github.com/ns1/terraform@v0.7.10-0.20161109153551-8949419bef40/terraform/graph_config_node_resource.go (about)

     1  package terraform
     2  
     3  import (
     4  	"fmt"
     5  	"log"
     6  	"strings"
     7  
     8  	"github.com/hashicorp/terraform/config"
     9  	"github.com/hashicorp/terraform/dag"
    10  	"github.com/hashicorp/terraform/dot"
    11  )
    12  
    13  // GraphNodeCountDependent is implemented by resources for giving only
    14  // the dependencies they have from the "count" field.
    15  type GraphNodeCountDependent interface {
    16  	CountDependentOn() []string
    17  }
    18  
    19  // GraphNodeConfigResource represents a resource within the config graph.
    20  type GraphNodeConfigResource struct {
    21  	Resource *config.Resource
    22  
    23  	// If set to true, this resource represents a resource
    24  	// that will be destroyed in some way.
    25  	Destroy bool
    26  
    27  	// Used during DynamicExpand to target indexes
    28  	Targets []ResourceAddress
    29  
    30  	Path []string
    31  }
    32  
    33  func (n *GraphNodeConfigResource) Copy() *GraphNodeConfigResource {
    34  	ncr := &GraphNodeConfigResource{
    35  		Resource: n.Resource.Copy(),
    36  		Destroy:  n.Destroy,
    37  		Targets:  make([]ResourceAddress, 0, len(n.Targets)),
    38  		Path:     make([]string, 0, len(n.Path)),
    39  	}
    40  	for _, t := range n.Targets {
    41  		ncr.Targets = append(ncr.Targets, *t.Copy())
    42  	}
    43  	for _, p := range n.Path {
    44  		ncr.Path = append(ncr.Path, p)
    45  	}
    46  	return ncr
    47  }
    48  
    49  func (n *GraphNodeConfigResource) ConfigType() GraphNodeConfigType {
    50  	return GraphNodeConfigTypeResource
    51  }
    52  
    53  func (n *GraphNodeConfigResource) DependableName() []string {
    54  	return []string{n.Resource.Id()}
    55  }
    56  
    57  // GraphNodeCountDependent impl.
    58  func (n *GraphNodeConfigResource) CountDependentOn() []string {
    59  	result := make([]string, 0, len(n.Resource.RawCount.Variables))
    60  	for _, v := range n.Resource.RawCount.Variables {
    61  		if vn := varNameForVar(v); vn != "" {
    62  			result = append(result, vn)
    63  		}
    64  	}
    65  
    66  	return result
    67  }
    68  
    69  // GraphNodeDependent impl.
    70  func (n *GraphNodeConfigResource) DependentOn() []string {
    71  	result := make([]string, len(n.Resource.DependsOn),
    72  		(len(n.Resource.RawCount.Variables)+
    73  			len(n.Resource.RawConfig.Variables)+
    74  			len(n.Resource.DependsOn))*2)
    75  	copy(result, n.Resource.DependsOn)
    76  
    77  	for _, v := range n.Resource.RawCount.Variables {
    78  		if vn := varNameForVar(v); vn != "" {
    79  			result = append(result, vn)
    80  		}
    81  	}
    82  	for _, v := range n.Resource.RawConfig.Variables {
    83  		if vn := varNameForVar(v); vn != "" {
    84  			result = append(result, vn)
    85  		}
    86  	}
    87  	for _, p := range n.Resource.Provisioners {
    88  		for _, v := range p.ConnInfo.Variables {
    89  			if vn := varNameForVar(v); vn != "" && vn != n.Resource.Id() {
    90  				result = append(result, vn)
    91  			}
    92  		}
    93  		for _, v := range p.RawConfig.Variables {
    94  			if vn := varNameForVar(v); vn != "" && vn != n.Resource.Id() {
    95  				result = append(result, vn)
    96  			}
    97  		}
    98  	}
    99  
   100  	return result
   101  }
   102  
   103  // VarWalk calls a callback for all the variables that this resource
   104  // depends on.
   105  func (n *GraphNodeConfigResource) VarWalk(fn func(config.InterpolatedVariable)) {
   106  	for _, v := range n.Resource.RawCount.Variables {
   107  		fn(v)
   108  	}
   109  	for _, v := range n.Resource.RawConfig.Variables {
   110  		fn(v)
   111  	}
   112  	for _, p := range n.Resource.Provisioners {
   113  		for _, v := range p.ConnInfo.Variables {
   114  			fn(v)
   115  		}
   116  		for _, v := range p.RawConfig.Variables {
   117  			fn(v)
   118  		}
   119  	}
   120  }
   121  
   122  func (n *GraphNodeConfigResource) Name() string {
   123  	result := n.Resource.Id()
   124  	if n.Destroy {
   125  		result += " (destroy)"
   126  	}
   127  	return result
   128  }
   129  
   130  // GraphNodeDotter impl.
   131  func (n *GraphNodeConfigResource) DotNode(name string, opts *GraphDotOpts) *dot.Node {
   132  	if n.Destroy && !opts.Verbose {
   133  		return nil
   134  	}
   135  	return dot.NewNode(name, map[string]string{
   136  		"label": n.Name(),
   137  		"shape": "box",
   138  	})
   139  }
   140  
   141  // GraphNodeFlattenable impl.
   142  func (n *GraphNodeConfigResource) Flatten(p []string) (dag.Vertex, error) {
   143  	return &GraphNodeConfigResourceFlat{
   144  		GraphNodeConfigResource: n,
   145  		PathValue:               p,
   146  	}, nil
   147  }
   148  
   149  // GraphNodeDynamicExpandable impl.
   150  func (n *GraphNodeConfigResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
   151  	state, lock := ctx.State()
   152  	lock.RLock()
   153  	defer lock.RUnlock()
   154  
   155  	// Start creating the steps
   156  	steps := make([]GraphTransformer, 0, 5)
   157  
   158  	// Expand counts.
   159  	steps = append(steps, &ResourceCountTransformer{
   160  		Resource: n.Resource,
   161  		Destroy:  n.Destroy,
   162  		Targets:  n.Targets,
   163  	})
   164  
   165  	// Additional destroy modifications.
   166  	if n.Destroy {
   167  		// If we're destroying a primary or tainted resource, we want to
   168  		// expand orphans, which have all the same semantics in a destroy
   169  		// as a primary or tainted resource.
   170  		steps = append(steps, &OrphanTransformer{
   171  			Resource: n.Resource,
   172  			State:    state,
   173  			View:     n.Resource.Id(),
   174  		})
   175  
   176  		steps = append(steps, &DeposedTransformer{
   177  			State: state,
   178  			View:  n.Resource.Id(),
   179  		})
   180  	}
   181  
   182  	// We always want to apply targeting
   183  	steps = append(steps, &TargetsTransformer{
   184  		ParsedTargets: n.Targets,
   185  		Destroy:       n.Destroy,
   186  	})
   187  
   188  	// Always end with the root being added
   189  	steps = append(steps, &RootTransformer{})
   190  
   191  	// Build the graph
   192  	b := &BasicGraphBuilder{Steps: steps, Validate: true}
   193  	return b.Build(ctx.Path())
   194  }
   195  
   196  // GraphNodeAddressable impl.
   197  func (n *GraphNodeConfigResource) ResourceAddress() *ResourceAddress {
   198  	return &ResourceAddress{
   199  		Path:         n.Path[1:],
   200  		Index:        -1,
   201  		InstanceType: TypePrimary,
   202  		Name:         n.Resource.Name,
   203  		Type:         n.Resource.Type,
   204  		Mode:         n.Resource.Mode,
   205  	}
   206  }
   207  
   208  // GraphNodeTargetable impl.
   209  func (n *GraphNodeConfigResource) SetTargets(targets []ResourceAddress) {
   210  	n.Targets = targets
   211  }
   212  
   213  // GraphNodeEvalable impl.
   214  func (n *GraphNodeConfigResource) EvalTree() EvalNode {
   215  	return &EvalSequence{
   216  		Nodes: []EvalNode{
   217  			&EvalInterpolate{Config: n.Resource.RawCount},
   218  			&EvalOpFilter{
   219  				Ops:  []walkOperation{walkValidate},
   220  				Node: &EvalValidateCount{Resource: n.Resource},
   221  			},
   222  			&EvalCountFixZeroOneBoundary{Resource: n.Resource},
   223  		},
   224  	}
   225  }
   226  
   227  // GraphNodeProviderConsumer
   228  func (n *GraphNodeConfigResource) ProvidedBy() []string {
   229  	return []string{resourceProvider(n.Resource.Type, n.Resource.Provider)}
   230  }
   231  
   232  // GraphNodeProvisionerConsumer
   233  func (n *GraphNodeConfigResource) ProvisionedBy() []string {
   234  	result := make([]string, len(n.Resource.Provisioners))
   235  	for i, p := range n.Resource.Provisioners {
   236  		result[i] = p.Type
   237  	}
   238  
   239  	return result
   240  }
   241  
   242  // GraphNodeDestroyable
   243  func (n *GraphNodeConfigResource) DestroyNode() GraphNodeDestroy {
   244  	// If we're already a destroy node, then don't do anything
   245  	if n.Destroy {
   246  		return nil
   247  	}
   248  
   249  	result := &graphNodeResourceDestroy{
   250  		GraphNodeConfigResource: *n.Copy(),
   251  		Original:                n,
   252  	}
   253  	result.Destroy = true
   254  
   255  	return result
   256  }
   257  
   258  // GraphNodeNoopPrunable
   259  func (n *GraphNodeConfigResource) Noop(opts *NoopOpts) bool {
   260  	log.Printf("[DEBUG] Checking resource noop: %s", n.Name())
   261  	// We don't have any noop optimizations for destroy nodes yet
   262  	if n.Destroy {
   263  		log.Printf("[DEBUG] Destroy node, not a noop")
   264  		return false
   265  	}
   266  
   267  	// If there is no diff, then we aren't a noop since something needs to
   268  	// be done (such as a plan). We only check if we're a noop in a diff.
   269  	if opts.Diff == nil || opts.Diff.Empty() {
   270  		log.Printf("[DEBUG] No diff, not a noop")
   271  		return false
   272  	}
   273  
   274  	// If the count has any interpolations, we can't prune this node since
   275  	// we need to be sure to evaluate the count so that splat variables work
   276  	// later (which need to know the full count).
   277  	if len(n.Resource.RawCount.Interpolations) > 0 {
   278  		log.Printf("[DEBUG] Count has interpolations, not a noop")
   279  		return false
   280  	}
   281  
   282  	// If we have no module diff, we're certainly a noop. This is because
   283  	// it means there is a diff, and that the module we're in just isn't
   284  	// in it, meaning we're not doing anything.
   285  	if opts.ModDiff == nil || opts.ModDiff.Empty() {
   286  		log.Printf("[DEBUG] No mod diff, treating resource as a noop")
   287  		return true
   288  	}
   289  
   290  	// Grab the ID which is the prefix (in the case count > 0 at some point)
   291  	prefix := n.Resource.Id()
   292  
   293  	// Go through the diff and if there are any with our name on it, keep us
   294  	found := false
   295  	for k, _ := range opts.ModDiff.Resources {
   296  		if strings.HasPrefix(k, prefix) {
   297  			log.Printf("[DEBUG] Diff has %s, resource is not a noop", k)
   298  			found = true
   299  			break
   300  		}
   301  	}
   302  
   303  	log.Printf("[DEBUG] Final noop value: %t", !found)
   304  	return !found
   305  }
   306  
   307  // Same as GraphNodeConfigResource, but for flattening
   308  type GraphNodeConfigResourceFlat struct {
   309  	*GraphNodeConfigResource
   310  
   311  	PathValue []string
   312  }
   313  
   314  func (n *GraphNodeConfigResourceFlat) Name() string {
   315  	return fmt.Sprintf(
   316  		"%s.%s", modulePrefixStr(n.PathValue), n.GraphNodeConfigResource.Name())
   317  }
   318  
   319  func (n *GraphNodeConfigResourceFlat) Path() []string {
   320  	return n.PathValue
   321  }
   322  
   323  func (n *GraphNodeConfigResourceFlat) DependableName() []string {
   324  	return modulePrefixList(
   325  		n.GraphNodeConfigResource.DependableName(),
   326  		modulePrefixStr(n.PathValue))
   327  }
   328  
   329  func (n *GraphNodeConfigResourceFlat) DependentOn() []string {
   330  	prefix := modulePrefixStr(n.PathValue)
   331  	return modulePrefixList(
   332  		n.GraphNodeConfigResource.DependentOn(),
   333  		prefix)
   334  }
   335  
   336  func (n *GraphNodeConfigResourceFlat) ProvidedBy() []string {
   337  	prefix := modulePrefixStr(n.PathValue)
   338  	return modulePrefixList(
   339  		n.GraphNodeConfigResource.ProvidedBy(),
   340  		prefix)
   341  }
   342  
   343  func (n *GraphNodeConfigResourceFlat) ProvisionedBy() []string {
   344  	prefix := modulePrefixStr(n.PathValue)
   345  	return modulePrefixList(
   346  		n.GraphNodeConfigResource.ProvisionedBy(),
   347  		prefix)
   348  }
   349  
   350  // GraphNodeDestroyable impl.
   351  func (n *GraphNodeConfigResourceFlat) DestroyNode() GraphNodeDestroy {
   352  	// Get our parent destroy node. If we don't have any, just return
   353  	raw := n.GraphNodeConfigResource.DestroyNode()
   354  	if raw == nil {
   355  		return nil
   356  	}
   357  
   358  	node, ok := raw.(*graphNodeResourceDestroy)
   359  	if !ok {
   360  		panic(fmt.Sprintf("unknown destroy node: %s %T", dag.VertexName(raw), raw))
   361  	}
   362  
   363  	// Otherwise, wrap it so that it gets the proper module treatment.
   364  	return &graphNodeResourceDestroyFlat{
   365  		graphNodeResourceDestroy: node,
   366  		PathValue:                n.PathValue,
   367  		FlatCreateNode:           n,
   368  	}
   369  }
   370  
   371  type graphNodeResourceDestroyFlat struct {
   372  	*graphNodeResourceDestroy
   373  
   374  	PathValue []string
   375  
   376  	// Needs to be able to properly yield back a flattened create node to prevent
   377  	FlatCreateNode *GraphNodeConfigResourceFlat
   378  }
   379  
   380  func (n *graphNodeResourceDestroyFlat) Name() string {
   381  	return fmt.Sprintf(
   382  		"%s.%s", modulePrefixStr(n.PathValue), n.graphNodeResourceDestroy.Name())
   383  }
   384  
   385  func (n *graphNodeResourceDestroyFlat) Path() []string {
   386  	return n.PathValue
   387  }
   388  
   389  func (n *graphNodeResourceDestroyFlat) CreateNode() dag.Vertex {
   390  	return n.FlatCreateNode
   391  }
   392  
   393  func (n *graphNodeResourceDestroyFlat) ProvidedBy() []string {
   394  	prefix := modulePrefixStr(n.PathValue)
   395  	return modulePrefixList(
   396  		n.GraphNodeConfigResource.ProvidedBy(),
   397  		prefix)
   398  }
   399  
   400  // graphNodeResourceDestroy represents the logical destruction of a
   401  // resource. This node doesn't mean it will be destroyed for sure, but
   402  // instead that if a destroy were to happen, it must happen at this point.
   403  type graphNodeResourceDestroy struct {
   404  	GraphNodeConfigResource
   405  	Original *GraphNodeConfigResource
   406  }
   407  
   408  func (n *graphNodeResourceDestroy) CreateBeforeDestroy() bool {
   409  	// CBD is enabled if the resource enables it
   410  	return n.Original.Resource.Lifecycle.CreateBeforeDestroy && n.Destroy
   411  }
   412  
   413  func (n *graphNodeResourceDestroy) CreateNode() dag.Vertex {
   414  	return n.Original
   415  }
   416  
   417  func (n *graphNodeResourceDestroy) DestroyInclude(d *ModuleDiff, s *ModuleState) bool {
   418  	if n.Destroy {
   419  		return n.destroyInclude(d, s)
   420  	}
   421  
   422  	return true
   423  }
   424  
   425  func (n *graphNodeResourceDestroy) destroyInclude(
   426  	d *ModuleDiff, s *ModuleState) bool {
   427  	// Get the count, and specifically the raw value of the count
   428  	// (with interpolations and all). If the count is NOT a static "1",
   429  	// then we keep the destroy node no matter what.
   430  	//
   431  	// The reasoning for this is complicated and not intuitively obvious,
   432  	// but I attempt to explain it below.
   433  	//
   434  	// The destroy transform works by generating the worst case graph,
   435  	// with worst case being the case that every resource already exists
   436  	// and needs to be destroy/created (force-new). There is a single important
   437  	// edge case where this actually results in a real-life cycle: if a
   438  	// create-before-destroy (CBD) resource depends on a non-CBD resource.
   439  	// Imagine a EC2 instance "foo" with CBD depending on a security
   440  	// group "bar" without CBD, and conceptualize the worst case destroy
   441  	// order:
   442  	//
   443  	//   1.) SG must be destroyed (non-CBD)
   444  	//   2.) SG must be created/updated
   445  	//   3.) EC2 instance must be created (CBD, requires the SG be made)
   446  	//   4.) EC2 instance must be destroyed (requires SG be destroyed)
   447  	//
   448  	// Except, #1 depends on #4, since the SG can't be destroyed while
   449  	// an EC2 instance is using it (AWS API requirements). As you can see,
   450  	// this is a real life cycle that can't be automatically reconciled
   451  	// except under two conditions:
   452  	//
   453  	//   1.) SG is also CBD. This doesn't work 100% of the time though
   454  	//       since the non-CBD resource might not support CBD. To make matters
   455  	//       worse, the entire transitive closure of dependencies must be
   456  	//       CBD (if the SG depends on a VPC, you have the same problem).
   457  	//   2.) EC2 must not CBD. This can't happen automatically because CBD
   458  	//       is used as a way to ensure zero (or minimal) downtime Terraform
   459  	//       applies, and it isn't acceptable for TF to ignore this request,
   460  	//       since it can result in unexpected downtime.
   461  	//
   462  	// Therefore, we compromise with this edge case here: if there is
   463  	// a static count of "1", we prune the diff to remove cycles during a
   464  	// graph optimization path if we don't see the resource in the diff.
   465  	// If the count is set to ANYTHING other than a static "1" (variable,
   466  	// computed attribute, static number greater than 1), then we keep the
   467  	// destroy, since it is required for dynamic graph expansion to find
   468  	// orphan count objects.
   469  	//
   470  	// This isn't ideal logic, but its strictly better without introducing
   471  	// new impossibilities. It breaks the cycle in practical cases, and the
   472  	// cycle comes back in no cases we've found to be practical, but just
   473  	// as the cycle would already exist without this anyways.
   474  	count := n.Original.Resource.RawCount
   475  	if raw := count.Raw[count.Key]; raw != "1" {
   476  		return true
   477  	}
   478  
   479  	// Okay, we're dealing with a static count. There are a few ways
   480  	// to include this resource.
   481  	prefix := n.Original.Resource.Id()
   482  
   483  	// If we're present in the diff proper, then keep it. We're looking
   484  	// only for resources in the diff that match our resource or a count-index
   485  	// of our resource that are marked for destroy.
   486  	if d != nil {
   487  		for k, v := range d.Resources {
   488  			match := k == prefix || strings.HasPrefix(k, prefix+".")
   489  			if match && v.GetDestroy() {
   490  				return true
   491  			}
   492  		}
   493  	}
   494  
   495  	// If we're in the state as a primary in any form, then keep it.
   496  	// This does a prefix check so it will also catch orphans on count
   497  	// decreases to "1".
   498  	if s != nil {
   499  		for k, v := range s.Resources {
   500  			// Ignore exact matches
   501  			if k == prefix {
   502  				continue
   503  			}
   504  
   505  			// Ignore anything that doesn't have a "." afterwards so that
   506  			// we only get our own resource and any counts on it.
   507  			if !strings.HasPrefix(k, prefix+".") {
   508  				continue
   509  			}
   510  
   511  			// Ignore exact matches and the 0'th index. We only care
   512  			// about if there is a decrease in count.
   513  			if k == prefix+".0" {
   514  				continue
   515  			}
   516  
   517  			if v.Primary != nil {
   518  				return true
   519  			}
   520  		}
   521  
   522  		// If we're in the state as _both_ "foo" and "foo.0", then
   523  		// keep it, since we treat the latter as an orphan.
   524  		_, okOne := s.Resources[prefix]
   525  		_, okTwo := s.Resources[prefix+".0"]
   526  		if okOne && okTwo {
   527  			return true
   528  		}
   529  	}
   530  
   531  	return false
   532  }