github.com/ooni/psiphon/tunnel-core@v0.0.0-20230105123940-fe12a24c96ee/oovendor/qtls-go1-15/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package qtls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn        net.Conn
    28  	isClient    bool
    29  	handshakeFn func() error // (*Conn).clientHandshake or serverHandshake
    30  
    31  	// handshakeStatus is 1 if the connection is currently transferring
    32  	// application data (i.e. is not currently processing a handshake).
    33  	// This field is only to be accessed with sync/atomic.
    34  	handshakeStatus uint32
    35  	// constant after handshake; protected by handshakeMutex
    36  	handshakeMutex sync.Mutex
    37  	handshakeErr   error   // error resulting from handshake
    38  	vers           uint16  // TLS version
    39  	haveVers       bool    // version has been negotiated
    40  	config         *config // configuration passed to constructor
    41  	// handshakes counts the number of handshakes performed on the
    42  	// connection so far. If renegotiation is disabled then this is either
    43  	// zero or one.
    44  	extraConfig *ExtraConfig
    45  
    46  	handshakes       int
    47  	didResume        bool // whether this connection was a session resumption
    48  	cipherSuite      uint16
    49  	ocspResponse     []byte   // stapled OCSP response
    50  	scts             [][]byte // signed certificate timestamps from server
    51  	peerCertificates []*x509.Certificate
    52  	// verifiedChains contains the certificate chains that we built, as
    53  	// opposed to the ones presented by the server.
    54  	verifiedChains [][]*x509.Certificate
    55  	// serverName contains the server name indicated by the client, if any.
    56  	serverName string
    57  	// secureRenegotiation is true if the server echoed the secure
    58  	// renegotiation extension. (This is meaningless as a server because
    59  	// renegotiation is not supported in that case.)
    60  	secureRenegotiation bool
    61  	// ekm is a closure for exporting keying material.
    62  	ekm func(label string, context []byte, length int) ([]byte, error)
    63  	// For the client:
    64  	// resumptionSecret is the resumption_master_secret for handling
    65  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    66  	// For the server:
    67  	// resumptionSecret is the resumption_master_secret for generating
    68  	// NewSessionTicket messages. Only used when the alternative record
    69  	// layer is set. nil if config.SessionTicketsDisabled.
    70  	resumptionSecret []byte
    71  
    72  	// ticketKeys is the set of active session ticket keys for this
    73  	// connection. The first one is used to encrypt new tickets and
    74  	// all are tried to decrypt tickets.
    75  	ticketKeys []ticketKey
    76  
    77  	// clientFinishedIsFirst is true if the client sent the first Finished
    78  	// message during the most recent handshake. This is recorded because
    79  	// the first transmitted Finished message is the tls-unique
    80  	// channel-binding value.
    81  	clientFinishedIsFirst bool
    82  
    83  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    84  	closeNotifyErr error
    85  	// closeNotifySent is true if the Conn attempted to send an
    86  	// alertCloseNotify record.
    87  	closeNotifySent bool
    88  
    89  	// clientFinished and serverFinished contain the Finished message sent
    90  	// by the client or server in the most recent handshake. This is
    91  	// retained to support the renegotiation extension and tls-unique
    92  	// channel-binding.
    93  	clientFinished [12]byte
    94  	serverFinished [12]byte
    95  
    96  	clientProtocol         string
    97  	clientProtocolFallback bool
    98  
    99  	// input/output
   100  	in, out   halfConn
   101  	rawInput  bytes.Buffer // raw input, starting with a record header
   102  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
   103  	hand      bytes.Buffer // handshake data waiting to be read
   104  	outBuf    []byte       // scratch buffer used by out.encrypt
   105  	buffering bool         // whether records are buffered in sendBuf
   106  	sendBuf   []byte       // a buffer of records waiting to be sent
   107  
   108  	// bytesSent counts the bytes of application data sent.
   109  	// packetsSent counts packets.
   110  	bytesSent   int64
   111  	packetsSent int64
   112  
   113  	// retryCount counts the number of consecutive non-advancing records
   114  	// received by Conn.readRecord. That is, records that neither advance the
   115  	// handshake, nor deliver application data. Protected by in.Mutex.
   116  	retryCount int
   117  
   118  	// activeCall is an atomic int32; the low bit is whether Close has
   119  	// been called. the rest of the bits are the number of goroutines
   120  	// in Conn.Write.
   121  	activeCall int32
   122  
   123  	used0RTT bool
   124  
   125  	tmp [16]byte
   126  }
   127  
   128  // Access to net.Conn methods.
   129  // Cannot just embed net.Conn because that would
   130  // export the struct field too.
   131  
   132  // LocalAddr returns the local network address.
   133  func (c *Conn) LocalAddr() net.Addr {
   134  	return c.conn.LocalAddr()
   135  }
   136  
   137  // RemoteAddr returns the remote network address.
   138  func (c *Conn) RemoteAddr() net.Addr {
   139  	return c.conn.RemoteAddr()
   140  }
   141  
   142  // SetDeadline sets the read and write deadlines associated with the connection.
   143  // A zero value for t means Read and Write will not time out.
   144  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   145  func (c *Conn) SetDeadline(t time.Time) error {
   146  	return c.conn.SetDeadline(t)
   147  }
   148  
   149  // SetReadDeadline sets the read deadline on the underlying connection.
   150  // A zero value for t means Read will not time out.
   151  func (c *Conn) SetReadDeadline(t time.Time) error {
   152  	return c.conn.SetReadDeadline(t)
   153  }
   154  
   155  // SetWriteDeadline sets the write deadline on the underlying connection.
   156  // A zero value for t means Write will not time out.
   157  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   158  func (c *Conn) SetWriteDeadline(t time.Time) error {
   159  	return c.conn.SetWriteDeadline(t)
   160  }
   161  
   162  // A halfConn represents one direction of the record layer
   163  // connection, either sending or receiving.
   164  type halfConn struct {
   165  	sync.Mutex
   166  
   167  	err            error       // first permanent error
   168  	version        uint16      // protocol version
   169  	cipher         interface{} // cipher algorithm
   170  	mac            macFunction
   171  	seq            [8]byte  // 64-bit sequence number
   172  	additionalData [13]byte // to avoid allocs; interface method args escape
   173  
   174  	nextCipher interface{} // next encryption state
   175  	nextMac    macFunction // next MAC algorithm
   176  
   177  	trafficSecret []byte // current TLS 1.3 traffic secret
   178  
   179  	setKeyCallback func(encLevel EncryptionLevel, suite *CipherSuiteTLS13, trafficSecret []byte)
   180  }
   181  
   182  type permamentError struct {
   183  	err net.Error
   184  }
   185  
   186  func (e *permamentError) Error() string   { return e.err.Error() }
   187  func (e *permamentError) Unwrap() error   { return e.err }
   188  func (e *permamentError) Timeout() bool   { return e.err.Timeout() }
   189  func (e *permamentError) Temporary() bool { return false }
   190  
   191  func (hc *halfConn) setErrorLocked(err error) error {
   192  	if e, ok := err.(net.Error); ok {
   193  		hc.err = &permamentError{err: e}
   194  	} else {
   195  		hc.err = err
   196  	}
   197  	return hc.err
   198  }
   199  
   200  // prepareCipherSpec sets the encryption and MAC states
   201  // that a subsequent changeCipherSpec will use.
   202  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   203  	hc.version = version
   204  	hc.nextCipher = cipher
   205  	hc.nextMac = mac
   206  }
   207  
   208  // changeCipherSpec changes the encryption and MAC states
   209  // to the ones previously passed to prepareCipherSpec.
   210  func (hc *halfConn) changeCipherSpec() error {
   211  	if hc.nextCipher == nil || hc.version == VersionTLS13 {
   212  		return alertInternalError
   213  	}
   214  	hc.cipher = hc.nextCipher
   215  	hc.mac = hc.nextMac
   216  	hc.nextCipher = nil
   217  	hc.nextMac = nil
   218  	for i := range hc.seq {
   219  		hc.seq[i] = 0
   220  	}
   221  	return nil
   222  }
   223  
   224  func (hc *halfConn) exportKey(encLevel EncryptionLevel, suite *cipherSuiteTLS13, trafficSecret []byte) {
   225  	if hc.setKeyCallback != nil {
   226  		s := &CipherSuiteTLS13{
   227  			ID:     suite.id,
   228  			KeyLen: suite.keyLen,
   229  			Hash:   suite.hash,
   230  			AEAD:   func(key, fixedNonce []byte) cipher.AEAD { return suite.aead(key, fixedNonce) },
   231  		}
   232  		hc.setKeyCallback(encLevel, s, trafficSecret)
   233  	}
   234  }
   235  
   236  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   237  	hc.trafficSecret = secret
   238  	key, iv := suite.trafficKey(secret)
   239  	hc.cipher = suite.aead(key, iv)
   240  	for i := range hc.seq {
   241  		hc.seq[i] = 0
   242  	}
   243  }
   244  
   245  // incSeq increments the sequence number.
   246  func (hc *halfConn) incSeq() {
   247  	for i := 7; i >= 0; i-- {
   248  		hc.seq[i]++
   249  		if hc.seq[i] != 0 {
   250  			return
   251  		}
   252  	}
   253  
   254  	// Not allowed to let sequence number wrap.
   255  	// Instead, must renegotiate before it does.
   256  	// Not likely enough to bother.
   257  	panic("TLS: sequence number wraparound")
   258  }
   259  
   260  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   261  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   262  // and in certain AEAD modes in TLS 1.2.
   263  func (hc *halfConn) explicitNonceLen() int {
   264  	if hc.cipher == nil {
   265  		return 0
   266  	}
   267  
   268  	switch c := hc.cipher.(type) {
   269  	case cipher.Stream:
   270  		return 0
   271  	case aead:
   272  		return c.explicitNonceLen()
   273  	case cbcMode:
   274  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   275  		if hc.version >= VersionTLS11 {
   276  			return c.BlockSize()
   277  		}
   278  		return 0
   279  	default:
   280  		panic("unknown cipher type")
   281  	}
   282  }
   283  
   284  // extractPadding returns, in constant time, the length of the padding to remove
   285  // from the end of payload. It also returns a byte which is equal to 255 if the
   286  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   287  func extractPadding(payload []byte) (toRemove int, good byte) {
   288  	if len(payload) < 1 {
   289  		return 0, 0
   290  	}
   291  
   292  	paddingLen := payload[len(payload)-1]
   293  	t := uint(len(payload)-1) - uint(paddingLen)
   294  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   295  	good = byte(int32(^t) >> 31)
   296  
   297  	// The maximum possible padding length plus the actual length field
   298  	toCheck := 256
   299  	// The length of the padded data is public, so we can use an if here
   300  	if toCheck > len(payload) {
   301  		toCheck = len(payload)
   302  	}
   303  
   304  	for i := 0; i < toCheck; i++ {
   305  		t := uint(paddingLen) - uint(i)
   306  		// if i <= paddingLen then the MSB of t is zero
   307  		mask := byte(int32(^t) >> 31)
   308  		b := payload[len(payload)-1-i]
   309  		good &^= mask&paddingLen ^ mask&b
   310  	}
   311  
   312  	// We AND together the bits of good and replicate the result across
   313  	// all the bits.
   314  	good &= good << 4
   315  	good &= good << 2
   316  	good &= good << 1
   317  	good = uint8(int8(good) >> 7)
   318  
   319  	// Zero the padding length on error. This ensures any unchecked bytes
   320  	// are included in the MAC. Otherwise, an attacker that could
   321  	// distinguish MAC failures from padding failures could mount an attack
   322  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   323  	// full block's worth of padding, replace the final block with another
   324  	// block. If the MAC check passed but the padding check failed, the
   325  	// last byte of that block decrypted to the block size.
   326  	//
   327  	// See also macAndPaddingGood logic below.
   328  	paddingLen &= good
   329  
   330  	toRemove = int(paddingLen) + 1
   331  	return
   332  }
   333  
   334  func roundUp(a, b int) int {
   335  	return a + (b-a%b)%b
   336  }
   337  
   338  // cbcMode is an interface for block ciphers using cipher block chaining.
   339  type cbcMode interface {
   340  	cipher.BlockMode
   341  	SetIV([]byte)
   342  }
   343  
   344  // decrypt authenticates and decrypts the record if protection is active at
   345  // this stage. The returned plaintext might overlap with the input.
   346  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   347  	var plaintext []byte
   348  	typ := recordType(record[0])
   349  	payload := record[recordHeaderLen:]
   350  
   351  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   352  	// decrypted. See RFC 8446, Appendix D.4.
   353  	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   354  		return payload, typ, nil
   355  	}
   356  
   357  	paddingGood := byte(255)
   358  	paddingLen := 0
   359  
   360  	explicitNonceLen := hc.explicitNonceLen()
   361  
   362  	if hc.cipher != nil {
   363  		switch c := hc.cipher.(type) {
   364  		case cipher.Stream:
   365  			c.XORKeyStream(payload, payload)
   366  		case aead:
   367  			if len(payload) < explicitNonceLen {
   368  				return nil, 0, alertBadRecordMAC
   369  			}
   370  			nonce := payload[:explicitNonceLen]
   371  			if len(nonce) == 0 {
   372  				nonce = hc.seq[:]
   373  			}
   374  			payload = payload[explicitNonceLen:]
   375  
   376  			additionalData := hc.additionalData[:]
   377  			if hc.version == VersionTLS13 {
   378  				additionalData = record[:recordHeaderLen]
   379  			} else {
   380  				copy(additionalData, hc.seq[:])
   381  				copy(additionalData[8:], record[:3])
   382  				n := len(payload) - c.Overhead()
   383  				additionalData[11] = byte(n >> 8)
   384  				additionalData[12] = byte(n)
   385  			}
   386  
   387  			var err error
   388  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   389  			if err != nil {
   390  				return nil, 0, alertBadRecordMAC
   391  			}
   392  		case cbcMode:
   393  			blockSize := c.BlockSize()
   394  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   395  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   396  				return nil, 0, alertBadRecordMAC
   397  			}
   398  
   399  			if explicitNonceLen > 0 {
   400  				c.SetIV(payload[:explicitNonceLen])
   401  				payload = payload[explicitNonceLen:]
   402  			}
   403  			c.CryptBlocks(payload, payload)
   404  
   405  			// In a limited attempt to protect against CBC padding oracles like
   406  			// Lucky13, the data past paddingLen (which is secret) is passed to
   407  			// the MAC function as extra data, to be fed into the HMAC after
   408  			// computing the digest. This makes the MAC roughly constant time as
   409  			// long as the digest computation is constant time and does not
   410  			// affect the subsequent write, modulo cache effects.
   411  			paddingLen, paddingGood = extractPadding(payload)
   412  		default:
   413  			panic("unknown cipher type")
   414  		}
   415  
   416  		if hc.version == VersionTLS13 {
   417  			if typ != recordTypeApplicationData {
   418  				return nil, 0, alertUnexpectedMessage
   419  			}
   420  			if len(plaintext) > maxPlaintext+1 {
   421  				return nil, 0, alertRecordOverflow
   422  			}
   423  			// Remove padding and find the ContentType scanning from the end.
   424  			for i := len(plaintext) - 1; i >= 0; i-- {
   425  				if plaintext[i] != 0 {
   426  					typ = recordType(plaintext[i])
   427  					plaintext = plaintext[:i]
   428  					break
   429  				}
   430  				if i == 0 {
   431  					return nil, 0, alertUnexpectedMessage
   432  				}
   433  			}
   434  		}
   435  	} else {
   436  		plaintext = payload
   437  	}
   438  
   439  	if hc.mac != nil {
   440  		macSize := hc.mac.Size()
   441  		if len(payload) < macSize {
   442  			return nil, 0, alertBadRecordMAC
   443  		}
   444  
   445  		n := len(payload) - macSize - paddingLen
   446  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   447  		record[3] = byte(n >> 8)
   448  		record[4] = byte(n)
   449  		remoteMAC := payload[n : n+macSize]
   450  		localMAC := hc.mac.MAC(hc.seq[0:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   451  
   452  		// This is equivalent to checking the MACs and paddingGood
   453  		// separately, but in constant-time to prevent distinguishing
   454  		// padding failures from MAC failures. Depending on what value
   455  		// of paddingLen was returned on bad padding, distinguishing
   456  		// bad MAC from bad padding can lead to an attack.
   457  		//
   458  		// See also the logic at the end of extractPadding.
   459  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   460  		if macAndPaddingGood != 1 {
   461  			return nil, 0, alertBadRecordMAC
   462  		}
   463  
   464  		plaintext = payload[:n]
   465  	}
   466  
   467  	hc.incSeq()
   468  	return plaintext, typ, nil
   469  }
   470  
   471  func (c *Conn) setAlternativeRecordLayer() {
   472  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   473  		c.in.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetReadKey
   474  		c.out.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetWriteKey
   475  	}
   476  }
   477  
   478  // sliceForAppend extends the input slice by n bytes. head is the full extended
   479  // slice, while tail is the appended part. If the original slice has sufficient
   480  // capacity no allocation is performed.
   481  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   482  	if total := len(in) + n; cap(in) >= total {
   483  		head = in[:total]
   484  	} else {
   485  		head = make([]byte, total)
   486  		copy(head, in)
   487  	}
   488  	tail = head[len(in):]
   489  	return
   490  }
   491  
   492  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   493  // appends it to record, which contains the record header.
   494  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   495  	if hc.cipher == nil {
   496  		return append(record, payload...), nil
   497  	}
   498  
   499  	var explicitNonce []byte
   500  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   501  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   502  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   503  			// The AES-GCM construction in TLS has an explicit nonce so that the
   504  			// nonce can be random. However, the nonce is only 8 bytes which is
   505  			// too small for a secure, random nonce. Therefore we use the
   506  			// sequence number as the nonce. The 3DES-CBC construction also has
   507  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   508  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   509  			// 3DES' biggest problem anyway because the birthday bound on block
   510  			// collision is reached first due to its simlarly small block size
   511  			// (see the Sweet32 attack).
   512  			copy(explicitNonce, hc.seq[:])
   513  		} else {
   514  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   515  				return nil, err
   516  			}
   517  		}
   518  	}
   519  
   520  	var mac []byte
   521  	if hc.mac != nil {
   522  		mac = hc.mac.MAC(hc.seq[:], record[:recordHeaderLen], payload, nil)
   523  	}
   524  
   525  	var dst []byte
   526  	switch c := hc.cipher.(type) {
   527  	case cipher.Stream:
   528  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   529  		c.XORKeyStream(dst[:len(payload)], payload)
   530  		c.XORKeyStream(dst[len(payload):], mac)
   531  	case aead:
   532  		nonce := explicitNonce
   533  		if len(nonce) == 0 {
   534  			nonce = hc.seq[:]
   535  		}
   536  
   537  		if hc.version == VersionTLS13 {
   538  			record = append(record, payload...)
   539  
   540  			// Encrypt the actual ContentType and replace the plaintext one.
   541  			record = append(record, record[0])
   542  			record[0] = byte(recordTypeApplicationData)
   543  
   544  			n := len(payload) + 1 + c.Overhead()
   545  			record[3] = byte(n >> 8)
   546  			record[4] = byte(n)
   547  
   548  			record = c.Seal(record[:recordHeaderLen],
   549  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   550  		} else {
   551  			copy(hc.additionalData[:], hc.seq[:])
   552  			copy(hc.additionalData[8:], record)
   553  			record = c.Seal(record, nonce, payload, hc.additionalData[:])
   554  		}
   555  	case cbcMode:
   556  		blockSize := c.BlockSize()
   557  		plaintextLen := len(payload) + len(mac)
   558  		paddingLen := blockSize - plaintextLen%blockSize
   559  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   560  		copy(dst, payload)
   561  		copy(dst[len(payload):], mac)
   562  		for i := plaintextLen; i < len(dst); i++ {
   563  			dst[i] = byte(paddingLen - 1)
   564  		}
   565  		if len(explicitNonce) > 0 {
   566  			c.SetIV(explicitNonce)
   567  		}
   568  		c.CryptBlocks(dst, dst)
   569  	default:
   570  		panic("unknown cipher type")
   571  	}
   572  
   573  	// Update length to include nonce, MAC and any block padding needed.
   574  	n := len(record) - recordHeaderLen
   575  	record[3] = byte(n >> 8)
   576  	record[4] = byte(n)
   577  	hc.incSeq()
   578  
   579  	return record, nil
   580  }
   581  
   582  // RecordHeaderError is returned when a TLS record header is invalid.
   583  type RecordHeaderError struct {
   584  	// Msg contains a human readable string that describes the error.
   585  	Msg string
   586  	// RecordHeader contains the five bytes of TLS record header that
   587  	// triggered the error.
   588  	RecordHeader [5]byte
   589  	// Conn provides the underlying net.Conn in the case that a client
   590  	// sent an initial handshake that didn't look like TLS.
   591  	// It is nil if there's already been a handshake or a TLS alert has
   592  	// been written to the connection.
   593  	Conn net.Conn
   594  }
   595  
   596  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   597  
   598  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   599  	err.Msg = msg
   600  	err.Conn = conn
   601  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   602  	return err
   603  }
   604  
   605  func (c *Conn) readRecord() error {
   606  	return c.readRecordOrCCS(false)
   607  }
   608  
   609  func (c *Conn) readChangeCipherSpec() error {
   610  	return c.readRecordOrCCS(true)
   611  }
   612  
   613  // readRecordOrCCS reads one or more TLS records from the connection and
   614  // updates the record layer state. Some invariants:
   615  //   * c.in must be locked
   616  //   * c.input must be empty
   617  // During the handshake one and only one of the following will happen:
   618  //   - c.hand grows
   619  //   - c.in.changeCipherSpec is called
   620  //   - an error is returned
   621  // After the handshake one and only one of the following will happen:
   622  //   - c.hand grows
   623  //   - c.input is set
   624  //   - an error is returned
   625  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   626  	if c.in.err != nil {
   627  		return c.in.err
   628  	}
   629  	handshakeComplete := c.handshakeComplete()
   630  
   631  	// This function modifies c.rawInput, which owns the c.input memory.
   632  	if c.input.Len() != 0 {
   633  		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   634  	}
   635  	c.input.Reset(nil)
   636  
   637  	// Read header, payload.
   638  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   639  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   640  		// is an error, but popular web sites seem to do this, so we accept it
   641  		// if and only if at the record boundary.
   642  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   643  			err = io.EOF
   644  		}
   645  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   646  			c.in.setErrorLocked(err)
   647  		}
   648  		return err
   649  	}
   650  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   651  	typ := recordType(hdr[0])
   652  
   653  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   654  	// start with a uint16 length where the MSB is set and the first record
   655  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   656  	// an SSLv2 client.
   657  	if !handshakeComplete && typ == 0x80 {
   658  		c.sendAlert(alertProtocolVersion)
   659  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   660  	}
   661  
   662  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   663  	n := int(hdr[3])<<8 | int(hdr[4])
   664  	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   665  		c.sendAlert(alertProtocolVersion)
   666  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   667  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   668  	}
   669  	if !c.haveVers {
   670  		// First message, be extra suspicious: this might not be a TLS
   671  		// client. Bail out before reading a full 'body', if possible.
   672  		// The current max version is 3.3 so if the version is >= 16.0,
   673  		// it's probably not real.
   674  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   675  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   676  		}
   677  	}
   678  	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   679  		c.sendAlert(alertRecordOverflow)
   680  		msg := fmt.Sprintf("oversized record received with length %d", n)
   681  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   682  	}
   683  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   684  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   685  			c.in.setErrorLocked(err)
   686  		}
   687  		return err
   688  	}
   689  
   690  	// Process message.
   691  	record := c.rawInput.Next(recordHeaderLen + n)
   692  	data, typ, err := c.in.decrypt(record)
   693  	if err != nil {
   694  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   695  	}
   696  	if len(data) > maxPlaintext {
   697  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   698  	}
   699  
   700  	// Application Data messages are always protected.
   701  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   702  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   703  	}
   704  
   705  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   706  		// This is a state-advancing message: reset the retry count.
   707  		c.retryCount = 0
   708  	}
   709  
   710  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   711  	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   712  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   713  	}
   714  
   715  	switch typ {
   716  	default:
   717  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   718  
   719  	case recordTypeAlert:
   720  		if len(data) != 2 {
   721  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   722  		}
   723  		if alert(data[1]) == alertCloseNotify {
   724  			return c.in.setErrorLocked(io.EOF)
   725  		}
   726  		if c.vers == VersionTLS13 {
   727  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   728  		}
   729  		switch data[0] {
   730  		case alertLevelWarning:
   731  			// Drop the record on the floor and retry.
   732  			return c.retryReadRecord(expectChangeCipherSpec)
   733  		case alertLevelError:
   734  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   735  		default:
   736  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   737  		}
   738  
   739  	case recordTypeChangeCipherSpec:
   740  		if len(data) != 1 || data[0] != 1 {
   741  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   742  		}
   743  		// Handshake messages are not allowed to fragment across the CCS.
   744  		if c.hand.Len() > 0 {
   745  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   746  		}
   747  		// In TLS 1.3, change_cipher_spec records are ignored until the
   748  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   749  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   750  		// c.vers is still unset. That's not useful though and suspicious if the
   751  		// server then selects a lower protocol version, so don't allow that.
   752  		if c.vers == VersionTLS13 {
   753  			return c.retryReadRecord(expectChangeCipherSpec)
   754  		}
   755  		if !expectChangeCipherSpec {
   756  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   757  		}
   758  		if err := c.in.changeCipherSpec(); err != nil {
   759  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   760  		}
   761  
   762  	case recordTypeApplicationData:
   763  		if !handshakeComplete || expectChangeCipherSpec {
   764  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   765  		}
   766  		// Some OpenSSL servers send empty records in order to randomize the
   767  		// CBC IV. Ignore a limited number of empty records.
   768  		if len(data) == 0 {
   769  			return c.retryReadRecord(expectChangeCipherSpec)
   770  		}
   771  		// Note that data is owned by c.rawInput, following the Next call above,
   772  		// to avoid copying the plaintext. This is safe because c.rawInput is
   773  		// not read from or written to until c.input is drained.
   774  		c.input.Reset(data)
   775  
   776  	case recordTypeHandshake:
   777  		if len(data) == 0 || expectChangeCipherSpec {
   778  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   779  		}
   780  		c.hand.Write(data)
   781  	}
   782  
   783  	return nil
   784  }
   785  
   786  // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   787  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   788  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   789  	c.retryCount++
   790  	if c.retryCount > maxUselessRecords {
   791  		c.sendAlert(alertUnexpectedMessage)
   792  		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   793  	}
   794  	return c.readRecordOrCCS(expectChangeCipherSpec)
   795  }
   796  
   797  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   798  // read. It is different from an io.LimitedReader in that it doesn't cut short
   799  // the last Read call, and in that it considers an early EOF an error.
   800  type atLeastReader struct {
   801  	R io.Reader
   802  	N int64
   803  }
   804  
   805  func (r *atLeastReader) Read(p []byte) (int, error) {
   806  	if r.N <= 0 {
   807  		return 0, io.EOF
   808  	}
   809  	n, err := r.R.Read(p)
   810  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   811  	if r.N > 0 && err == io.EOF {
   812  		return n, io.ErrUnexpectedEOF
   813  	}
   814  	if r.N <= 0 && err == nil {
   815  		return n, io.EOF
   816  	}
   817  	return n, err
   818  }
   819  
   820  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   821  // at least n bytes or else returns an error.
   822  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   823  	if c.rawInput.Len() >= n {
   824  		return nil
   825  	}
   826  	needs := n - c.rawInput.Len()
   827  	// There might be extra input waiting on the wire. Make a best effort
   828  	// attempt to fetch it so that it can be used in (*Conn).Read to
   829  	// "predict" closeNotify alerts.
   830  	c.rawInput.Grow(needs + bytes.MinRead)
   831  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   832  	return err
   833  }
   834  
   835  // sendAlert sends a TLS alert message.
   836  func (c *Conn) sendAlertLocked(err alert) error {
   837  	switch err {
   838  	case alertNoRenegotiation, alertCloseNotify:
   839  		c.tmp[0] = alertLevelWarning
   840  	default:
   841  		c.tmp[0] = alertLevelError
   842  	}
   843  	c.tmp[1] = byte(err)
   844  
   845  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   846  	if err == alertCloseNotify {
   847  		// closeNotify is a special case in that it isn't an error.
   848  		return writeErr
   849  	}
   850  
   851  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   852  }
   853  
   854  // sendAlert sends a TLS alert message.
   855  func (c *Conn) sendAlert(err alert) error {
   856  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   857  		c.extraConfig.AlternativeRecordLayer.SendAlert(uint8(err))
   858  		return &net.OpError{Op: "local error", Err: err}
   859  	}
   860  
   861  	c.out.Lock()
   862  	defer c.out.Unlock()
   863  	return c.sendAlertLocked(err)
   864  }
   865  
   866  const (
   867  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   868  	// size (MSS). A constant is used, rather than querying the kernel for
   869  	// the actual MSS, to avoid complexity. The value here is the IPv6
   870  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   871  	// bytes) and a TCP header with timestamps (32 bytes).
   872  	tcpMSSEstimate = 1208
   873  
   874  	// recordSizeBoostThreshold is the number of bytes of application data
   875  	// sent after which the TLS record size will be increased to the
   876  	// maximum.
   877  	recordSizeBoostThreshold = 128 * 1024
   878  )
   879  
   880  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   881  // next application data record. There is the following trade-off:
   882  //
   883  //   - For latency-sensitive applications, such as web browsing, each TLS
   884  //     record should fit in one TCP segment.
   885  //   - For throughput-sensitive applications, such as large file transfers,
   886  //     larger TLS records better amortize framing and encryption overheads.
   887  //
   888  // A simple heuristic that works well in practice is to use small records for
   889  // the first 1MB of data, then use larger records for subsequent data, and
   890  // reset back to smaller records after the connection becomes idle. See "High
   891  // Performance Web Networking", Chapter 4, or:
   892  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   893  //
   894  // In the interests of simplicity and determinism, this code does not attempt
   895  // to reset the record size once the connection is idle, however.
   896  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   897  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   898  		return maxPlaintext
   899  	}
   900  
   901  	if c.bytesSent >= recordSizeBoostThreshold {
   902  		return maxPlaintext
   903  	}
   904  
   905  	// Subtract TLS overheads to get the maximum payload size.
   906  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   907  	if c.out.cipher != nil {
   908  		switch ciph := c.out.cipher.(type) {
   909  		case cipher.Stream:
   910  			payloadBytes -= c.out.mac.Size()
   911  		case cipher.AEAD:
   912  			payloadBytes -= ciph.Overhead()
   913  		case cbcMode:
   914  			blockSize := ciph.BlockSize()
   915  			// The payload must fit in a multiple of blockSize, with
   916  			// room for at least one padding byte.
   917  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   918  			// The MAC is appended before padding so affects the
   919  			// payload size directly.
   920  			payloadBytes -= c.out.mac.Size()
   921  		default:
   922  			panic("unknown cipher type")
   923  		}
   924  	}
   925  	if c.vers == VersionTLS13 {
   926  		payloadBytes-- // encrypted ContentType
   927  	}
   928  
   929  	// Allow packet growth in arithmetic progression up to max.
   930  	pkt := c.packetsSent
   931  	c.packetsSent++
   932  	if pkt > 1000 {
   933  		return maxPlaintext // avoid overflow in multiply below
   934  	}
   935  
   936  	n := payloadBytes * int(pkt+1)
   937  	if n > maxPlaintext {
   938  		n = maxPlaintext
   939  	}
   940  	return n
   941  }
   942  
   943  func (c *Conn) write(data []byte) (int, error) {
   944  	if c.buffering {
   945  		c.sendBuf = append(c.sendBuf, data...)
   946  		return len(data), nil
   947  	}
   948  
   949  	n, err := c.conn.Write(data)
   950  	c.bytesSent += int64(n)
   951  	return n, err
   952  }
   953  
   954  func (c *Conn) flush() (int, error) {
   955  	if len(c.sendBuf) == 0 {
   956  		return 0, nil
   957  	}
   958  
   959  	n, err := c.conn.Write(c.sendBuf)
   960  	c.bytesSent += int64(n)
   961  	c.sendBuf = nil
   962  	c.buffering = false
   963  	return n, err
   964  }
   965  
   966  // writeRecordLocked writes a TLS record with the given type and payload to the
   967  // connection and updates the record layer state.
   968  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   969  	var n int
   970  	for len(data) > 0 {
   971  		m := len(data)
   972  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   973  			m = maxPayload
   974  		}
   975  
   976  		_, c.outBuf = sliceForAppend(c.outBuf[:0], recordHeaderLen)
   977  		c.outBuf[0] = byte(typ)
   978  		vers := c.vers
   979  		if vers == 0 {
   980  			// Some TLS servers fail if the record version is
   981  			// greater than TLS 1.0 for the initial ClientHello.
   982  			vers = VersionTLS10
   983  		} else if vers == VersionTLS13 {
   984  			// TLS 1.3 froze the record layer version to 1.2.
   985  			// See RFC 8446, Section 5.1.
   986  			vers = VersionTLS12
   987  		}
   988  		c.outBuf[1] = byte(vers >> 8)
   989  		c.outBuf[2] = byte(vers)
   990  		c.outBuf[3] = byte(m >> 8)
   991  		c.outBuf[4] = byte(m)
   992  
   993  		var err error
   994  		c.outBuf, err = c.out.encrypt(c.outBuf, data[:m], c.config.rand())
   995  		if err != nil {
   996  			return n, err
   997  		}
   998  		if _, err := c.write(c.outBuf); err != nil {
   999  			return n, err
  1000  		}
  1001  		n += m
  1002  		data = data[m:]
  1003  	}
  1004  
  1005  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
  1006  		if err := c.out.changeCipherSpec(); err != nil {
  1007  			return n, c.sendAlertLocked(err.(alert))
  1008  		}
  1009  	}
  1010  
  1011  	return n, nil
  1012  }
  1013  
  1014  // writeRecord writes a TLS record with the given type and payload to the
  1015  // connection and updates the record layer state.
  1016  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  1017  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1018  		if typ == recordTypeChangeCipherSpec {
  1019  			return len(data), nil
  1020  		}
  1021  		return c.extraConfig.AlternativeRecordLayer.WriteRecord(data)
  1022  	}
  1023  
  1024  	c.out.Lock()
  1025  	defer c.out.Unlock()
  1026  
  1027  	return c.writeRecordLocked(typ, data)
  1028  }
  1029  
  1030  // [Psiphon]
  1031  
  1032  func ReadClientHelloRandom(data []byte) ([]byte, error) {
  1033  	if len(data) < 1 {
  1034  		return nil, errors.New("tls: missing message type")
  1035  	}
  1036  	if data[0] != typeClientHello {
  1037  		return nil, errors.New("tls: unexpected message type")
  1038  	}
  1039  
  1040  	// Unlike readHandshake, m is not retained and so making a copy of the
  1041  	// input data is not necessary.
  1042  
  1043  	var m clientHelloMsg
  1044  	if !m.unmarshal(data) {
  1045  		return nil, errors.New("tls: unexpected message")
  1046  	}
  1047  
  1048  	return m.random, nil
  1049  }
  1050  
  1051  // readHandshake reads the next handshake message from
  1052  // the record layer.
  1053  func (c *Conn) readHandshake() (interface{}, error) {
  1054  	var data []byte
  1055  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1056  		var err error
  1057  		data, err = c.extraConfig.AlternativeRecordLayer.ReadHandshakeMessage()
  1058  		if err != nil {
  1059  			return nil, err
  1060  		}
  1061  	} else {
  1062  		for c.hand.Len() < 4 {
  1063  			if err := c.readRecord(); err != nil {
  1064  				return nil, err
  1065  			}
  1066  		}
  1067  
  1068  		data = c.hand.Bytes()
  1069  		n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1070  		if n > maxHandshake {
  1071  			c.sendAlertLocked(alertInternalError)
  1072  			return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1073  		}
  1074  		for c.hand.Len() < 4+n {
  1075  			if err := c.readRecord(); err != nil {
  1076  				return nil, err
  1077  			}
  1078  		}
  1079  		data = c.hand.Next(4 + n)
  1080  	}
  1081  	var m handshakeMessage
  1082  	switch data[0] {
  1083  	case typeHelloRequest:
  1084  		m = new(helloRequestMsg)
  1085  	case typeClientHello:
  1086  		m = new(clientHelloMsg)
  1087  	case typeServerHello:
  1088  		m = new(serverHelloMsg)
  1089  	case typeNewSessionTicket:
  1090  		if c.vers == VersionTLS13 {
  1091  			m = new(newSessionTicketMsgTLS13)
  1092  		} else {
  1093  			m = new(newSessionTicketMsg)
  1094  		}
  1095  	case typeCertificate:
  1096  		if c.vers == VersionTLS13 {
  1097  			m = new(certificateMsgTLS13)
  1098  		} else {
  1099  			m = new(certificateMsg)
  1100  		}
  1101  	case typeCertificateRequest:
  1102  		if c.vers == VersionTLS13 {
  1103  			m = new(certificateRequestMsgTLS13)
  1104  		} else {
  1105  			m = &certificateRequestMsg{
  1106  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1107  			}
  1108  		}
  1109  	case typeCertificateStatus:
  1110  		m = new(certificateStatusMsg)
  1111  	case typeServerKeyExchange:
  1112  		m = new(serverKeyExchangeMsg)
  1113  	case typeServerHelloDone:
  1114  		m = new(serverHelloDoneMsg)
  1115  	case typeClientKeyExchange:
  1116  		m = new(clientKeyExchangeMsg)
  1117  	case typeCertificateVerify:
  1118  		m = &certificateVerifyMsg{
  1119  			hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1120  		}
  1121  	case typeFinished:
  1122  		m = new(finishedMsg)
  1123  	case typeEncryptedExtensions:
  1124  		m = new(encryptedExtensionsMsg)
  1125  	case typeEndOfEarlyData:
  1126  		m = new(endOfEarlyDataMsg)
  1127  	case typeKeyUpdate:
  1128  		m = new(keyUpdateMsg)
  1129  	default:
  1130  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1131  	}
  1132  
  1133  	// The handshake message unmarshalers
  1134  	// expect to be able to keep references to data,
  1135  	// so pass in a fresh copy that won't be overwritten.
  1136  	data = append([]byte(nil), data...)
  1137  
  1138  	if !m.unmarshal(data) {
  1139  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1140  	}
  1141  	return m, nil
  1142  }
  1143  
  1144  var (
  1145  	errClosed   = errors.New("tls: use of closed connection")
  1146  	errShutdown = errors.New("tls: protocol is shutdown")
  1147  )
  1148  
  1149  // Write writes data to the connection.
  1150  func (c *Conn) Write(b []byte) (int, error) {
  1151  	// interlock with Close below
  1152  	for {
  1153  		x := atomic.LoadInt32(&c.activeCall)
  1154  		if x&1 != 0 {
  1155  			return 0, errClosed
  1156  		}
  1157  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1158  			break
  1159  		}
  1160  	}
  1161  	defer atomic.AddInt32(&c.activeCall, -2)
  1162  
  1163  	if err := c.Handshake(); err != nil {
  1164  		return 0, err
  1165  	}
  1166  
  1167  	c.out.Lock()
  1168  	defer c.out.Unlock()
  1169  
  1170  	if err := c.out.err; err != nil {
  1171  		return 0, err
  1172  	}
  1173  
  1174  	if !c.handshakeComplete() {
  1175  		return 0, alertInternalError
  1176  	}
  1177  
  1178  	if c.closeNotifySent {
  1179  		return 0, errShutdown
  1180  	}
  1181  
  1182  	// TLS 1.0 is susceptible to a chosen-plaintext
  1183  	// attack when using block mode ciphers due to predictable IVs.
  1184  	// This can be prevented by splitting each Application Data
  1185  	// record into two records, effectively randomizing the IV.
  1186  	//
  1187  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1188  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1189  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1190  
  1191  	var m int
  1192  	if len(b) > 1 && c.vers == VersionTLS10 {
  1193  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1194  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1195  			if err != nil {
  1196  				return n, c.out.setErrorLocked(err)
  1197  			}
  1198  			m, b = 1, b[1:]
  1199  		}
  1200  	}
  1201  
  1202  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1203  	return n + m, c.out.setErrorLocked(err)
  1204  }
  1205  
  1206  // handleRenegotiation processes a HelloRequest handshake message.
  1207  func (c *Conn) handleRenegotiation() error {
  1208  	if c.vers == VersionTLS13 {
  1209  		return errors.New("tls: internal error: unexpected renegotiation")
  1210  	}
  1211  
  1212  	msg, err := c.readHandshake()
  1213  	if err != nil {
  1214  		return err
  1215  	}
  1216  
  1217  	helloReq, ok := msg.(*helloRequestMsg)
  1218  	if !ok {
  1219  		c.sendAlert(alertUnexpectedMessage)
  1220  		return unexpectedMessageError(helloReq, msg)
  1221  	}
  1222  
  1223  	if !c.isClient {
  1224  		return c.sendAlert(alertNoRenegotiation)
  1225  	}
  1226  
  1227  	switch c.config.Renegotiation {
  1228  	case RenegotiateNever:
  1229  		return c.sendAlert(alertNoRenegotiation)
  1230  	case RenegotiateOnceAsClient:
  1231  		if c.handshakes > 1 {
  1232  			return c.sendAlert(alertNoRenegotiation)
  1233  		}
  1234  	case RenegotiateFreelyAsClient:
  1235  		// Ok.
  1236  	default:
  1237  		c.sendAlert(alertInternalError)
  1238  		return errors.New("tls: unknown Renegotiation value")
  1239  	}
  1240  
  1241  	c.handshakeMutex.Lock()
  1242  	defer c.handshakeMutex.Unlock()
  1243  
  1244  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1245  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1246  		c.handshakes++
  1247  	}
  1248  	return c.handshakeErr
  1249  }
  1250  
  1251  func (c *Conn) HandlePostHandshakeMessage() error {
  1252  	return c.handlePostHandshakeMessage()
  1253  }
  1254  
  1255  // handlePostHandshakeMessage processes a handshake message arrived after the
  1256  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1257  func (c *Conn) handlePostHandshakeMessage() error {
  1258  	if c.vers != VersionTLS13 {
  1259  		return c.handleRenegotiation()
  1260  	}
  1261  
  1262  	msg, err := c.readHandshake()
  1263  	if err != nil {
  1264  		return err
  1265  	}
  1266  
  1267  	c.retryCount++
  1268  	if c.retryCount > maxUselessRecords {
  1269  		c.sendAlert(alertUnexpectedMessage)
  1270  		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1271  	}
  1272  
  1273  	switch msg := msg.(type) {
  1274  	case *newSessionTicketMsgTLS13:
  1275  		return c.handleNewSessionTicket(msg)
  1276  	case *keyUpdateMsg:
  1277  		return c.handleKeyUpdate(msg)
  1278  	default:
  1279  		c.sendAlert(alertUnexpectedMessage)
  1280  		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1281  	}
  1282  }
  1283  
  1284  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1285  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1286  	if cipherSuite == nil {
  1287  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1288  	}
  1289  
  1290  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1291  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1292  
  1293  	if keyUpdate.updateRequested {
  1294  		c.out.Lock()
  1295  		defer c.out.Unlock()
  1296  
  1297  		msg := &keyUpdateMsg{}
  1298  		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1299  		if err != nil {
  1300  			// Surface the error at the next write.
  1301  			c.out.setErrorLocked(err)
  1302  			return nil
  1303  		}
  1304  
  1305  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1306  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1307  	}
  1308  
  1309  	return nil
  1310  }
  1311  
  1312  // Read can be made to time out and return a net.Error with Timeout() == true
  1313  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1314  func (c *Conn) Read(b []byte) (int, error) {
  1315  	if err := c.Handshake(); err != nil {
  1316  		return 0, err
  1317  	}
  1318  	if len(b) == 0 {
  1319  		// Put this after Handshake, in case people were calling
  1320  		// Read(nil) for the side effect of the Handshake.
  1321  		return 0, nil
  1322  	}
  1323  
  1324  	c.in.Lock()
  1325  	defer c.in.Unlock()
  1326  
  1327  	for c.input.Len() == 0 {
  1328  		if err := c.readRecord(); err != nil {
  1329  			return 0, err
  1330  		}
  1331  		for c.hand.Len() > 0 {
  1332  			if err := c.handlePostHandshakeMessage(); err != nil {
  1333  				return 0, err
  1334  			}
  1335  		}
  1336  	}
  1337  
  1338  	n, _ := c.input.Read(b)
  1339  
  1340  	// If a close-notify alert is waiting, read it so that we can return (n,
  1341  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1342  	// goroutine that the connection is now closed. This eliminates a race
  1343  	// where the HTTP response reading goroutine would otherwise not observe
  1344  	// the EOF until its next read, by which time a client goroutine might
  1345  	// have already tried to reuse the HTTP connection for a new request.
  1346  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1347  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1348  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1349  		if err := c.readRecord(); err != nil {
  1350  			return n, err // will be io.EOF on closeNotify
  1351  		}
  1352  	}
  1353  
  1354  	return n, nil
  1355  }
  1356  
  1357  // Close closes the connection.
  1358  func (c *Conn) Close() error {
  1359  	// Interlock with Conn.Write above.
  1360  	var x int32
  1361  	for {
  1362  		x = atomic.LoadInt32(&c.activeCall)
  1363  		if x&1 != 0 {
  1364  			return errClosed
  1365  		}
  1366  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1367  			break
  1368  		}
  1369  	}
  1370  	if x != 0 {
  1371  		// io.Writer and io.Closer should not be used concurrently.
  1372  		// If Close is called while a Write is currently in-flight,
  1373  		// interpret that as a sign that this Close is really just
  1374  		// being used to break the Write and/or clean up resources and
  1375  		// avoid sending the alertCloseNotify, which may block
  1376  		// waiting on handshakeMutex or the c.out mutex.
  1377  		return c.conn.Close()
  1378  	}
  1379  
  1380  	var alertErr error
  1381  
  1382  	if c.handshakeComplete() {
  1383  		alertErr = c.closeNotify()
  1384  	}
  1385  
  1386  	if err := c.conn.Close(); err != nil {
  1387  		return err
  1388  	}
  1389  	return alertErr
  1390  }
  1391  
  1392  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1393  
  1394  // CloseWrite shuts down the writing side of the connection. It should only be
  1395  // called once the handshake has completed and does not call CloseWrite on the
  1396  // underlying connection. Most callers should just use Close.
  1397  func (c *Conn) CloseWrite() error {
  1398  	if !c.handshakeComplete() {
  1399  		return errEarlyCloseWrite
  1400  	}
  1401  
  1402  	return c.closeNotify()
  1403  }
  1404  
  1405  func (c *Conn) closeNotify() error {
  1406  	c.out.Lock()
  1407  	defer c.out.Unlock()
  1408  
  1409  	if !c.closeNotifySent {
  1410  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1411  		c.closeNotifySent = true
  1412  	}
  1413  	return c.closeNotifyErr
  1414  }
  1415  
  1416  // Handshake runs the client or server handshake
  1417  // protocol if it has not yet been run.
  1418  //
  1419  // Most uses of this package need not call Handshake explicitly: the
  1420  // first Read or Write will call it automatically.
  1421  //
  1422  // For control over canceling or setting a timeout on a handshake, use
  1423  // the Dialer's DialContext method.
  1424  func (c *Conn) Handshake() error {
  1425  	c.handshakeMutex.Lock()
  1426  	defer c.handshakeMutex.Unlock()
  1427  
  1428  	if err := c.handshakeErr; err != nil {
  1429  		return err
  1430  	}
  1431  	if c.handshakeComplete() {
  1432  		return nil
  1433  	}
  1434  
  1435  	c.in.Lock()
  1436  	defer c.in.Unlock()
  1437  
  1438  	c.handshakeErr = c.handshakeFn()
  1439  	if c.handshakeErr == nil {
  1440  		c.handshakes++
  1441  	} else {
  1442  		// If an error occurred during the handshake try to flush the
  1443  		// alert that might be left in the buffer.
  1444  		c.flush()
  1445  	}
  1446  
  1447  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1448  		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1449  	}
  1450  
  1451  	return c.handshakeErr
  1452  }
  1453  
  1454  // ConnectionState returns basic TLS details about the connection.
  1455  func (c *Conn) ConnectionState() ConnectionState {
  1456  	c.handshakeMutex.Lock()
  1457  	defer c.handshakeMutex.Unlock()
  1458  	return c.connectionStateLocked()
  1459  }
  1460  
  1461  // ConnectionStateWith0RTT returns basic TLS details (incl. 0-RTT status) about the connection.
  1462  func (c *Conn) ConnectionStateWith0RTT() ConnectionStateWith0RTT {
  1463  	c.handshakeMutex.Lock()
  1464  	defer c.handshakeMutex.Unlock()
  1465  	return ConnectionStateWith0RTT{
  1466  		ConnectionState: c.connectionStateLocked(),
  1467  		Used0RTT:        c.used0RTT,
  1468  	}
  1469  }
  1470  
  1471  func (c *Conn) connectionStateLocked() ConnectionState {
  1472  	var state connectionState
  1473  	state.HandshakeComplete = c.handshakeComplete()
  1474  	state.Version = c.vers
  1475  	state.NegotiatedProtocol = c.clientProtocol
  1476  	state.DidResume = c.didResume
  1477  	state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1478  	state.ServerName = c.serverName
  1479  	state.CipherSuite = c.cipherSuite
  1480  	state.PeerCertificates = c.peerCertificates
  1481  	state.VerifiedChains = c.verifiedChains
  1482  	state.SignedCertificateTimestamps = c.scts
  1483  	state.OCSPResponse = c.ocspResponse
  1484  	if !c.didResume && c.vers != VersionTLS13 {
  1485  		if c.clientFinishedIsFirst {
  1486  			state.TLSUnique = c.clientFinished[:]
  1487  		} else {
  1488  			state.TLSUnique = c.serverFinished[:]
  1489  		}
  1490  	}
  1491  	if c.config.Renegotiation != RenegotiateNever {
  1492  		state.ekm = noExportedKeyingMaterial
  1493  	} else {
  1494  		state.ekm = c.ekm
  1495  	}
  1496  	return toConnectionState(state)
  1497  }
  1498  
  1499  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1500  // any. (Only valid for client connections.)
  1501  func (c *Conn) OCSPResponse() []byte {
  1502  	c.handshakeMutex.Lock()
  1503  	defer c.handshakeMutex.Unlock()
  1504  
  1505  	return c.ocspResponse
  1506  }
  1507  
  1508  // VerifyHostname checks that the peer certificate chain is valid for
  1509  // connecting to host. If so, it returns nil; if not, it returns an error
  1510  // describing the problem.
  1511  func (c *Conn) VerifyHostname(host string) error {
  1512  	c.handshakeMutex.Lock()
  1513  	defer c.handshakeMutex.Unlock()
  1514  	if !c.isClient {
  1515  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1516  	}
  1517  	if !c.handshakeComplete() {
  1518  		return errors.New("tls: handshake has not yet been performed")
  1519  	}
  1520  	if len(c.verifiedChains) == 0 {
  1521  		return errors.New("tls: handshake did not verify certificate chain")
  1522  	}
  1523  	return c.peerCertificates[0].VerifyHostname(host)
  1524  }
  1525  
  1526  func (c *Conn) handshakeComplete() bool {
  1527  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1528  }