m []byte) (*GT, bool) {
   372  	// Each value is a 256-bit number.
   373  	const numBytes = 256 / 8
   374  
   375  	if len(m) != 12*numBytes {
   376  		return nil, false
   377  	}
   378  
   379  	if e.p == nil {
   380  		e.p = newGFp12(nil)
   381  	}
   382  
   383  	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
   384  	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
   385  	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
   386  	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
   387  	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
   388  	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
   389  	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
   390  	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
   391  	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
   392  	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
   393  	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
   394  	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
   395  
   396  	return e, true
   397  }
   398  
   399  // Pair calculates an Optimal Ate pairing.
   400  func Pair(g1 *G1, g2 *G2) *GT {
   401  	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
   402  }
   403  
   404  // PairingCheck calculates the Optimal Ate pairing for a set of points.
   405  func PairingCheck(a []*G1, b []*G2) bool {
   406  	pool := new(bnPool)
   407  
   408  	acc := newGFp12(pool)
   409  	acc.SetOne()
   410  
   411  	for i := 0; i < len(a); i++ {
   412  		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
   413  			continue
   414  		}
   415  		acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
   416  	}
   417  	ret := finalExponentiation(acc, pool)
   418  	acc.Put(pool)
   419  
   420  	return ret.IsOne()
   421  }
   422  
   423  // bnPool implements a tiny cache of *big.Int objects that's used to reduce the
   424  // number of allocations made during processing.
   425  type bnPool struct {
   426  	bns   []*big.Int
   427  	count int
   428  }
   429  
   430  func (pool *bnPool) Get() *big.Int {
   431  	if pool == nil {
   432  		return new(big.Int)
   433  	}
   434  
   435  	pool.count++
   436  	l := len(pool.bns)
   437  	if l == 0 {
   438  		return new(big.Int)
   439  	}
   440  
   441  	bn := pool.bns[l-1]
   442  	pool.bns = pool.bns[:l-1]
   443  	return bn
   444  }
   445  
   446  func (pool *bnPool) Put(bn *big.Int) {
   447  	if pool == nil {
   448  		return
   449  	}
   450  	pool.bns = append(pool.bns, bn)
   451  	pool.count--
   452  }
   453  
   454  func (pool *bnPool) Count() int {
   455  	return pool.count
   456  }