github.com/ontio/ontology@v1.14.4/vm/evm/contracts.go (about)

     1  // Copyright (C) 2021 The Ontology Authors
     2  // Copyright 2014 The go-ethereum Authors
     3  // This file is part of the go-ethereum library.
     4  //
     5  // The go-ethereum library is free software: you can redistribute it and/or modify
     6  // it under the terms of the GNU Lesser General Public License as published by
     7  // the Free Software Foundation, either version 3 of the License, or
     8  // (at your option) any later version.
     9  //
    10  // The go-ethereum library is distributed in the hope that it will be useful,
    11  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    12  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    13  // GNU Lesser General Public License for more details.
    14  //
    15  // You should have received a copy of the GNU Lesser General Public License
    16  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    17  
    18  package evm
    19  
    20  import (
    21  	"crypto/sha256"
    22  	"encoding/binary"
    23  	"errors"
    24  	"math/big"
    25  
    26  	"github.com/ethereum/go-ethereum/common"
    27  	"github.com/ethereum/go-ethereum/common/math"
    28  	"github.com/ethereum/go-ethereum/crypto"
    29  	"github.com/ethereum/go-ethereum/crypto/blake2b"
    30  	"github.com/ethereum/go-ethereum/crypto/bls12381"
    31  	"github.com/ethereum/go-ethereum/crypto/bn256"
    32  	errors2 "github.com/ontio/ontology/vm/evm/errors"
    33  	"github.com/ontio/ontology/vm/evm/params"
    34  	"golang.org/x/crypto/ripemd160"
    35  )
    36  
    37  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    38  // requires a deterministic gas count based on the input size of the Run method of the
    39  // contract.
    40  type PrecompiledContract interface {
    41  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    42  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    43  }
    44  
    45  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    46  // contracts used in the Frontier and Homestead releases.
    47  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    48  	common.BytesToAddress([]byte{1}): &ecrecover{},
    49  	common.BytesToAddress([]byte{2}): &sha256hash{},
    50  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    51  	common.BytesToAddress([]byte{4}): &dataCopy{},
    52  }
    53  
    54  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    55  // contracts used in the Byzantium release.
    56  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    57  	common.BytesToAddress([]byte{1}): &ecrecover{},
    58  	common.BytesToAddress([]byte{2}): &sha256hash{},
    59  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    60  	common.BytesToAddress([]byte{4}): &dataCopy{},
    61  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    62  	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
    63  	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
    64  	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
    65  }
    66  
    67  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    68  // contracts used in the Istanbul release.
    69  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    70  	common.BytesToAddress([]byte{1}): &ecrecover{},
    71  	common.BytesToAddress([]byte{2}): &sha256hash{},
    72  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    73  	common.BytesToAddress([]byte{4}): &dataCopy{},
    74  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    75  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    76  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    77  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    78  	common.BytesToAddress([]byte{9}): &blake2F{},
    79  }
    80  
    81  // PrecompiledContractsYoloV2 contains the default set of pre-compiled Ethereum
    82  // contracts used in the Yolo v2 test release.
    83  var PrecompiledContractsYoloV2 = map[common.Address]PrecompiledContract{
    84  	common.BytesToAddress([]byte{1}):  &ecrecover{},
    85  	common.BytesToAddress([]byte{2}):  &sha256hash{},
    86  	common.BytesToAddress([]byte{3}):  &ripemd160hash{},
    87  	common.BytesToAddress([]byte{4}):  &dataCopy{},
    88  	common.BytesToAddress([]byte{5}):  &bigModExp{eip2565: false},
    89  	common.BytesToAddress([]byte{6}):  &bn256AddIstanbul{},
    90  	common.BytesToAddress([]byte{7}):  &bn256ScalarMulIstanbul{},
    91  	common.BytesToAddress([]byte{8}):  &bn256PairingIstanbul{},
    92  	common.BytesToAddress([]byte{9}):  &blake2F{},
    93  	common.BytesToAddress([]byte{10}): &bls12381G1Add{},
    94  	common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
    95  	common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
    96  	common.BytesToAddress([]byte{13}): &bls12381G2Add{},
    97  	common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
    98  	common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
    99  	common.BytesToAddress([]byte{16}): &bls12381Pairing{},
   100  	common.BytesToAddress([]byte{17}): &bls12381MapG1{},
   101  	common.BytesToAddress([]byte{18}): &bls12381MapG2{},
   102  }
   103  
   104  var (
   105  	PrecompiledAddressesYoloV2    []common.Address
   106  	PrecompiledAddressesIstanbul  []common.Address
   107  	PrecompiledAddressesByzantium []common.Address
   108  	PrecompiledAddressesHomestead []common.Address
   109  )
   110  
   111  func init() {
   112  	for k := range PrecompiledContractsHomestead {
   113  		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
   114  	}
   115  	for k := range PrecompiledContractsByzantium {
   116  		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
   117  	}
   118  	for k := range PrecompiledContractsIstanbul {
   119  		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
   120  	}
   121  	for k := range PrecompiledContractsYoloV2 {
   122  		PrecompiledAddressesYoloV2 = append(PrecompiledAddressesYoloV2, k)
   123  	}
   124  }
   125  
   126  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
   127  // It returns
   128  // - the returned bytes,
   129  // - the _remaining_ gas,
   130  // - any error that occurred
   131  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
   132  	gasCost := p.RequiredGas(input)
   133  	if suppliedGas < gasCost {
   134  		return nil, 0, errors2.ErrOutOfGas
   135  	}
   136  	suppliedGas -= gasCost
   137  	output, err := p.Run(input)
   138  	return output, suppliedGas, err
   139  }
   140  
   141  // ECRECOVER implemented as a native contract.
   142  type ecrecover struct{}
   143  
   144  func (c *ecrecover) RequiredGas(input []byte) uint64 {
   145  	return params.EcrecoverGas
   146  }
   147  
   148  func (c *ecrecover) Run(input []byte) ([]byte, error) {
   149  	const ecRecoverInputLength = 128
   150  
   151  	input = common.RightPadBytes(input, ecRecoverInputLength)
   152  	// "input" is (hash, v, r, s), each 32 bytes
   153  	// but for ecrecover we want (r, s, v)
   154  
   155  	r := new(big.Int).SetBytes(input[64:96])
   156  	s := new(big.Int).SetBytes(input[96:128])
   157  	v := input[63] - 27
   158  
   159  	// tighter sig s values input homestead only apply to tx sigs
   160  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   161  		return nil, nil
   162  	}
   163  	// We must make sure not to modify the 'input', so placing the 'v' along with
   164  	// the signature needs to be done on a new allocation
   165  	sig := make([]byte, 65)
   166  	copy(sig, input[64:128])
   167  	sig[64] = v
   168  	// v needs to be at the end for libsecp256k1
   169  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   170  	// make sure the public key is a valid one
   171  	if err != nil {
   172  		return nil, nil
   173  	}
   174  
   175  	// the first byte of pubkey is bitcoin heritage
   176  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   177  }
   178  
   179  // SHA256 implemented as a native contract.
   180  type sha256hash struct{}
   181  
   182  // RequiredGas returns the gas required to execute the pre-compiled contract.
   183  //
   184  // This method does not require any overflow checking as the input size gas costs
   185  // required for anything significant is so high it's impossible to pay for.
   186  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   187  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   188  }
   189  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   190  	h := sha256.Sum256(input)
   191  	return h[:], nil
   192  }
   193  
   194  // RIPEMD160 implemented as a native contract.
   195  type ripemd160hash struct{}
   196  
   197  // RequiredGas returns the gas required to execute the pre-compiled contract.
   198  //
   199  // This method does not require any overflow checking as the input size gas costs
   200  // required for anything significant is so high it's impossible to pay for.
   201  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   202  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   203  }
   204  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   205  	ripemd := ripemd160.New()
   206  	ripemd.Write(input)
   207  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   208  }
   209  
   210  // data copy implemented as a native contract.
   211  type dataCopy struct{}
   212  
   213  // RequiredGas returns the gas required to execute the pre-compiled contract.
   214  //
   215  // This method does not require any overflow checking as the input size gas costs
   216  // required for anything significant is so high it's impossible to pay for.
   217  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   218  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   219  }
   220  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   221  	return in, nil
   222  }
   223  
   224  // bigModExp implements a native big integer exponential modular operation.
   225  type bigModExp struct {
   226  	eip2565 bool
   227  }
   228  
   229  var (
   230  	big0      = big.NewInt(0)
   231  	big1      = big.NewInt(1)
   232  	big3      = big.NewInt(3)
   233  	big4      = big.NewInt(4)
   234  	big7      = big.NewInt(7)
   235  	big8      = big.NewInt(8)
   236  	big16     = big.NewInt(16)
   237  	big20     = big.NewInt(20)
   238  	big32     = big.NewInt(32)
   239  	big64     = big.NewInt(64)
   240  	big96     = big.NewInt(96)
   241  	big480    = big.NewInt(480)
   242  	big1024   = big.NewInt(1024)
   243  	big3072   = big.NewInt(3072)
   244  	big199680 = big.NewInt(199680)
   245  )
   246  
   247  // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
   248  //
   249  // def mult_complexity(x):
   250  //    if x <= 64: return x ** 2
   251  //    elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
   252  //    else: return x ** 2 // 16 + 480 * x - 199680
   253  //
   254  // where is x is max(length_of_MODULUS, length_of_BASE)
   255  func modexpMultComplexity(x *big.Int) *big.Int {
   256  	switch {
   257  	case x.Cmp(big64) <= 0:
   258  		x.Mul(x, x) // x ** 2
   259  	case x.Cmp(big1024) <= 0:
   260  		// (x ** 2 // 4 ) + ( 96 * x - 3072)
   261  		x = new(big.Int).Add(
   262  			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
   263  			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
   264  		)
   265  	default:
   266  		// (x ** 2 // 16) + (480 * x - 199680)
   267  		x = new(big.Int).Add(
   268  			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
   269  			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
   270  		)
   271  	}
   272  	return x
   273  }
   274  
   275  // RequiredGas returns the gas required to execute the pre-compiled contract.
   276  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   277  	var (
   278  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   279  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   280  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   281  	)
   282  	if len(input) > 96 {
   283  		input = input[96:]
   284  	} else {
   285  		input = input[:0]
   286  	}
   287  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   288  	var expHead *big.Int
   289  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   290  		expHead = new(big.Int)
   291  	} else {
   292  		if expLen.Cmp(big32) > 0 {
   293  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   294  		} else {
   295  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   296  		}
   297  	}
   298  	// Calculate the adjusted exponent length
   299  	var msb int
   300  	if bitlen := expHead.BitLen(); bitlen > 0 {
   301  		msb = bitlen - 1
   302  	}
   303  	adjExpLen := new(big.Int)
   304  	if expLen.Cmp(big32) > 0 {
   305  		adjExpLen.Sub(expLen, big32)
   306  		adjExpLen.Mul(big8, adjExpLen)
   307  	}
   308  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   309  	// Calculate the gas cost of the operation
   310  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   311  	if c.eip2565 {
   312  		// EIP-2565 has three changes
   313  		// 1. Different multComplexity (inlined here)
   314  		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
   315  		//
   316  		// def mult_complexity(x):
   317  		//    ceiling(x/8)^2
   318  		//
   319  		//where is x is max(length_of_MODULUS, length_of_BASE)
   320  		gas = gas.Add(gas, big7)
   321  		gas = gas.Div(gas, big8)
   322  		gas.Mul(gas, gas)
   323  
   324  		gas.Mul(gas, math.BigMax(adjExpLen, big1))
   325  		// 2. Different divisor (`GQUADDIVISOR`) (3)
   326  		gas.Div(gas, big3)
   327  		if gas.BitLen() > 64 {
   328  			return math.MaxUint64
   329  		}
   330  		// 3. Minimum price of 200 gas
   331  		if gas.Uint64() < 200 {
   332  			return 200
   333  		}
   334  		return gas.Uint64()
   335  	}
   336  	gas = modexpMultComplexity(gas)
   337  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   338  	gas.Div(gas, big20)
   339  
   340  	if gas.BitLen() > 64 {
   341  		return math.MaxUint64
   342  	}
   343  	return gas.Uint64()
   344  }
   345  
   346  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   347  	var (
   348  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   349  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   350  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   351  	)
   352  	if len(input) > 96 {
   353  		input = input[96:]
   354  	} else {
   355  		input = input[:0]
   356  	}
   357  	// Handle a special case when both the base and mod length is zero
   358  	if baseLen == 0 && modLen == 0 {
   359  		return []byte{}, nil
   360  	}
   361  	// Retrieve the operands and execute the exponentiation
   362  	var (
   363  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   364  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   365  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   366  	)
   367  	if mod.BitLen() == 0 {
   368  		// Modulo 0 is undefined, return zero
   369  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   370  	}
   371  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   372  }
   373  
   374  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   375  // returning it, or an error if the point is invalid.
   376  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   377  	p := new(bn256.G1)
   378  	if _, err := p.Unmarshal(blob); err != nil {
   379  		return nil, err
   380  	}
   381  	return p, nil
   382  }
   383  
   384  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   385  // returning it, or an error if the point is invalid.
   386  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   387  	p := new(bn256.G2)
   388  	if _, err := p.Unmarshal(blob); err != nil {
   389  		return nil, err
   390  	}
   391  	return p, nil
   392  }
   393  
   394  // runBn256Add implements the Bn256Add precompile, referenced by both
   395  // Byzantium and Istanbul operations.
   396  func runBn256Add(input []byte) ([]byte, error) {
   397  	x, err := newCurvePoint(getData(input, 0, 64))
   398  	if err != nil {
   399  		return nil, err
   400  	}
   401  	y, err := newCurvePoint(getData(input, 64, 64))
   402  	if err != nil {
   403  		return nil, err
   404  	}
   405  	res := new(bn256.G1)
   406  	res.Add(x, y)
   407  	return res.Marshal(), nil
   408  }
   409  
   410  // bn256Add implements a native elliptic curve point addition conforming to
   411  // Istanbul consensus rules.
   412  type bn256AddIstanbul struct{}
   413  
   414  // RequiredGas returns the gas required to execute the pre-compiled contract.
   415  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   416  	return params.Bn256AddGasIstanbul
   417  }
   418  
   419  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   420  	return runBn256Add(input)
   421  }
   422  
   423  // bn256AddByzantium implements a native elliptic curve point addition
   424  // conforming to Byzantium consensus rules.
   425  type bn256AddByzantium struct{}
   426  
   427  // RequiredGas returns the gas required to execute the pre-compiled contract.
   428  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   429  	return params.Bn256AddGasByzantium
   430  }
   431  
   432  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   433  	return runBn256Add(input)
   434  }
   435  
   436  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   437  // both Byzantium and Istanbul operations.
   438  func runBn256ScalarMul(input []byte) ([]byte, error) {
   439  	p, err := newCurvePoint(getData(input, 0, 64))
   440  	if err != nil {
   441  		return nil, err
   442  	}
   443  	res := new(bn256.G1)
   444  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   445  	return res.Marshal(), nil
   446  }
   447  
   448  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   449  // multiplication conforming to Istanbul consensus rules.
   450  type bn256ScalarMulIstanbul struct{}
   451  
   452  // RequiredGas returns the gas required to execute the pre-compiled contract.
   453  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   454  	return params.Bn256ScalarMulGasIstanbul
   455  }
   456  
   457  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   458  	return runBn256ScalarMul(input)
   459  }
   460  
   461  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   462  // multiplication conforming to Byzantium consensus rules.
   463  type bn256ScalarMulByzantium struct{}
   464  
   465  // RequiredGas returns the gas required to execute the pre-compiled contract.
   466  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   467  	return params.Bn256ScalarMulGasByzantium
   468  }
   469  
   470  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   471  	return runBn256ScalarMul(input)
   472  }
   473  
   474  var (
   475  	// true32Byte is returned if the bn256 pairing check succeeds.
   476  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   477  
   478  	// false32Byte is returned if the bn256 pairing check fails.
   479  	false32Byte = make([]byte, 32)
   480  
   481  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   482  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   483  )
   484  
   485  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   486  // Byzantium and Istanbul operations.
   487  func runBn256Pairing(input []byte) ([]byte, error) {
   488  	// Handle some corner cases cheaply
   489  	if len(input)%192 > 0 {
   490  		return nil, errBadPairingInput
   491  	}
   492  	// Convert the input into a set of coordinates
   493  	var (
   494  		cs []*bn256.G1
   495  		ts []*bn256.G2
   496  	)
   497  	for i := 0; i < len(input); i += 192 {
   498  		c, err := newCurvePoint(input[i : i+64])
   499  		if err != nil {
   500  			return nil, err
   501  		}
   502  		t, err := newTwistPoint(input[i+64 : i+192])
   503  		if err != nil {
   504  			return nil, err
   505  		}
   506  		cs = append(cs, c)
   507  		ts = append(ts, t)
   508  	}
   509  	// Execute the pairing checks and return the results
   510  	if bn256.PairingCheck(cs, ts) {
   511  		return true32Byte, nil
   512  	}
   513  	return false32Byte, nil
   514  }
   515  
   516  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   517  // conforming to Istanbul consensus rules.
   518  type bn256PairingIstanbul struct{}
   519  
   520  // RequiredGas returns the gas required to execute the pre-compiled contract.
   521  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   522  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   523  }
   524  
   525  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   526  	return runBn256Pairing(input)
   527  }
   528  
   529  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   530  // conforming to Byzantium consensus rules.
   531  type bn256PairingByzantium struct{}
   532  
   533  // RequiredGas returns the gas required to execute the pre-compiled contract.
   534  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   535  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   536  }
   537  
   538  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   539  	return runBn256Pairing(input)
   540  }
   541  
   542  type blake2F struct{}
   543  
   544  func (c *blake2F) RequiredGas(input []byte) uint64 {
   545  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   546  	// actual call choke and fault.
   547  	if len(input) != blake2FInputLength {
   548  		return 0
   549  	}
   550  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   551  }
   552  
   553  const (
   554  	blake2FInputLength        = 213
   555  	blake2FFinalBlockBytes    = byte(1)
   556  	blake2FNonFinalBlockBytes = byte(0)
   557  )
   558  
   559  var (
   560  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   561  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   562  )
   563  
   564  func (c *blake2F) Run(input []byte) ([]byte, error) {
   565  	// Make sure the input is valid (correct length and final flag)
   566  	if len(input) != blake2FInputLength {
   567  		return nil, errBlake2FInvalidInputLength
   568  	}
   569  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   570  		return nil, errBlake2FInvalidFinalFlag
   571  	}
   572  	// Parse the input into the Blake2b call parameters
   573  	var (
   574  		rounds = binary.BigEndian.Uint32(input[0:4])
   575  		final  = (input[212] == blake2FFinalBlockBytes)
   576  
   577  		h [8]uint64
   578  		m [16]uint64
   579  		t [2]uint64
   580  	)
   581  	for i := 0; i < 8; i++ {
   582  		offset := 4 + i*8
   583  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   584  	}
   585  	for i := 0; i < 16; i++ {
   586  		offset := 68 + i*8
   587  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   588  	}
   589  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   590  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   591  
   592  	// Execute the compression function, extract and return the result
   593  	blake2b.F(&h, m, t, final, rounds)
   594  
   595  	output := make([]byte, 64)
   596  	for i := 0; i < 8; i++ {
   597  		offset := i * 8
   598  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   599  	}
   600  	return output, nil
   601  }
   602  
   603  var (
   604  	errBLS12381InvalidInputLength          = errors.New("invalid input length")
   605  	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
   606  	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
   607  	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
   608  )
   609  
   610  // bls12381G1Add implements EIP-2537 G1Add precompile.
   611  type bls12381G1Add struct{}
   612  
   613  // RequiredGas returns the gas required to execute the pre-compiled contract.
   614  func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
   615  	return params.Bls12381G1AddGas
   616  }
   617  
   618  func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
   619  	// Implements EIP-2537 G1Add precompile.
   620  	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
   621  	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
   622  	if len(input) != 256 {
   623  		return nil, errBLS12381InvalidInputLength
   624  	}
   625  	var err error
   626  	var p0, p1 *bls12381.PointG1
   627  
   628  	// Initialize G1
   629  	g := bls12381.NewG1()
   630  
   631  	// Decode G1 point p_0
   632  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   633  		return nil, err
   634  	}
   635  	// Decode G1 point p_1
   636  	if p1, err = g.DecodePoint(input[128:]); err != nil {
   637  		return nil, err
   638  	}
   639  
   640  	// Compute r = p_0 + p_1
   641  	r := g.New()
   642  	g.Add(r, p0, p1)
   643  
   644  	// Encode the G1 point result into 128 bytes
   645  	return g.EncodePoint(r), nil
   646  }
   647  
   648  // bls12381G1Mul implements EIP-2537 G1Mul precompile.
   649  type bls12381G1Mul struct{}
   650  
   651  // RequiredGas returns the gas required to execute the pre-compiled contract.
   652  func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
   653  	return params.Bls12381G1MulGas
   654  }
   655  
   656  func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
   657  	// Implements EIP-2537 G1Mul precompile.
   658  	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   659  	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
   660  	if len(input) != 160 {
   661  		return nil, errBLS12381InvalidInputLength
   662  	}
   663  	var err error
   664  	var p0 *bls12381.PointG1
   665  
   666  	// Initialize G1
   667  	g := bls12381.NewG1()
   668  
   669  	// Decode G1 point
   670  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   671  		return nil, err
   672  	}
   673  	// Decode scalar value
   674  	e := new(big.Int).SetBytes(input[128:])
   675  
   676  	// Compute r = e * p_0
   677  	r := g.New()
   678  	g.MulScalar(r, p0, e)
   679  
   680  	// Encode the G1 point into 128 bytes
   681  	return g.EncodePoint(r), nil
   682  }
   683  
   684  // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
   685  type bls12381G1MultiExp struct{}
   686  
   687  // RequiredGas returns the gas required to execute the pre-compiled contract.
   688  func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
   689  	// Calculate G1 point, scalar value pair length
   690  	k := len(input) / 160
   691  	if k == 0 {
   692  		// Return 0 gas for small input length
   693  		return 0
   694  	}
   695  	// Lookup discount value for G1 point, scalar value pair length
   696  	var discount uint64
   697  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   698  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   699  	} else {
   700  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   701  	}
   702  	// Calculate gas and return the result
   703  	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
   704  }
   705  
   706  func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
   707  	// Implements EIP-2537 G1MultiExp precompile.
   708  	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   709  	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
   710  	k := len(input) / 160
   711  	if len(input) == 0 || len(input)%160 != 0 {
   712  		return nil, errBLS12381InvalidInputLength
   713  	}
   714  	var err error
   715  	points := make([]*bls12381.PointG1, k)
   716  	scalars := make([]*big.Int, k)
   717  
   718  	// Initialize G1
   719  	g := bls12381.NewG1()
   720  
   721  	// Decode point scalar pairs
   722  	for i := 0; i < k; i++ {
   723  		off := 160 * i
   724  		t0, t1, t2 := off, off+128, off+160
   725  		// Decode G1 point
   726  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   727  			return nil, err
   728  		}
   729  		// Decode scalar value
   730  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   731  	}
   732  
   733  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   734  	r := g.New()
   735  	g.MultiExp(r, points, scalars)
   736  
   737  	// Encode the G1 point to 128 bytes
   738  	return g.EncodePoint(r), nil
   739  }
   740  
   741  // bls12381G2Add implements EIP-2537 G2Add precompile.
   742  type bls12381G2Add struct{}
   743  
   744  // RequiredGas returns the gas required to execute the pre-compiled contract.
   745  func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
   746  	return params.Bls12381G2AddGas
   747  }
   748  
   749  func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
   750  	// Implements EIP-2537 G2Add precompile.
   751  	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
   752  	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
   753  	if len(input) != 512 {
   754  		return nil, errBLS12381InvalidInputLength
   755  	}
   756  	var err error
   757  	var p0, p1 *bls12381.PointG2
   758  
   759  	// Initialize G2
   760  	g := bls12381.NewG2()
   761  	r := g.New()
   762  
   763  	// Decode G2 point p_0
   764  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   765  		return nil, err
   766  	}
   767  	// Decode G2 point p_1
   768  	if p1, err = g.DecodePoint(input[256:]); err != nil {
   769  		return nil, err
   770  	}
   771  
   772  	// Compute r = p_0 + p_1
   773  	g.Add(r, p0, p1)
   774  
   775  	// Encode the G2 point into 256 bytes
   776  	return g.EncodePoint(r), nil
   777  }
   778  
   779  // bls12381G2Mul implements EIP-2537 G2Mul precompile.
   780  type bls12381G2Mul struct{}
   781  
   782  // RequiredGas returns the gas required to execute the pre-compiled contract.
   783  func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
   784  	return params.Bls12381G2MulGas
   785  }
   786  
   787  func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
   788  	// Implements EIP-2537 G2MUL precompile logic.
   789  	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   790  	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
   791  	if len(input) != 288 {
   792  		return nil, errBLS12381InvalidInputLength
   793  	}
   794  	var err error
   795  	var p0 *bls12381.PointG2
   796  
   797  	// Initialize G2
   798  	g := bls12381.NewG2()
   799  
   800  	// Decode G2 point
   801  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   802  		return nil, err
   803  	}
   804  	// Decode scalar value
   805  	e := new(big.Int).SetBytes(input[256:])
   806  
   807  	// Compute r = e * p_0
   808  	r := g.New()
   809  	g.MulScalar(r, p0, e)
   810  
   811  	// Encode the G2 point into 256 bytes
   812  	return g.EncodePoint(r), nil
   813  }
   814  
   815  // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
   816  type bls12381G2MultiExp struct{}
   817  
   818  // RequiredGas returns the gas required to execute the pre-compiled contract.
   819  func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
   820  	// Calculate G2 point, scalar value pair length
   821  	k := len(input) / 288
   822  	if k == 0 {
   823  		// Return 0 gas for small input length
   824  		return 0
   825  	}
   826  	// Lookup discount value for G2 point, scalar value pair length
   827  	var discount uint64
   828  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   829  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   830  	} else {
   831  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   832  	}
   833  	// Calculate gas and return the result
   834  	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
   835  }
   836  
   837  func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
   838  	// Implements EIP-2537 G2MultiExp precompile logic
   839  	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   840  	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
   841  	k := len(input) / 288
   842  	if len(input) == 0 || len(input)%288 != 0 {
   843  		return nil, errBLS12381InvalidInputLength
   844  	}
   845  	var err error
   846  	points := make([]*bls12381.PointG2, k)
   847  	scalars := make([]*big.Int, k)
   848  
   849  	// Initialize G2
   850  	g := bls12381.NewG2()
   851  
   852  	// Decode point scalar pairs
   853  	for i := 0; i < k; i++ {
   854  		off := 288 * i
   855  		t0, t1, t2 := off, off+256, off+288
   856  		// Decode G1 point
   857  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   858  			return nil, err
   859  		}
   860  		// Decode scalar value
   861  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   862  	}
   863  
   864  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   865  	r := g.New()
   866  	g.MultiExp(r, points, scalars)
   867  
   868  	// Encode the G2 point to 256 bytes.
   869  	return g.EncodePoint(r), nil
   870  }
   871  
   872  // bls12381Pairing implements EIP-2537 Pairing precompile.
   873  type bls12381Pairing struct{}
   874  
   875  // RequiredGas returns the gas required to execute the pre-compiled contract.
   876  func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
   877  	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
   878  }
   879  
   880  func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
   881  	// Implements EIP-2537 Pairing precompile logic.
   882  	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
   883  	// > - `128` bytes of G1 point encoding
   884  	// > - `256` bytes of G2 point encoding
   885  	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
   886  	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
   887  	k := len(input) / 384
   888  	if len(input) == 0 || len(input)%384 != 0 {
   889  		return nil, errBLS12381InvalidInputLength
   890  	}
   891  
   892  	// Initialize BLS12-381 pairing engine
   893  	e := bls12381.NewPairingEngine()
   894  	g1, g2 := e.G1, e.G2
   895  
   896  	// Decode pairs
   897  	for i := 0; i < k; i++ {
   898  		off := 384 * i
   899  		t0, t1, t2 := off, off+128, off+384
   900  
   901  		// Decode G1 point
   902  		p1, err := g1.DecodePoint(input[t0:t1])
   903  		if err != nil {
   904  			return nil, err
   905  		}
   906  		// Decode G2 point
   907  		p2, err := g2.DecodePoint(input[t1:t2])
   908  		if err != nil {
   909  			return nil, err
   910  		}
   911  
   912  		// 'point is on curve' check already done,
   913  		// Here we need to apply subgroup checks.
   914  		if !g1.InCorrectSubgroup(p1) {
   915  			return nil, errBLS12381G1PointSubgroup
   916  		}
   917  		if !g2.InCorrectSubgroup(p2) {
   918  			return nil, errBLS12381G2PointSubgroup
   919  		}
   920  
   921  		// Update pairing engine with G1 and G2 ponits
   922  		e.AddPair(p1, p2)
   923  	}
   924  	// Prepare 32 byte output
   925  	out := make([]byte, 32)
   926  
   927  	// Compute pairing and set the result
   928  	if e.Check() {
   929  		out[31] = 1
   930  	}
   931  	return out, nil
   932  }
   933  
   934  // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
   935  // Removes top 16 bytes of 64 byte input.
   936  func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
   937  	if len(in) != 64 {
   938  		return nil, errors.New("invalid field element length")
   939  	}
   940  	// check top bytes
   941  	for i := 0; i < 16; i++ {
   942  		if in[i] != byte(0x00) {
   943  			return nil, errBLS12381InvalidFieldElementTopBytes
   944  		}
   945  	}
   946  	out := make([]byte, 48)
   947  	copy(out[:], in[16:])
   948  	return out, nil
   949  }
   950  
   951  // bls12381MapG1 implements EIP-2537 MapG1 precompile.
   952  type bls12381MapG1 struct{}
   953  
   954  // RequiredGas returns the gas required to execute the pre-compiled contract.
   955  func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
   956  	return params.Bls12381MapG1Gas
   957  }
   958  
   959  func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
   960  	// Implements EIP-2537 Map_To_G1 precompile.
   961  	// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
   962  	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
   963  	if len(input) != 64 {
   964  		return nil, errBLS12381InvalidInputLength
   965  	}
   966  
   967  	// Decode input field element
   968  	fe, err := decodeBLS12381FieldElement(input)
   969  	if err != nil {
   970  		return nil, err
   971  	}
   972  
   973  	// Initialize G1
   974  	g := bls12381.NewG1()
   975  
   976  	// Compute mapping
   977  	r, err := g.MapToCurve(fe)
   978  	if err != nil {
   979  		return nil, err
   980  	}
   981  
   982  	// Encode the G1 point to 128 bytes
   983  	return g.EncodePoint(r), nil
   984  }
   985  
   986  // bls12381MapG2 implements EIP-2537 MapG2 precompile.
   987  type bls12381MapG2 struct{}
   988  
   989  // RequiredGas returns the gas required to execute the pre-compiled contract.
   990  func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
   991  	return params.Bls12381MapG2Gas
   992  }
   993  
   994  func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
   995  	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
   996  	// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
   997  	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
   998  	if len(input) != 128 {
   999  		return nil, errBLS12381InvalidInputLength
  1000  	}
  1001  
  1002  	// Decode input field element
  1003  	fe := make([]byte, 96)
  1004  	c0, err := decodeBLS12381FieldElement(input[:64])
  1005  	if err != nil {
  1006  		return nil, err
  1007  	}
  1008  	copy(fe[48:], c0)
  1009  	c1, err := decodeBLS12381FieldElement(input[64:])
  1010  	if err != nil {
  1011  		return nil, err
  1012  	}
  1013  	copy(fe[:48], c1)
  1014  
  1015  	// Initialize G2
  1016  	g := bls12381.NewG2()
  1017  
  1018  	// Compute mapping
  1019  	r, err := g.MapToCurve(fe)
  1020  	if err != nil {
  1021  		return nil, err
  1022  	}
  1023  
  1024  	// Encode the G2 point to 256 bytes
  1025  	return g.EncodePoint(r), nil
  1026  }