github.com/nuvolaris/goja@v0.0.0-20230825100449-967811910c6d/ftoa/internal/fast/dtoa.go (about) 1 package fast 2 3 import ( 4 "fmt" 5 "strconv" 6 ) 7 8 const ( 9 kMinimalTargetExponent = -60 10 kMaximalTargetExponent = -32 11 12 kTen4 = 10000 13 kTen5 = 100000 14 kTen6 = 1000000 15 kTen7 = 10000000 16 kTen8 = 100000000 17 kTen9 = 1000000000 18 ) 19 20 type Mode int 21 22 const ( 23 ModeShortest Mode = iota 24 ModePrecision 25 ) 26 27 // Adjusts the last digit of the generated number, and screens out generated 28 // solutions that may be inaccurate. A solution may be inaccurate if it is 29 // outside the safe interval, or if we cannot prove that it is closer to the 30 // input than a neighboring representation of the same length. 31 // 32 // Input: * buffer containing the digits of too_high / 10^kappa 33 // - distance_too_high_w == (too_high - w).f() * unit 34 // - unsafe_interval == (too_high - too_low).f() * unit 35 // - rest = (too_high - buffer * 10^kappa).f() * unit 36 // - ten_kappa = 10^kappa * unit 37 // - unit = the common multiplier 38 // 39 // Output: returns true if the buffer is guaranteed to contain the closest 40 // 41 // representable number to the input. 42 // Modifies the generated digits in the buffer to approach (round towards) w. 43 func roundWeed(buffer []byte, distance_too_high_w, unsafe_interval, rest, ten_kappa, unit uint64) bool { 44 small_distance := distance_too_high_w - unit 45 big_distance := distance_too_high_w + unit 46 47 // Let w_low = too_high - big_distance, and 48 // w_high = too_high - small_distance. 49 // Note: w_low < w < w_high 50 // 51 // The real w (* unit) must lie somewhere inside the interval 52 // ]w_low; w_high[ (often written as "(w_low; w_high)") 53 54 // Basically the buffer currently contains a number in the unsafe interval 55 // ]too_low; too_high[ with too_low < w < too_high 56 // 57 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 58 // ^v 1 unit ^ ^ ^ ^ 59 // boundary_high --------------------- . . . . 60 // ^v 1 unit . . . . 61 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . 62 // . . ^ . . 63 // . big_distance . . . 64 // . . . . rest 65 // small_distance . . . . 66 // v . . . . 67 // w_high - - - - - - - - - - - - - - - - - - . . . . 68 // ^v 1 unit . . . . 69 // w ---------------------------------------- . . . . 70 // ^v 1 unit v . . . 71 // w_low - - - - - - - - - - - - - - - - - - - - - . . . 72 // . . v 73 // buffer --------------------------------------------------+-------+-------- 74 // . . 75 // safe_interval . 76 // v . 77 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 78 // ^v 1 unit . 79 // boundary_low ------------------------- unsafe_interval 80 // ^v 1 unit v 81 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 82 // 83 // 84 // Note that the value of buffer could lie anywhere inside the range too_low 85 // to too_high. 86 // 87 // boundary_low, boundary_high and w are approximations of the real boundaries 88 // and v (the input number). They are guaranteed to be precise up to one unit. 89 // In fact the error is guaranteed to be strictly less than one unit. 90 // 91 // Anything that lies outside the unsafe interval is guaranteed not to round 92 // to v when read again. 93 // Anything that lies inside the safe interval is guaranteed to round to v 94 // when read again. 95 // If the number inside the buffer lies inside the unsafe interval but not 96 // inside the safe interval then we simply do not know and bail out (returning 97 // false). 98 // 99 // Similarly we have to take into account the imprecision of 'w' when finding 100 // the closest representation of 'w'. If we have two potential 101 // representations, and one is closer to both w_low and w_high, then we know 102 // it is closer to the actual value v. 103 // 104 // By generating the digits of too_high we got the largest (closest to 105 // too_high) buffer that is still in the unsafe interval. In the case where 106 // w_high < buffer < too_high we try to decrement the buffer. 107 // This way the buffer approaches (rounds towards) w. 108 // There are 3 conditions that stop the decrementation process: 109 // 1) the buffer is already below w_high 110 // 2) decrementing the buffer would make it leave the unsafe interval 111 // 3) decrementing the buffer would yield a number below w_high and farther 112 // away than the current number. In other words: 113 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high 114 // Instead of using the buffer directly we use its distance to too_high. 115 // Conceptually rest ~= too_high - buffer 116 // We need to do the following tests in this order to avoid over- and 117 // underflows. 118 _DCHECK(rest <= unsafe_interval) 119 for rest < small_distance && // Negated condition 1 120 unsafe_interval-rest >= ten_kappa && // Negated condition 2 121 (rest+ten_kappa < small_distance || // buffer{-1} > w_high 122 small_distance-rest >= rest+ten_kappa-small_distance) { 123 buffer[len(buffer)-1]-- 124 rest += ten_kappa 125 } 126 127 // We have approached w+ as much as possible. We now test if approaching w- 128 // would require changing the buffer. If yes, then we have two possible 129 // representations close to w, but we cannot decide which one is closer. 130 if rest < big_distance && unsafe_interval-rest >= ten_kappa && 131 (rest+ten_kappa < big_distance || 132 big_distance-rest > rest+ten_kappa-big_distance) { 133 return false 134 } 135 136 // Weeding test. 137 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] 138 // Since too_low = too_high - unsafe_interval this is equivalent to 139 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] 140 // Conceptually we have: rest ~= too_high - buffer 141 return (2*unit <= rest) && (rest <= unsafe_interval-4*unit) 142 } 143 144 // Rounds the buffer upwards if the result is closer to v by possibly adding 145 // 1 to the buffer. If the precision of the calculation is not sufficient to 146 // round correctly, return false. 147 // The rounding might shift the whole buffer in which case the kappa is 148 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. 149 // 150 // If 2*rest > ten_kappa then the buffer needs to be round up. 151 // rest can have an error of +/- 1 unit. This function accounts for the 152 // imprecision and returns false, if the rounding direction cannot be 153 // unambiguously determined. 154 // 155 // Precondition: rest < ten_kappa. 156 func roundWeedCounted(buffer []byte, rest, ten_kappa, unit uint64, kappa *int) bool { 157 _DCHECK(rest < ten_kappa) 158 // The following tests are done in a specific order to avoid overflows. They 159 // will work correctly with any uint64 values of rest < ten_kappa and unit. 160 // 161 // If the unit is too big, then we don't know which way to round. For example 162 // a unit of 50 means that the real number lies within rest +/- 50. If 163 // 10^kappa == 40 then there is no way to tell which way to round. 164 if unit >= ten_kappa { 165 return false 166 } 167 // Even if unit is just half the size of 10^kappa we are already completely 168 // lost. (And after the previous test we know that the expression will not 169 // over/underflow.) 170 if ten_kappa-unit <= unit { 171 return false 172 } 173 // If 2 * (rest + unit) <= 10^kappa we can safely round down. 174 if (ten_kappa-rest > rest) && (ten_kappa-2*rest >= 2*unit) { 175 return true 176 } 177 178 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. 179 if (rest > unit) && (ten_kappa-(rest-unit) <= (rest - unit)) { 180 // Increment the last digit recursively until we find a non '9' digit. 181 buffer[len(buffer)-1]++ 182 for i := len(buffer) - 1; i > 0; i-- { 183 if buffer[i] != '0'+10 { 184 break 185 } 186 buffer[i] = '0' 187 buffer[i-1]++ 188 } 189 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the 190 // exception of the first digit all digits are now '0'. Simply switch the 191 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and 192 // the power (the kappa) is increased. 193 if buffer[0] == '0'+10 { 194 buffer[0] = '1' 195 *kappa += 1 196 } 197 return true 198 } 199 return false 200 } 201 202 // Returns the biggest power of ten that is less than or equal than the given 203 // number. We furthermore receive the maximum number of bits 'number' has. 204 // If number_bits == 0 then 0^-1 is returned 205 // The number of bits must be <= 32. 206 // Precondition: number < (1 << (number_bits + 1)). 207 func biggestPowerTen(number uint32, number_bits int) (power uint32, exponent int) { 208 switch number_bits { 209 case 32, 31, 30: 210 if kTen9 <= number { 211 power = kTen9 212 exponent = 9 213 break 214 } 215 fallthrough 216 case 29, 28, 27: 217 if kTen8 <= number { 218 power = kTen8 219 exponent = 8 220 break 221 } 222 fallthrough 223 case 26, 25, 24: 224 if kTen7 <= number { 225 power = kTen7 226 exponent = 7 227 break 228 } 229 fallthrough 230 case 23, 22, 21, 20: 231 if kTen6 <= number { 232 power = kTen6 233 exponent = 6 234 break 235 } 236 fallthrough 237 case 19, 18, 17: 238 if kTen5 <= number { 239 power = kTen5 240 exponent = 5 241 break 242 } 243 fallthrough 244 case 16, 15, 14: 245 if kTen4 <= number { 246 power = kTen4 247 exponent = 4 248 break 249 } 250 fallthrough 251 case 13, 12, 11, 10: 252 if 1000 <= number { 253 power = 1000 254 exponent = 3 255 break 256 } 257 fallthrough 258 case 9, 8, 7: 259 if 100 <= number { 260 power = 100 261 exponent = 2 262 break 263 } 264 fallthrough 265 case 6, 5, 4: 266 if 10 <= number { 267 power = 10 268 exponent = 1 269 break 270 } 271 fallthrough 272 case 3, 2, 1: 273 if 1 <= number { 274 power = 1 275 exponent = 0 276 break 277 } 278 fallthrough 279 case 0: 280 power = 0 281 exponent = -1 282 } 283 return 284 } 285 286 // Generates the digits of input number w. 287 // w is a floating-point number (DiyFp), consisting of a significand and an 288 // exponent. Its exponent is bounded by kMinimalTargetExponent and 289 // kMaximalTargetExponent. 290 // 291 // Hence -60 <= w.e() <= -32. 292 // 293 // Returns false if it fails, in which case the generated digits in the buffer 294 // should not be used. 295 // Preconditions: 296 // - low, w and high are correct up to 1 ulp (unit in the last place). That 297 // is, their error must be less than a unit of their last digits. 298 // - low.e() == w.e() == high.e() 299 // - low < w < high, and taking into account their error: low~ <= high~ 300 // - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 301 // 302 // Postconditions: returns false if procedure fails. 303 // 304 // otherwise: 305 // * buffer is not null-terminated, but len contains the number of digits. 306 // * buffer contains the shortest possible decimal digit-sequence 307 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the 308 // correct values of low and high (without their error). 309 // * if more than one decimal representation gives the minimal number of 310 // decimal digits then the one closest to W (where W is the correct value 311 // of w) is chosen. 312 // 313 // Remark: this procedure takes into account the imprecision of its input 314 // 315 // numbers. If the precision is not enough to guarantee all the postconditions 316 // then false is returned. This usually happens rarely (~0.5%). 317 // 318 // Say, for the sake of example, that 319 // 320 // w.e() == -48, and w.f() == 0x1234567890ABCDEF 321 // 322 // w's value can be computed by w.f() * 2^w.e() 323 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). 324 // 325 // -> w's integral part is 0x1234 326 // w's fractional part is therefore 0x567890ABCDEF. 327 // 328 // Printing w's integral part is easy (simply print 0x1234 in decimal). 329 // In order to print its fraction we repeatedly multiply the fraction by 10 and 330 // get each digit. Example the first digit after the point would be computed by 331 // 332 // (0x567890ABCDEF * 10) >> 48. -> 3 333 // 334 // The whole thing becomes slightly more complicated because we want to stop 335 // once we have enough digits. That is, once the digits inside the buffer 336 // represent 'w' we can stop. Everything inside the interval low - high 337 // represents w. However we have to pay attention to low, high and w's 338 // imprecision. 339 func digitGen(low, w, high diyfp, buffer []byte) (kappa int, buf []byte, res bool) { 340 _DCHECK(low.e == w.e && w.e == high.e) 341 _DCHECK(low.f+1 <= high.f-1) 342 _DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent) 343 // low, w and high are imprecise, but by less than one ulp (unit in the last 344 // place). 345 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that 346 // the new numbers are outside of the interval we want the final 347 // representation to lie in. 348 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield 349 // numbers that are certain to lie in the interval. We will use this fact 350 // later on. 351 // We will now start by generating the digits within the uncertain 352 // interval. Later we will weed out representations that lie outside the safe 353 // interval and thus _might_ lie outside the correct interval. 354 unit := uint64(1) 355 too_low := diyfp{f: low.f - unit, e: low.e} 356 too_high := diyfp{f: high.f + unit, e: high.e} 357 // too_low and too_high are guaranteed to lie outside the interval we want the 358 // generated number in. 359 unsafe_interval := too_high.minus(too_low) 360 // We now cut the input number into two parts: the integral digits and the 361 // fractionals. We will not write any decimal separator though, but adapt 362 // kappa instead. 363 // Reminder: we are currently computing the digits (stored inside the buffer) 364 // such that: too_low < buffer * 10^kappa < too_high 365 // We use too_high for the digit_generation and stop as soon as possible. 366 // If we stop early we effectively round down. 367 one := diyfp{f: 1 << -w.e, e: w.e} 368 // Division by one is a shift. 369 integrals := uint32(too_high.f >> -one.e) 370 // Modulo by one is an and. 371 fractionals := too_high.f & (one.f - 1) 372 divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e)) 373 kappa = divisor_exponent + 1 374 buf = buffer 375 for kappa > 0 { 376 digit := int(integrals / divisor) 377 buf = append(buf, byte('0'+digit)) 378 integrals %= divisor 379 kappa-- 380 // Note that kappa now equals the exponent of the divisor and that the 381 // invariant thus holds again. 382 rest := uint64(integrals)<<-one.e + fractionals 383 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e) 384 // Reminder: unsafe_interval.e == one.e 385 if rest < unsafe_interval.f { 386 // Rounding down (by not emitting the remaining digits) yields a number 387 // that lies within the unsafe interval. 388 res = roundWeed(buf, too_high.minus(w).f, 389 unsafe_interval.f, rest, 390 uint64(divisor)<<-one.e, unit) 391 return 392 } 393 divisor /= 10 394 } 395 // The integrals have been generated. We are at the point of the decimal 396 // separator. In the following loop we simply multiply the remaining digits by 397 // 10 and divide by one. We just need to pay attention to multiply associated 398 // data (like the interval or 'unit'), too. 399 // Note that the multiplication by 10 does not overflow, because w.e >= -60 400 // and thus one.e >= -60. 401 _DCHECK(one.e >= -60) 402 _DCHECK(fractionals < one.f) 403 _DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f) 404 for { 405 fractionals *= 10 406 unit *= 10 407 unsafe_interval.f *= 10 408 // Integer division by one. 409 digit := byte(fractionals >> -one.e) 410 buf = append(buf, '0'+digit) 411 fractionals &= one.f - 1 // Modulo by one. 412 kappa-- 413 if fractionals < unsafe_interval.f { 414 res = roundWeed(buf, too_high.minus(w).f*unit, unsafe_interval.f, fractionals, one.f, unit) 415 return 416 } 417 } 418 } 419 420 // Generates (at most) requested_digits of input number w. 421 // w is a floating-point number (DiyFp), consisting of a significand and an 422 // exponent. Its exponent is bounded by kMinimalTargetExponent and 423 // kMaximalTargetExponent. 424 // 425 // Hence -60 <= w.e() <= -32. 426 // 427 // Returns false if it fails, in which case the generated digits in the buffer 428 // should not be used. 429 // Preconditions: 430 // - w is correct up to 1 ulp (unit in the last place). That 431 // is, its error must be strictly less than a unit of its last digit. 432 // - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 433 // 434 // Postconditions: returns false if procedure fails. 435 // 436 // otherwise: 437 // * buffer is not null-terminated, but length contains the number of 438 // digits. 439 // * the representation in buffer is the most precise representation of 440 // requested_digits digits. 441 // * buffer contains at most requested_digits digits of w. If there are less 442 // than requested_digits digits then some trailing '0's have been removed. 443 // * kappa is such that 444 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. 445 // 446 // Remark: This procedure takes into account the imprecision of its input 447 // 448 // numbers. If the precision is not enough to guarantee all the postconditions 449 // then false is returned. This usually happens rarely, but the failure-rate 450 // increases with higher requested_digits. 451 func digitGenCounted(w diyfp, requested_digits int, buffer []byte) (kappa int, buf []byte, res bool) { 452 _DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent) 453 454 // w is assumed to have an error less than 1 unit. Whenever w is scaled we 455 // also scale its error. 456 w_error := uint64(1) 457 // We cut the input number into two parts: the integral digits and the 458 // fractional digits. We don't emit any decimal separator, but adapt kappa 459 // instead. Example: instead of writing "1.2" we put "12" into the buffer and 460 // increase kappa by 1. 461 one := diyfp{f: 1 << -w.e, e: w.e} 462 // Division by one is a shift. 463 integrals := uint32(w.f >> -one.e) 464 // Modulo by one is an and. 465 fractionals := w.f & (one.f - 1) 466 divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e)) 467 kappa = divisor_exponent + 1 468 buf = buffer 469 // Loop invariant: buffer = w / 10^kappa (integer division) 470 // The invariant holds for the first iteration: kappa has been initialized 471 // with the divisor exponent + 1. And the divisor is the biggest power of ten 472 // that is smaller than 'integrals'. 473 for kappa > 0 { 474 digit := byte(integrals / divisor) 475 buf = append(buf, '0'+digit) 476 requested_digits-- 477 integrals %= divisor 478 kappa-- 479 // Note that kappa now equals the exponent of the divisor and that the 480 // invariant thus holds again. 481 if requested_digits == 0 { 482 break 483 } 484 divisor /= 10 485 } 486 487 if requested_digits == 0 { 488 rest := uint64(integrals)<<-one.e + fractionals 489 res = roundWeedCounted(buf, rest, uint64(divisor)<<-one.e, w_error, &kappa) 490 return 491 } 492 493 // The integrals have been generated. We are at the point of the decimal 494 // separator. In the following loop we simply multiply the remaining digits by 495 // 10 and divide by one. We just need to pay attention to multiply associated 496 // data (the 'unit'), too. 497 // Note that the multiplication by 10 does not overflow, because w.e >= -60 498 // and thus one.e >= -60. 499 _DCHECK(one.e >= -60) 500 _DCHECK(fractionals < one.f) 501 _DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f) 502 for requested_digits > 0 && fractionals > w_error { 503 fractionals *= 10 504 w_error *= 10 505 // Integer division by one. 506 digit := byte(fractionals >> -one.e) 507 buf = append(buf, '0'+digit) 508 requested_digits-- 509 fractionals &= one.f - 1 // Modulo by one. 510 kappa-- 511 } 512 if requested_digits != 0 { 513 res = false 514 } else { 515 res = roundWeedCounted(buf, fractionals, one.f, w_error, &kappa) 516 } 517 return 518 } 519 520 // Provides a decimal representation of v. 521 // Returns true if it succeeds, otherwise the result cannot be trusted. 522 // There will be *length digits inside the buffer (not null-terminated). 523 // If the function returns true then 524 // 525 // v == (double) (buffer * 10^decimal_exponent). 526 // 527 // The digits in the buffer are the shortest representation possible: no 528 // 0.09999999999999999 instead of 0.1. The shorter representation will even be 529 // chosen even if the longer one would be closer to v. 530 // The last digit will be closest to the actual v. That is, even if several 531 // digits might correctly yield 'v' when read again, the closest will be 532 // computed. 533 func grisu3(f float64, buffer []byte) (digits []byte, decimal_exponent int, result bool) { 534 v := double(f) 535 w := v.toNormalizedDiyfp() 536 537 // boundary_minus and boundary_plus are the boundaries between v and its 538 // closest floating-point neighbors. Any number strictly between 539 // boundary_minus and boundary_plus will round to v when convert to a double. 540 // Grisu3 will never output representations that lie exactly on a boundary. 541 boundary_minus, boundary_plus := v.normalizedBoundaries() 542 ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize) 543 ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize) 544 ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent) 545 546 _DCHECK( 547 (kMinimalTargetExponent <= 548 w.e+ten_mk.e+diyFpKSignificandSize) && 549 (kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize)) 550 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 551 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 552 553 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 554 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 555 // off by a small amount. 556 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 557 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 558 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 559 scaled_w := w.times(ten_mk) 560 _DCHECK(scaled_w.e == 561 boundary_plus.e+ten_mk.e+diyFpKSignificandSize) 562 // In theory it would be possible to avoid some recomputations by computing 563 // the difference between w and boundary_minus/plus (a power of 2) and to 564 // compute scaled_boundary_minus/plus by subtracting/adding from 565 // scaled_w. However the code becomes much less readable and the speed 566 // enhancements are not terrific. 567 scaled_boundary_minus := boundary_minus.times(ten_mk) 568 scaled_boundary_plus := boundary_plus.times(ten_mk) 569 // DigitGen will generate the digits of scaled_w. Therefore we have 570 // v == (double) (scaled_w * 10^-mk). 571 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an 572 // integer than it will be updated. For instance if scaled_w == 1.23 then 573 // the buffer will be filled with "123" und the decimal_exponent will be 574 // decreased by 2. 575 var kappa int 576 kappa, digits, result = digitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, buffer) 577 decimal_exponent = -mk + kappa 578 return 579 } 580 581 // The "counted" version of grisu3 (see above) only generates requested_digits 582 // number of digits. This version does not generate the shortest representation, 583 // and with enough requested digits 0.1 will at some point print as 0.9999999... 584 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and 585 // therefore the rounding strategy for halfway cases is irrelevant. 586 func grisu3Counted(v float64, requested_digits int, buffer []byte) (digits []byte, decimal_exponent int, result bool) { 587 w := double(v).toNormalizedDiyfp() 588 ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize) 589 ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize) 590 ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent) 591 592 _DCHECK( 593 (kMinimalTargetExponent <= 594 w.e+ten_mk.e+diyFpKSignificandSize) && 595 (kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize)) 596 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 597 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 598 599 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 600 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 601 // off by a small amount. 602 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 603 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 604 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 605 scaled_w := w.times(ten_mk) 606 // We now have (double) (scaled_w * 10^-mk). 607 // DigitGen will generate the first requested_digits digits of scaled_w and 608 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It 609 // will not always be exactly the same since DigitGenCounted only produces a 610 // limited number of digits.) 611 var kappa int 612 kappa, digits, result = digitGenCounted(scaled_w, requested_digits, buffer) 613 decimal_exponent = -mk + kappa 614 615 return 616 } 617 618 // v must be > 0 and must not be Inf or NaN 619 func Dtoa(v float64, mode Mode, requested_digits int, buffer []byte) (digits []byte, decimal_point int, result bool) { 620 defer func() { 621 if x := recover(); x != nil { 622 if x == dcheckFailure { 623 panic(fmt.Errorf("DCHECK assertion failed while formatting %s in mode %d", strconv.FormatFloat(v, 'e', 50, 64), mode)) 624 } 625 panic(x) 626 } 627 }() 628 var decimal_exponent int 629 startPos := len(buffer) 630 switch mode { 631 case ModeShortest: 632 digits, decimal_exponent, result = grisu3(v, buffer) 633 case ModePrecision: 634 digits, decimal_exponent, result = grisu3Counted(v, requested_digits, buffer) 635 } 636 if result { 637 decimal_point = len(digits) - startPos + decimal_exponent 638 } else { 639 digits = digits[:startPos] 640 } 641 return 642 }