github.com/ontio/ontology@v1.14.4/vm/evm/contracts.go (about) 1 // Copyright (C) 2021 The Ontology Authors 2 // Copyright 2014 The go-ethereum Authors 3 // This file is part of the go-ethereum library. 4 // 5 // The go-ethereum library is free software: you can redistribute it and/or modify 6 // it under the terms of the GNU Lesser General Public License as published by 7 // the Free Software Foundation, either version 3 of the License, or 8 // (at your option) any later version. 9 // 10 // The go-ethereum library is distributed in the hope that it will be useful, 11 // but WITHOUT ANY WARRANTY; without even the implied warranty of 12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 // GNU Lesser General Public License for more details. 14 // 15 // You should have received a copy of the GNU Lesser General Public License 16 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 17 18 package evm 19 20 import ( 21 "crypto/sha256" 22 "encoding/binary" 23 "errors" 24 "math/big" 25 26 "github.com/ethereum/go-ethereum/common" 27 "github.com/ethereum/go-ethereum/common/math" 28 "github.com/ethereum/go-ethereum/crypto" 29 "github.com/ethereum/go-ethereum/crypto/blake2b" 30 "github.com/ethereum/go-ethereum/crypto/bls12381" 31 "github.com/ethereum/go-ethereum/crypto/bn256" 32 errors2 "github.com/ontio/ontology/vm/evm/errors" 33 "github.com/ontio/ontology/vm/evm/params" 34 "golang.org/x/crypto/ripemd160" 35 ) 36 37 // PrecompiledContract is the basic interface for native Go contracts. The implementation 38 // requires a deterministic gas count based on the input size of the Run method of the 39 // contract. 40 type PrecompiledContract interface { 41 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 42 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 43 } 44 45 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 46 // contracts used in the Frontier and Homestead releases. 47 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 48 common.BytesToAddress([]byte{1}): &ecrecover{}, 49 common.BytesToAddress([]byte{2}): &sha256hash{}, 50 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 51 common.BytesToAddress([]byte{4}): &dataCopy{}, 52 } 53 54 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 55 // contracts used in the Byzantium release. 56 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 57 common.BytesToAddress([]byte{1}): &ecrecover{}, 58 common.BytesToAddress([]byte{2}): &sha256hash{}, 59 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 60 common.BytesToAddress([]byte{4}): &dataCopy{}, 61 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 62 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 63 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 64 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 65 } 66 67 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 68 // contracts used in the Istanbul release. 69 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 70 common.BytesToAddress([]byte{1}): &ecrecover{}, 71 common.BytesToAddress([]byte{2}): &sha256hash{}, 72 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 73 common.BytesToAddress([]byte{4}): &dataCopy{}, 74 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 75 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 76 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 77 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 78 common.BytesToAddress([]byte{9}): &blake2F{}, 79 } 80 81 // PrecompiledContractsYoloV2 contains the default set of pre-compiled Ethereum 82 // contracts used in the Yolo v2 test release. 83 var PrecompiledContractsYoloV2 = map[common.Address]PrecompiledContract{ 84 common.BytesToAddress([]byte{1}): &ecrecover{}, 85 common.BytesToAddress([]byte{2}): &sha256hash{}, 86 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 87 common.BytesToAddress([]byte{4}): &dataCopy{}, 88 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 89 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 90 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 91 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 92 common.BytesToAddress([]byte{9}): &blake2F{}, 93 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 94 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 95 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 96 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 97 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 98 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 99 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 100 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 101 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 102 } 103 104 var ( 105 PrecompiledAddressesYoloV2 []common.Address 106 PrecompiledAddressesIstanbul []common.Address 107 PrecompiledAddressesByzantium []common.Address 108 PrecompiledAddressesHomestead []common.Address 109 ) 110 111 func init() { 112 for k := range PrecompiledContractsHomestead { 113 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 114 } 115 for k := range PrecompiledContractsByzantium { 116 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 117 } 118 for k := range PrecompiledContractsIstanbul { 119 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 120 } 121 for k := range PrecompiledContractsYoloV2 { 122 PrecompiledAddressesYoloV2 = append(PrecompiledAddressesYoloV2, k) 123 } 124 } 125 126 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 127 // It returns 128 // - the returned bytes, 129 // - the _remaining_ gas, 130 // - any error that occurred 131 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 132 gasCost := p.RequiredGas(input) 133 if suppliedGas < gasCost { 134 return nil, 0, errors2.ErrOutOfGas 135 } 136 suppliedGas -= gasCost 137 output, err := p.Run(input) 138 return output, suppliedGas, err 139 } 140 141 // ECRECOVER implemented as a native contract. 142 type ecrecover struct{} 143 144 func (c *ecrecover) RequiredGas(input []byte) uint64 { 145 return params.EcrecoverGas 146 } 147 148 func (c *ecrecover) Run(input []byte) ([]byte, error) { 149 const ecRecoverInputLength = 128 150 151 input = common.RightPadBytes(input, ecRecoverInputLength) 152 // "input" is (hash, v, r, s), each 32 bytes 153 // but for ecrecover we want (r, s, v) 154 155 r := new(big.Int).SetBytes(input[64:96]) 156 s := new(big.Int).SetBytes(input[96:128]) 157 v := input[63] - 27 158 159 // tighter sig s values input homestead only apply to tx sigs 160 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 161 return nil, nil 162 } 163 // We must make sure not to modify the 'input', so placing the 'v' along with 164 // the signature needs to be done on a new allocation 165 sig := make([]byte, 65) 166 copy(sig, input[64:128]) 167 sig[64] = v 168 // v needs to be at the end for libsecp256k1 169 pubKey, err := crypto.Ecrecover(input[:32], sig) 170 // make sure the public key is a valid one 171 if err != nil { 172 return nil, nil 173 } 174 175 // the first byte of pubkey is bitcoin heritage 176 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 177 } 178 179 // SHA256 implemented as a native contract. 180 type sha256hash struct{} 181 182 // RequiredGas returns the gas required to execute the pre-compiled contract. 183 // 184 // This method does not require any overflow checking as the input size gas costs 185 // required for anything significant is so high it's impossible to pay for. 186 func (c *sha256hash) RequiredGas(input []byte) uint64 { 187 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 188 } 189 func (c *sha256hash) Run(input []byte) ([]byte, error) { 190 h := sha256.Sum256(input) 191 return h[:], nil 192 } 193 194 // RIPEMD160 implemented as a native contract. 195 type ripemd160hash struct{} 196 197 // RequiredGas returns the gas required to execute the pre-compiled contract. 198 // 199 // This method does not require any overflow checking as the input size gas costs 200 // required for anything significant is so high it's impossible to pay for. 201 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 202 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 203 } 204 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 205 ripemd := ripemd160.New() 206 ripemd.Write(input) 207 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 208 } 209 210 // data copy implemented as a native contract. 211 type dataCopy struct{} 212 213 // RequiredGas returns the gas required to execute the pre-compiled contract. 214 // 215 // This method does not require any overflow checking as the input size gas costs 216 // required for anything significant is so high it's impossible to pay for. 217 func (c *dataCopy) RequiredGas(input []byte) uint64 { 218 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 219 } 220 func (c *dataCopy) Run(in []byte) ([]byte, error) { 221 return in, nil 222 } 223 224 // bigModExp implements a native big integer exponential modular operation. 225 type bigModExp struct { 226 eip2565 bool 227 } 228 229 var ( 230 big0 = big.NewInt(0) 231 big1 = big.NewInt(1) 232 big3 = big.NewInt(3) 233 big4 = big.NewInt(4) 234 big7 = big.NewInt(7) 235 big8 = big.NewInt(8) 236 big16 = big.NewInt(16) 237 big20 = big.NewInt(20) 238 big32 = big.NewInt(32) 239 big64 = big.NewInt(64) 240 big96 = big.NewInt(96) 241 big480 = big.NewInt(480) 242 big1024 = big.NewInt(1024) 243 big3072 = big.NewInt(3072) 244 big199680 = big.NewInt(199680) 245 ) 246 247 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 248 // 249 // def mult_complexity(x): 250 // if x <= 64: return x ** 2 251 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 252 // else: return x ** 2 // 16 + 480 * x - 199680 253 // 254 // where is x is max(length_of_MODULUS, length_of_BASE) 255 func modexpMultComplexity(x *big.Int) *big.Int { 256 switch { 257 case x.Cmp(big64) <= 0: 258 x.Mul(x, x) // x ** 2 259 case x.Cmp(big1024) <= 0: 260 // (x ** 2 // 4 ) + ( 96 * x - 3072) 261 x = new(big.Int).Add( 262 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 263 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 264 ) 265 default: 266 // (x ** 2 // 16) + (480 * x - 199680) 267 x = new(big.Int).Add( 268 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 269 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 270 ) 271 } 272 return x 273 } 274 275 // RequiredGas returns the gas required to execute the pre-compiled contract. 276 func (c *bigModExp) RequiredGas(input []byte) uint64 { 277 var ( 278 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 279 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 280 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 281 ) 282 if len(input) > 96 { 283 input = input[96:] 284 } else { 285 input = input[:0] 286 } 287 // Retrieve the head 32 bytes of exp for the adjusted exponent length 288 var expHead *big.Int 289 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 290 expHead = new(big.Int) 291 } else { 292 if expLen.Cmp(big32) > 0 { 293 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 294 } else { 295 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 296 } 297 } 298 // Calculate the adjusted exponent length 299 var msb int 300 if bitlen := expHead.BitLen(); bitlen > 0 { 301 msb = bitlen - 1 302 } 303 adjExpLen := new(big.Int) 304 if expLen.Cmp(big32) > 0 { 305 adjExpLen.Sub(expLen, big32) 306 adjExpLen.Mul(big8, adjExpLen) 307 } 308 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 309 // Calculate the gas cost of the operation 310 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 311 if c.eip2565 { 312 // EIP-2565 has three changes 313 // 1. Different multComplexity (inlined here) 314 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 315 // 316 // def mult_complexity(x): 317 // ceiling(x/8)^2 318 // 319 //where is x is max(length_of_MODULUS, length_of_BASE) 320 gas = gas.Add(gas, big7) 321 gas = gas.Div(gas, big8) 322 gas.Mul(gas, gas) 323 324 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 325 // 2. Different divisor (`GQUADDIVISOR`) (3) 326 gas.Div(gas, big3) 327 if gas.BitLen() > 64 { 328 return math.MaxUint64 329 } 330 // 3. Minimum price of 200 gas 331 if gas.Uint64() < 200 { 332 return 200 333 } 334 return gas.Uint64() 335 } 336 gas = modexpMultComplexity(gas) 337 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 338 gas.Div(gas, big20) 339 340 if gas.BitLen() > 64 { 341 return math.MaxUint64 342 } 343 return gas.Uint64() 344 } 345 346 func (c *bigModExp) Run(input []byte) ([]byte, error) { 347 var ( 348 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 349 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 350 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 351 ) 352 if len(input) > 96 { 353 input = input[96:] 354 } else { 355 input = input[:0] 356 } 357 // Handle a special case when both the base and mod length is zero 358 if baseLen == 0 && modLen == 0 { 359 return []byte{}, nil 360 } 361 // Retrieve the operands and execute the exponentiation 362 var ( 363 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 364 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 365 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 366 ) 367 if mod.BitLen() == 0 { 368 // Modulo 0 is undefined, return zero 369 return common.LeftPadBytes([]byte{}, int(modLen)), nil 370 } 371 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 372 } 373 374 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 375 // returning it, or an error if the point is invalid. 376 func newCurvePoint(blob []byte) (*bn256.G1, error) { 377 p := new(bn256.G1) 378 if _, err := p.Unmarshal(blob); err != nil { 379 return nil, err 380 } 381 return p, nil 382 } 383 384 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 385 // returning it, or an error if the point is invalid. 386 func newTwistPoint(blob []byte) (*bn256.G2, error) { 387 p := new(bn256.G2) 388 if _, err := p.Unmarshal(blob); err != nil { 389 return nil, err 390 } 391 return p, nil 392 } 393 394 // runBn256Add implements the Bn256Add precompile, referenced by both 395 // Byzantium and Istanbul operations. 396 func runBn256Add(input []byte) ([]byte, error) { 397 x, err := newCurvePoint(getData(input, 0, 64)) 398 if err != nil { 399 return nil, err 400 } 401 y, err := newCurvePoint(getData(input, 64, 64)) 402 if err != nil { 403 return nil, err 404 } 405 res := new(bn256.G1) 406 res.Add(x, y) 407 return res.Marshal(), nil 408 } 409 410 // bn256Add implements a native elliptic curve point addition conforming to 411 // Istanbul consensus rules. 412 type bn256AddIstanbul struct{} 413 414 // RequiredGas returns the gas required to execute the pre-compiled contract. 415 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 416 return params.Bn256AddGasIstanbul 417 } 418 419 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 420 return runBn256Add(input) 421 } 422 423 // bn256AddByzantium implements a native elliptic curve point addition 424 // conforming to Byzantium consensus rules. 425 type bn256AddByzantium struct{} 426 427 // RequiredGas returns the gas required to execute the pre-compiled contract. 428 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 429 return params.Bn256AddGasByzantium 430 } 431 432 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 433 return runBn256Add(input) 434 } 435 436 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 437 // both Byzantium and Istanbul operations. 438 func runBn256ScalarMul(input []byte) ([]byte, error) { 439 p, err := newCurvePoint(getData(input, 0, 64)) 440 if err != nil { 441 return nil, err 442 } 443 res := new(bn256.G1) 444 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 445 return res.Marshal(), nil 446 } 447 448 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 449 // multiplication conforming to Istanbul consensus rules. 450 type bn256ScalarMulIstanbul struct{} 451 452 // RequiredGas returns the gas required to execute the pre-compiled contract. 453 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 454 return params.Bn256ScalarMulGasIstanbul 455 } 456 457 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 458 return runBn256ScalarMul(input) 459 } 460 461 // bn256ScalarMulByzantium implements a native elliptic curve scalar 462 // multiplication conforming to Byzantium consensus rules. 463 type bn256ScalarMulByzantium struct{} 464 465 // RequiredGas returns the gas required to execute the pre-compiled contract. 466 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 467 return params.Bn256ScalarMulGasByzantium 468 } 469 470 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 471 return runBn256ScalarMul(input) 472 } 473 474 var ( 475 // true32Byte is returned if the bn256 pairing check succeeds. 476 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 477 478 // false32Byte is returned if the bn256 pairing check fails. 479 false32Byte = make([]byte, 32) 480 481 // errBadPairingInput is returned if the bn256 pairing input is invalid. 482 errBadPairingInput = errors.New("bad elliptic curve pairing size") 483 ) 484 485 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 486 // Byzantium and Istanbul operations. 487 func runBn256Pairing(input []byte) ([]byte, error) { 488 // Handle some corner cases cheaply 489 if len(input)%192 > 0 { 490 return nil, errBadPairingInput 491 } 492 // Convert the input into a set of coordinates 493 var ( 494 cs []*bn256.G1 495 ts []*bn256.G2 496 ) 497 for i := 0; i < len(input); i += 192 { 498 c, err := newCurvePoint(input[i : i+64]) 499 if err != nil { 500 return nil, err 501 } 502 t, err := newTwistPoint(input[i+64 : i+192]) 503 if err != nil { 504 return nil, err 505 } 506 cs = append(cs, c) 507 ts = append(ts, t) 508 } 509 // Execute the pairing checks and return the results 510 if bn256.PairingCheck(cs, ts) { 511 return true32Byte, nil 512 } 513 return false32Byte, nil 514 } 515 516 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 517 // conforming to Istanbul consensus rules. 518 type bn256PairingIstanbul struct{} 519 520 // RequiredGas returns the gas required to execute the pre-compiled contract. 521 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 522 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 523 } 524 525 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 526 return runBn256Pairing(input) 527 } 528 529 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 530 // conforming to Byzantium consensus rules. 531 type bn256PairingByzantium struct{} 532 533 // RequiredGas returns the gas required to execute the pre-compiled contract. 534 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 535 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 536 } 537 538 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 539 return runBn256Pairing(input) 540 } 541 542 type blake2F struct{} 543 544 func (c *blake2F) RequiredGas(input []byte) uint64 { 545 // If the input is malformed, we can't calculate the gas, return 0 and let the 546 // actual call choke and fault. 547 if len(input) != blake2FInputLength { 548 return 0 549 } 550 return uint64(binary.BigEndian.Uint32(input[0:4])) 551 } 552 553 const ( 554 blake2FInputLength = 213 555 blake2FFinalBlockBytes = byte(1) 556 blake2FNonFinalBlockBytes = byte(0) 557 ) 558 559 var ( 560 errBlake2FInvalidInputLength = errors.New("invalid input length") 561 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 562 ) 563 564 func (c *blake2F) Run(input []byte) ([]byte, error) { 565 // Make sure the input is valid (correct length and final flag) 566 if len(input) != blake2FInputLength { 567 return nil, errBlake2FInvalidInputLength 568 } 569 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 570 return nil, errBlake2FInvalidFinalFlag 571 } 572 // Parse the input into the Blake2b call parameters 573 var ( 574 rounds = binary.BigEndian.Uint32(input[0:4]) 575 final = (input[212] == blake2FFinalBlockBytes) 576 577 h [8]uint64 578 m [16]uint64 579 t [2]uint64 580 ) 581 for i := 0; i < 8; i++ { 582 offset := 4 + i*8 583 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 584 } 585 for i := 0; i < 16; i++ { 586 offset := 68 + i*8 587 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 588 } 589 t[0] = binary.LittleEndian.Uint64(input[196:204]) 590 t[1] = binary.LittleEndian.Uint64(input[204:212]) 591 592 // Execute the compression function, extract and return the result 593 blake2b.F(&h, m, t, final, rounds) 594 595 output := make([]byte, 64) 596 for i := 0; i < 8; i++ { 597 offset := i * 8 598 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 599 } 600 return output, nil 601 } 602 603 var ( 604 errBLS12381InvalidInputLength = errors.New("invalid input length") 605 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 606 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 607 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 608 ) 609 610 // bls12381G1Add implements EIP-2537 G1Add precompile. 611 type bls12381G1Add struct{} 612 613 // RequiredGas returns the gas required to execute the pre-compiled contract. 614 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 615 return params.Bls12381G1AddGas 616 } 617 618 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 619 // Implements EIP-2537 G1Add precompile. 620 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 621 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 622 if len(input) != 256 { 623 return nil, errBLS12381InvalidInputLength 624 } 625 var err error 626 var p0, p1 *bls12381.PointG1 627 628 // Initialize G1 629 g := bls12381.NewG1() 630 631 // Decode G1 point p_0 632 if p0, err = g.DecodePoint(input[:128]); err != nil { 633 return nil, err 634 } 635 // Decode G1 point p_1 636 if p1, err = g.DecodePoint(input[128:]); err != nil { 637 return nil, err 638 } 639 640 // Compute r = p_0 + p_1 641 r := g.New() 642 g.Add(r, p0, p1) 643 644 // Encode the G1 point result into 128 bytes 645 return g.EncodePoint(r), nil 646 } 647 648 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 649 type bls12381G1Mul struct{} 650 651 // RequiredGas returns the gas required to execute the pre-compiled contract. 652 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 653 return params.Bls12381G1MulGas 654 } 655 656 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 657 // Implements EIP-2537 G1Mul precompile. 658 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 659 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 660 if len(input) != 160 { 661 return nil, errBLS12381InvalidInputLength 662 } 663 var err error 664 var p0 *bls12381.PointG1 665 666 // Initialize G1 667 g := bls12381.NewG1() 668 669 // Decode G1 point 670 if p0, err = g.DecodePoint(input[:128]); err != nil { 671 return nil, err 672 } 673 // Decode scalar value 674 e := new(big.Int).SetBytes(input[128:]) 675 676 // Compute r = e * p_0 677 r := g.New() 678 g.MulScalar(r, p0, e) 679 680 // Encode the G1 point into 128 bytes 681 return g.EncodePoint(r), nil 682 } 683 684 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 685 type bls12381G1MultiExp struct{} 686 687 // RequiredGas returns the gas required to execute the pre-compiled contract. 688 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 689 // Calculate G1 point, scalar value pair length 690 k := len(input) / 160 691 if k == 0 { 692 // Return 0 gas for small input length 693 return 0 694 } 695 // Lookup discount value for G1 point, scalar value pair length 696 var discount uint64 697 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 698 discount = params.Bls12381MultiExpDiscountTable[k-1] 699 } else { 700 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 701 } 702 // Calculate gas and return the result 703 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 704 } 705 706 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 707 // Implements EIP-2537 G1MultiExp precompile. 708 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 709 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 710 k := len(input) / 160 711 if len(input) == 0 || len(input)%160 != 0 { 712 return nil, errBLS12381InvalidInputLength 713 } 714 var err error 715 points := make([]*bls12381.PointG1, k) 716 scalars := make([]*big.Int, k) 717 718 // Initialize G1 719 g := bls12381.NewG1() 720 721 // Decode point scalar pairs 722 for i := 0; i < k; i++ { 723 off := 160 * i 724 t0, t1, t2 := off, off+128, off+160 725 // Decode G1 point 726 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 727 return nil, err 728 } 729 // Decode scalar value 730 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 731 } 732 733 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 734 r := g.New() 735 g.MultiExp(r, points, scalars) 736 737 // Encode the G1 point to 128 bytes 738 return g.EncodePoint(r), nil 739 } 740 741 // bls12381G2Add implements EIP-2537 G2Add precompile. 742 type bls12381G2Add struct{} 743 744 // RequiredGas returns the gas required to execute the pre-compiled contract. 745 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 746 return params.Bls12381G2AddGas 747 } 748 749 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 750 // Implements EIP-2537 G2Add precompile. 751 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 752 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 753 if len(input) != 512 { 754 return nil, errBLS12381InvalidInputLength 755 } 756 var err error 757 var p0, p1 *bls12381.PointG2 758 759 // Initialize G2 760 g := bls12381.NewG2() 761 r := g.New() 762 763 // Decode G2 point p_0 764 if p0, err = g.DecodePoint(input[:256]); err != nil { 765 return nil, err 766 } 767 // Decode G2 point p_1 768 if p1, err = g.DecodePoint(input[256:]); err != nil { 769 return nil, err 770 } 771 772 // Compute r = p_0 + p_1 773 g.Add(r, p0, p1) 774 775 // Encode the G2 point into 256 bytes 776 return g.EncodePoint(r), nil 777 } 778 779 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 780 type bls12381G2Mul struct{} 781 782 // RequiredGas returns the gas required to execute the pre-compiled contract. 783 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 784 return params.Bls12381G2MulGas 785 } 786 787 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 788 // Implements EIP-2537 G2MUL precompile logic. 789 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 790 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 791 if len(input) != 288 { 792 return nil, errBLS12381InvalidInputLength 793 } 794 var err error 795 var p0 *bls12381.PointG2 796 797 // Initialize G2 798 g := bls12381.NewG2() 799 800 // Decode G2 point 801 if p0, err = g.DecodePoint(input[:256]); err != nil { 802 return nil, err 803 } 804 // Decode scalar value 805 e := new(big.Int).SetBytes(input[256:]) 806 807 // Compute r = e * p_0 808 r := g.New() 809 g.MulScalar(r, p0, e) 810 811 // Encode the G2 point into 256 bytes 812 return g.EncodePoint(r), nil 813 } 814 815 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 816 type bls12381G2MultiExp struct{} 817 818 // RequiredGas returns the gas required to execute the pre-compiled contract. 819 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 820 // Calculate G2 point, scalar value pair length 821 k := len(input) / 288 822 if k == 0 { 823 // Return 0 gas for small input length 824 return 0 825 } 826 // Lookup discount value for G2 point, scalar value pair length 827 var discount uint64 828 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 829 discount = params.Bls12381MultiExpDiscountTable[k-1] 830 } else { 831 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 832 } 833 // Calculate gas and return the result 834 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 835 } 836 837 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 838 // Implements EIP-2537 G2MultiExp precompile logic 839 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 840 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 841 k := len(input) / 288 842 if len(input) == 0 || len(input)%288 != 0 { 843 return nil, errBLS12381InvalidInputLength 844 } 845 var err error 846 points := make([]*bls12381.PointG2, k) 847 scalars := make([]*big.Int, k) 848 849 // Initialize G2 850 g := bls12381.NewG2() 851 852 // Decode point scalar pairs 853 for i := 0; i < k; i++ { 854 off := 288 * i 855 t0, t1, t2 := off, off+256, off+288 856 // Decode G1 point 857 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 858 return nil, err 859 } 860 // Decode scalar value 861 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 862 } 863 864 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 865 r := g.New() 866 g.MultiExp(r, points, scalars) 867 868 // Encode the G2 point to 256 bytes. 869 return g.EncodePoint(r), nil 870 } 871 872 // bls12381Pairing implements EIP-2537 Pairing precompile. 873 type bls12381Pairing struct{} 874 875 // RequiredGas returns the gas required to execute the pre-compiled contract. 876 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 877 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 878 } 879 880 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 881 // Implements EIP-2537 Pairing precompile logic. 882 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 883 // > - `128` bytes of G1 point encoding 884 // > - `256` bytes of G2 point encoding 885 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 886 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 887 k := len(input) / 384 888 if len(input) == 0 || len(input)%384 != 0 { 889 return nil, errBLS12381InvalidInputLength 890 } 891 892 // Initialize BLS12-381 pairing engine 893 e := bls12381.NewPairingEngine() 894 g1, g2 := e.G1, e.G2 895 896 // Decode pairs 897 for i := 0; i < k; i++ { 898 off := 384 * i 899 t0, t1, t2 := off, off+128, off+384 900 901 // Decode G1 point 902 p1, err := g1.DecodePoint(input[t0:t1]) 903 if err != nil { 904 return nil, err 905 } 906 // Decode G2 point 907 p2, err := g2.DecodePoint(input[t1:t2]) 908 if err != nil { 909 return nil, err 910 } 911 912 // 'point is on curve' check already done, 913 // Here we need to apply subgroup checks. 914 if !g1.InCorrectSubgroup(p1) { 915 return nil, errBLS12381G1PointSubgroup 916 } 917 if !g2.InCorrectSubgroup(p2) { 918 return nil, errBLS12381G2PointSubgroup 919 } 920 921 // Update pairing engine with G1 and G2 ponits 922 e.AddPair(p1, p2) 923 } 924 // Prepare 32 byte output 925 out := make([]byte, 32) 926 927 // Compute pairing and set the result 928 if e.Check() { 929 out[31] = 1 930 } 931 return out, nil 932 } 933 934 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 935 // Removes top 16 bytes of 64 byte input. 936 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 937 if len(in) != 64 { 938 return nil, errors.New("invalid field element length") 939 } 940 // check top bytes 941 for i := 0; i < 16; i++ { 942 if in[i] != byte(0x00) { 943 return nil, errBLS12381InvalidFieldElementTopBytes 944 } 945 } 946 out := make([]byte, 48) 947 copy(out[:], in[16:]) 948 return out, nil 949 } 950 951 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 952 type bls12381MapG1 struct{} 953 954 // RequiredGas returns the gas required to execute the pre-compiled contract. 955 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 956 return params.Bls12381MapG1Gas 957 } 958 959 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 960 // Implements EIP-2537 Map_To_G1 precompile. 961 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 962 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 963 if len(input) != 64 { 964 return nil, errBLS12381InvalidInputLength 965 } 966 967 // Decode input field element 968 fe, err := decodeBLS12381FieldElement(input) 969 if err != nil { 970 return nil, err 971 } 972 973 // Initialize G1 974 g := bls12381.NewG1() 975 976 // Compute mapping 977 r, err := g.MapToCurve(fe) 978 if err != nil { 979 return nil, err 980 } 981 982 // Encode the G1 point to 128 bytes 983 return g.EncodePoint(r), nil 984 } 985 986 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 987 type bls12381MapG2 struct{} 988 989 // RequiredGas returns the gas required to execute the pre-compiled contract. 990 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 991 return params.Bls12381MapG2Gas 992 } 993 994 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 995 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 996 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 997 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 998 if len(input) != 128 { 999 return nil, errBLS12381InvalidInputLength 1000 } 1001 1002 // Decode input field element 1003 fe := make([]byte, 96) 1004 c0, err := decodeBLS12381FieldElement(input[:64]) 1005 if err != nil { 1006 return nil, err 1007 } 1008 copy(fe[48:], c0) 1009 c1, err := decodeBLS12381FieldElement(input[64:]) 1010 if err != nil { 1011 return nil, err 1012 } 1013 copy(fe[:48], c1) 1014 1015 // Initialize G2 1016 g := bls12381.NewG2() 1017 1018 // Compute mapping 1019 r, err := g.MapToCurve(fe) 1020 if err != nil { 1021 return nil, err 1022 } 1023 1024 // Encode the G2 point to 256 bytes 1025 return g.EncodePoint(r), nil 1026 }