github.com/ooni/psiphon/tunnel-core@v0.0.0-20230105123940-fe12a24c96ee/oovendor/qtls-go1-16/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package qtls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"hash"
    17  	"io"
    18  	"net"
    19  	"sync"
    20  	"sync/atomic"
    21  	"time"
    22  )
    23  
    24  // A Conn represents a secured connection.
    25  // It implements the net.Conn interface.
    26  type Conn struct {
    27  	// constant
    28  	conn        net.Conn
    29  	isClient    bool
    30  	handshakeFn func() error // (*Conn).clientHandshake or serverHandshake
    31  
    32  	// handshakeStatus is 1 if the connection is currently transferring
    33  	// application data (i.e. is not currently processing a handshake).
    34  	// This field is only to be accessed with sync/atomic.
    35  	handshakeStatus uint32
    36  	// constant after handshake; protected by handshakeMutex
    37  	handshakeMutex sync.Mutex
    38  	handshakeErr   error   // error resulting from handshake
    39  	vers           uint16  // TLS version
    40  	haveVers       bool    // version has been negotiated
    41  	config         *config // configuration passed to constructor
    42  	// handshakes counts the number of handshakes performed on the
    43  	// connection so far. If renegotiation is disabled then this is either
    44  	// zero or one.
    45  	extraConfig *ExtraConfig
    46  
    47  	handshakes       int
    48  	didResume        bool // whether this connection was a session resumption
    49  	cipherSuite      uint16
    50  	ocspResponse     []byte   // stapled OCSP response
    51  	scts             [][]byte // signed certificate timestamps from server
    52  	peerCertificates []*x509.Certificate
    53  	// verifiedChains contains the certificate chains that we built, as
    54  	// opposed to the ones presented by the server.
    55  	verifiedChains [][]*x509.Certificate
    56  	// serverName contains the server name indicated by the client, if any.
    57  	serverName string
    58  	// secureRenegotiation is true if the server echoed the secure
    59  	// renegotiation extension. (This is meaningless as a server because
    60  	// renegotiation is not supported in that case.)
    61  	secureRenegotiation bool
    62  	// ekm is a closure for exporting keying material.
    63  	ekm func(label string, context []byte, length int) ([]byte, error)
    64  	// For the client:
    65  	// resumptionSecret is the resumption_master_secret for handling
    66  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    67  	// For the server:
    68  	// resumptionSecret is the resumption_master_secret for generating
    69  	// NewSessionTicket messages. Only used when the alternative record
    70  	// layer is set. nil if config.SessionTicketsDisabled.
    71  	resumptionSecret []byte
    72  
    73  	// ticketKeys is the set of active session ticket keys for this
    74  	// connection. The first one is used to encrypt new tickets and
    75  	// all are tried to decrypt tickets.
    76  	ticketKeys []ticketKey
    77  
    78  	// clientFinishedIsFirst is true if the client sent the first Finished
    79  	// message during the most recent handshake. This is recorded because
    80  	// the first transmitted Finished message is the tls-unique
    81  	// channel-binding value.
    82  	clientFinishedIsFirst bool
    83  
    84  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    85  	closeNotifyErr error
    86  	// closeNotifySent is true if the Conn attempted to send an
    87  	// alertCloseNotify record.
    88  	closeNotifySent bool
    89  
    90  	// clientFinished and serverFinished contain the Finished message sent
    91  	// by the client or server in the most recent handshake. This is
    92  	// retained to support the renegotiation extension and tls-unique
    93  	// channel-binding.
    94  	clientFinished [12]byte
    95  	serverFinished [12]byte
    96  
    97  	// clientProtocol is the negotiated ALPN protocol.
    98  	clientProtocol string
    99  
   100  	// input/output
   101  	in, out   halfConn
   102  	rawInput  bytes.Buffer // raw input, starting with a record header
   103  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
   104  	hand      bytes.Buffer // handshake data waiting to be read
   105  	buffering bool         // whether records are buffered in sendBuf
   106  	sendBuf   []byte       // a buffer of records waiting to be sent
   107  
   108  	// bytesSent counts the bytes of application data sent.
   109  	// packetsSent counts packets.
   110  	bytesSent   int64
   111  	packetsSent int64
   112  
   113  	// retryCount counts the number of consecutive non-advancing records
   114  	// received by Conn.readRecord. That is, records that neither advance the
   115  	// handshake, nor deliver application data. Protected by in.Mutex.
   116  	retryCount int
   117  
   118  	// activeCall is an atomic int32; the low bit is whether Close has
   119  	// been called. the rest of the bits are the number of goroutines
   120  	// in Conn.Write.
   121  	activeCall int32
   122  
   123  	used0RTT bool
   124  
   125  	tmp [16]byte
   126  }
   127  
   128  // Access to net.Conn methods.
   129  // Cannot just embed net.Conn because that would
   130  // export the struct field too.
   131  
   132  // LocalAddr returns the local network address.
   133  func (c *Conn) LocalAddr() net.Addr {
   134  	return c.conn.LocalAddr()
   135  }
   136  
   137  // RemoteAddr returns the remote network address.
   138  func (c *Conn) RemoteAddr() net.Addr {
   139  	return c.conn.RemoteAddr()
   140  }
   141  
   142  // SetDeadline sets the read and write deadlines associated with the connection.
   143  // A zero value for t means Read and Write will not time out.
   144  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   145  func (c *Conn) SetDeadline(t time.Time) error {
   146  	return c.conn.SetDeadline(t)
   147  }
   148  
   149  // SetReadDeadline sets the read deadline on the underlying connection.
   150  // A zero value for t means Read will not time out.
   151  func (c *Conn) SetReadDeadline(t time.Time) error {
   152  	return c.conn.SetReadDeadline(t)
   153  }
   154  
   155  // SetWriteDeadline sets the write deadline on the underlying connection.
   156  // A zero value for t means Write will not time out.
   157  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   158  func (c *Conn) SetWriteDeadline(t time.Time) error {
   159  	return c.conn.SetWriteDeadline(t)
   160  }
   161  
   162  // A halfConn represents one direction of the record layer
   163  // connection, either sending or receiving.
   164  type halfConn struct {
   165  	sync.Mutex
   166  
   167  	err     error       // first permanent error
   168  	version uint16      // protocol version
   169  	cipher  interface{} // cipher algorithm
   170  	mac     hash.Hash
   171  	seq     [8]byte // 64-bit sequence number
   172  
   173  	scratchBuf [13]byte // to avoid allocs; interface method args escape
   174  
   175  	nextCipher interface{} // next encryption state
   176  	nextMac    hash.Hash   // next MAC algorithm
   177  
   178  	trafficSecret []byte // current TLS 1.3 traffic secret
   179  
   180  	setKeyCallback func(encLevel EncryptionLevel, suite *CipherSuiteTLS13, trafficSecret []byte)
   181  }
   182  
   183  type permanentError struct {
   184  	err net.Error
   185  }
   186  
   187  func (e *permanentError) Error() string   { return e.err.Error() }
   188  func (e *permanentError) Unwrap() error   { return e.err }
   189  func (e *permanentError) Timeout() bool   { return e.err.Timeout() }
   190  func (e *permanentError) Temporary() bool { return false }
   191  
   192  func (hc *halfConn) setErrorLocked(err error) error {
   193  	if e, ok := err.(net.Error); ok {
   194  		hc.err = &permanentError{err: e}
   195  	} else {
   196  		hc.err = err
   197  	}
   198  	return hc.err
   199  }
   200  
   201  // prepareCipherSpec sets the encryption and MAC states
   202  // that a subsequent changeCipherSpec will use.
   203  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac hash.Hash) {
   204  	hc.version = version
   205  	hc.nextCipher = cipher
   206  	hc.nextMac = mac
   207  }
   208  
   209  // changeCipherSpec changes the encryption and MAC states
   210  // to the ones previously passed to prepareCipherSpec.
   211  func (hc *halfConn) changeCipherSpec() error {
   212  	if hc.nextCipher == nil || hc.version == VersionTLS13 {
   213  		return alertInternalError
   214  	}
   215  	hc.cipher = hc.nextCipher
   216  	hc.mac = hc.nextMac
   217  	hc.nextCipher = nil
   218  	hc.nextMac = nil
   219  	for i := range hc.seq {
   220  		hc.seq[i] = 0
   221  	}
   222  	return nil
   223  }
   224  
   225  func (hc *halfConn) exportKey(encLevel EncryptionLevel, suite *cipherSuiteTLS13, trafficSecret []byte) {
   226  	if hc.setKeyCallback != nil {
   227  		s := &CipherSuiteTLS13{
   228  			ID:     suite.id,
   229  			KeyLen: suite.keyLen,
   230  			Hash:   suite.hash,
   231  			AEAD:   func(key, fixedNonce []byte) cipher.AEAD { return suite.aead(key, fixedNonce) },
   232  		}
   233  		hc.setKeyCallback(encLevel, s, trafficSecret)
   234  	}
   235  }
   236  
   237  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   238  	hc.trafficSecret = secret
   239  	key, iv := suite.trafficKey(secret)
   240  	hc.cipher = suite.aead(key, iv)
   241  	for i := range hc.seq {
   242  		hc.seq[i] = 0
   243  	}
   244  }
   245  
   246  // incSeq increments the sequence number.
   247  func (hc *halfConn) incSeq() {
   248  	for i := 7; i >= 0; i-- {
   249  		hc.seq[i]++
   250  		if hc.seq[i] != 0 {
   251  			return
   252  		}
   253  	}
   254  
   255  	// Not allowed to let sequence number wrap.
   256  	// Instead, must renegotiate before it does.
   257  	// Not likely enough to bother.
   258  	panic("TLS: sequence number wraparound")
   259  }
   260  
   261  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   262  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   263  // and in certain AEAD modes in TLS 1.2.
   264  func (hc *halfConn) explicitNonceLen() int {
   265  	if hc.cipher == nil {
   266  		return 0
   267  	}
   268  
   269  	switch c := hc.cipher.(type) {
   270  	case cipher.Stream:
   271  		return 0
   272  	case aead:
   273  		return c.explicitNonceLen()
   274  	case cbcMode:
   275  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   276  		if hc.version >= VersionTLS11 {
   277  			return c.BlockSize()
   278  		}
   279  		return 0
   280  	default:
   281  		panic("unknown cipher type")
   282  	}
   283  }
   284  
   285  // extractPadding returns, in constant time, the length of the padding to remove
   286  // from the end of payload. It also returns a byte which is equal to 255 if the
   287  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   288  func extractPadding(payload []byte) (toRemove int, good byte) {
   289  	if len(payload) < 1 {
   290  		return 0, 0
   291  	}
   292  
   293  	paddingLen := payload[len(payload)-1]
   294  	t := uint(len(payload)-1) - uint(paddingLen)
   295  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   296  	good = byte(int32(^t) >> 31)
   297  
   298  	// The maximum possible padding length plus the actual length field
   299  	toCheck := 256
   300  	// The length of the padded data is public, so we can use an if here
   301  	if toCheck > len(payload) {
   302  		toCheck = len(payload)
   303  	}
   304  
   305  	for i := 0; i < toCheck; i++ {
   306  		t := uint(paddingLen) - uint(i)
   307  		// if i <= paddingLen then the MSB of t is zero
   308  		mask := byte(int32(^t) >> 31)
   309  		b := payload[len(payload)-1-i]
   310  		good &^= mask&paddingLen ^ mask&b
   311  	}
   312  
   313  	// We AND together the bits of good and replicate the result across
   314  	// all the bits.
   315  	good &= good << 4
   316  	good &= good << 2
   317  	good &= good << 1
   318  	good = uint8(int8(good) >> 7)
   319  
   320  	// Zero the padding length on error. This ensures any unchecked bytes
   321  	// are included in the MAC. Otherwise, an attacker that could
   322  	// distinguish MAC failures from padding failures could mount an attack
   323  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   324  	// full block's worth of padding, replace the final block with another
   325  	// block. If the MAC check passed but the padding check failed, the
   326  	// last byte of that block decrypted to the block size.
   327  	//
   328  	// See also macAndPaddingGood logic below.
   329  	paddingLen &= good
   330  
   331  	toRemove = int(paddingLen) + 1
   332  	return
   333  }
   334  
   335  func roundUp(a, b int) int {
   336  	return a + (b-a%b)%b
   337  }
   338  
   339  // cbcMode is an interface for block ciphers using cipher block chaining.
   340  type cbcMode interface {
   341  	cipher.BlockMode
   342  	SetIV([]byte)
   343  }
   344  
   345  // decrypt authenticates and decrypts the record if protection is active at
   346  // this stage. The returned plaintext might overlap with the input.
   347  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   348  	var plaintext []byte
   349  	typ := recordType(record[0])
   350  	payload := record[recordHeaderLen:]
   351  
   352  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   353  	// decrypted. See RFC 8446, Appendix D.4.
   354  	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   355  		return payload, typ, nil
   356  	}
   357  
   358  	paddingGood := byte(255)
   359  	paddingLen := 0
   360  
   361  	explicitNonceLen := hc.explicitNonceLen()
   362  
   363  	if hc.cipher != nil {
   364  		switch c := hc.cipher.(type) {
   365  		case cipher.Stream:
   366  			c.XORKeyStream(payload, payload)
   367  		case aead:
   368  			if len(payload) < explicitNonceLen {
   369  				return nil, 0, alertBadRecordMAC
   370  			}
   371  			nonce := payload[:explicitNonceLen]
   372  			if len(nonce) == 0 {
   373  				nonce = hc.seq[:]
   374  			}
   375  			payload = payload[explicitNonceLen:]
   376  
   377  			var additionalData []byte
   378  			if hc.version == VersionTLS13 {
   379  				additionalData = record[:recordHeaderLen]
   380  			} else {
   381  				additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
   382  				additionalData = append(additionalData, record[:3]...)
   383  				n := len(payload) - c.Overhead()
   384  				additionalData = append(additionalData, byte(n>>8), byte(n))
   385  			}
   386  
   387  			var err error
   388  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   389  			if err != nil {
   390  				return nil, 0, alertBadRecordMAC
   391  			}
   392  		case cbcMode:
   393  			blockSize := c.BlockSize()
   394  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   395  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   396  				return nil, 0, alertBadRecordMAC
   397  			}
   398  
   399  			if explicitNonceLen > 0 {
   400  				c.SetIV(payload[:explicitNonceLen])
   401  				payload = payload[explicitNonceLen:]
   402  			}
   403  			c.CryptBlocks(payload, payload)
   404  
   405  			// In a limited attempt to protect against CBC padding oracles like
   406  			// Lucky13, the data past paddingLen (which is secret) is passed to
   407  			// the MAC function as extra data, to be fed into the HMAC after
   408  			// computing the digest. This makes the MAC roughly constant time as
   409  			// long as the digest computation is constant time and does not
   410  			// affect the subsequent write, modulo cache effects.
   411  			paddingLen, paddingGood = extractPadding(payload)
   412  		default:
   413  			panic("unknown cipher type")
   414  		}
   415  
   416  		if hc.version == VersionTLS13 {
   417  			if typ != recordTypeApplicationData {
   418  				return nil, 0, alertUnexpectedMessage
   419  			}
   420  			if len(plaintext) > maxPlaintext+1 {
   421  				return nil, 0, alertRecordOverflow
   422  			}
   423  			// Remove padding and find the ContentType scanning from the end.
   424  			for i := len(plaintext) - 1; i >= 0; i-- {
   425  				if plaintext[i] != 0 {
   426  					typ = recordType(plaintext[i])
   427  					plaintext = plaintext[:i]
   428  					break
   429  				}
   430  				if i == 0 {
   431  					return nil, 0, alertUnexpectedMessage
   432  				}
   433  			}
   434  		}
   435  	} else {
   436  		plaintext = payload
   437  	}
   438  
   439  	if hc.mac != nil {
   440  		macSize := hc.mac.Size()
   441  		if len(payload) < macSize {
   442  			return nil, 0, alertBadRecordMAC
   443  		}
   444  
   445  		n := len(payload) - macSize - paddingLen
   446  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   447  		record[3] = byte(n >> 8)
   448  		record[4] = byte(n)
   449  		remoteMAC := payload[n : n+macSize]
   450  		localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   451  
   452  		// This is equivalent to checking the MACs and paddingGood
   453  		// separately, but in constant-time to prevent distinguishing
   454  		// padding failures from MAC failures. Depending on what value
   455  		// of paddingLen was returned on bad padding, distinguishing
   456  		// bad MAC from bad padding can lead to an attack.
   457  		//
   458  		// See also the logic at the end of extractPadding.
   459  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   460  		if macAndPaddingGood != 1 {
   461  			return nil, 0, alertBadRecordMAC
   462  		}
   463  
   464  		plaintext = payload[:n]
   465  	}
   466  
   467  	hc.incSeq()
   468  	return plaintext, typ, nil
   469  }
   470  
   471  func (c *Conn) setAlternativeRecordLayer() {
   472  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   473  		c.in.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetReadKey
   474  		c.out.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetWriteKey
   475  	}
   476  }
   477  
   478  // sliceForAppend extends the input slice by n bytes. head is the full extended
   479  // slice, while tail is the appended part. If the original slice has sufficient
   480  // capacity no allocation is performed.
   481  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   482  	if total := len(in) + n; cap(in) >= total {
   483  		head = in[:total]
   484  	} else {
   485  		head = make([]byte, total)
   486  		copy(head, in)
   487  	}
   488  	tail = head[len(in):]
   489  	return
   490  }
   491  
   492  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   493  // appends it to record, which must already contain the record header.
   494  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   495  	if hc.cipher == nil {
   496  		return append(record, payload...), nil
   497  	}
   498  
   499  	var explicitNonce []byte
   500  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   501  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   502  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   503  			// The AES-GCM construction in TLS has an explicit nonce so that the
   504  			// nonce can be random. However, the nonce is only 8 bytes which is
   505  			// too small for a secure, random nonce. Therefore we use the
   506  			// sequence number as the nonce. The 3DES-CBC construction also has
   507  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   508  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   509  			// 3DES' biggest problem anyway because the birthday bound on block
   510  			// collision is reached first due to its similarly small block size
   511  			// (see the Sweet32 attack).
   512  			copy(explicitNonce, hc.seq[:])
   513  		} else {
   514  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   515  				return nil, err
   516  			}
   517  		}
   518  	}
   519  
   520  	var dst []byte
   521  	switch c := hc.cipher.(type) {
   522  	case cipher.Stream:
   523  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   524  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   525  		c.XORKeyStream(dst[:len(payload)], payload)
   526  		c.XORKeyStream(dst[len(payload):], mac)
   527  	case aead:
   528  		nonce := explicitNonce
   529  		if len(nonce) == 0 {
   530  			nonce = hc.seq[:]
   531  		}
   532  
   533  		if hc.version == VersionTLS13 {
   534  			record = append(record, payload...)
   535  
   536  			// Encrypt the actual ContentType and replace the plaintext one.
   537  			record = append(record, record[0])
   538  			record[0] = byte(recordTypeApplicationData)
   539  
   540  			n := len(payload) + 1 + c.Overhead()
   541  			record[3] = byte(n >> 8)
   542  			record[4] = byte(n)
   543  
   544  			record = c.Seal(record[:recordHeaderLen],
   545  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   546  		} else {
   547  			additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
   548  			additionalData = append(additionalData, record[:recordHeaderLen]...)
   549  			record = c.Seal(record, nonce, payload, additionalData)
   550  		}
   551  	case cbcMode:
   552  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   553  		blockSize := c.BlockSize()
   554  		plaintextLen := len(payload) + len(mac)
   555  		paddingLen := blockSize - plaintextLen%blockSize
   556  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   557  		copy(dst, payload)
   558  		copy(dst[len(payload):], mac)
   559  		for i := plaintextLen; i < len(dst); i++ {
   560  			dst[i] = byte(paddingLen - 1)
   561  		}
   562  		if len(explicitNonce) > 0 {
   563  			c.SetIV(explicitNonce)
   564  		}
   565  		c.CryptBlocks(dst, dst)
   566  	default:
   567  		panic("unknown cipher type")
   568  	}
   569  
   570  	// Update length to include nonce, MAC and any block padding needed.
   571  	n := len(record) - recordHeaderLen
   572  	record[3] = byte(n >> 8)
   573  	record[4] = byte(n)
   574  	hc.incSeq()
   575  
   576  	return record, nil
   577  }
   578  
   579  // RecordHeaderError is returned when a TLS record header is invalid.
   580  type RecordHeaderError struct {
   581  	// Msg contains a human readable string that describes the error.
   582  	Msg string
   583  	// RecordHeader contains the five bytes of TLS record header that
   584  	// triggered the error.
   585  	RecordHeader [5]byte
   586  	// Conn provides the underlying net.Conn in the case that a client
   587  	// sent an initial handshake that didn't look like TLS.
   588  	// It is nil if there's already been a handshake or a TLS alert has
   589  	// been written to the connection.
   590  	Conn net.Conn
   591  }
   592  
   593  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   594  
   595  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   596  	err.Msg = msg
   597  	err.Conn = conn
   598  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   599  	return err
   600  }
   601  
   602  func (c *Conn) readRecord() error {
   603  	return c.readRecordOrCCS(false)
   604  }
   605  
   606  func (c *Conn) readChangeCipherSpec() error {
   607  	return c.readRecordOrCCS(true)
   608  }
   609  
   610  // readRecordOrCCS reads one or more TLS records from the connection and
   611  // updates the record layer state. Some invariants:
   612  //   * c.in must be locked
   613  //   * c.input must be empty
   614  // During the handshake one and only one of the following will happen:
   615  //   - c.hand grows
   616  //   - c.in.changeCipherSpec is called
   617  //   - an error is returned
   618  // After the handshake one and only one of the following will happen:
   619  //   - c.hand grows
   620  //   - c.input is set
   621  //   - an error is returned
   622  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   623  	if c.in.err != nil {
   624  		return c.in.err
   625  	}
   626  	handshakeComplete := c.handshakeComplete()
   627  
   628  	// This function modifies c.rawInput, which owns the c.input memory.
   629  	if c.input.Len() != 0 {
   630  		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   631  	}
   632  	c.input.Reset(nil)
   633  
   634  	// Read header, payload.
   635  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   636  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   637  		// is an error, but popular web sites seem to do this, so we accept it
   638  		// if and only if at the record boundary.
   639  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   640  			err = io.EOF
   641  		}
   642  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   643  			c.in.setErrorLocked(err)
   644  		}
   645  		return err
   646  	}
   647  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   648  	typ := recordType(hdr[0])
   649  
   650  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   651  	// start with a uint16 length where the MSB is set and the first record
   652  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   653  	// an SSLv2 client.
   654  	if !handshakeComplete && typ == 0x80 {
   655  		c.sendAlert(alertProtocolVersion)
   656  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   657  	}
   658  
   659  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   660  	n := int(hdr[3])<<8 | int(hdr[4])
   661  	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   662  		c.sendAlert(alertProtocolVersion)
   663  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   664  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   665  	}
   666  	if !c.haveVers {
   667  		// First message, be extra suspicious: this might not be a TLS
   668  		// client. Bail out before reading a full 'body', if possible.
   669  		// The current max version is 3.3 so if the version is >= 16.0,
   670  		// it's probably not real.
   671  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   672  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   673  		}
   674  	}
   675  	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   676  		c.sendAlert(alertRecordOverflow)
   677  		msg := fmt.Sprintf("oversized record received with length %d", n)
   678  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   679  	}
   680  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   681  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   682  			c.in.setErrorLocked(err)
   683  		}
   684  		return err
   685  	}
   686  
   687  	// Process message.
   688  	record := c.rawInput.Next(recordHeaderLen + n)
   689  	data, typ, err := c.in.decrypt(record)
   690  	if err != nil {
   691  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   692  	}
   693  	if len(data) > maxPlaintext {
   694  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   695  	}
   696  
   697  	// Application Data messages are always protected.
   698  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   699  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   700  	}
   701  
   702  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   703  		// This is a state-advancing message: reset the retry count.
   704  		c.retryCount = 0
   705  	}
   706  
   707  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   708  	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   709  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   710  	}
   711  
   712  	switch typ {
   713  	default:
   714  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   715  
   716  	case recordTypeAlert:
   717  		if len(data) != 2 {
   718  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   719  		}
   720  		if alert(data[1]) == alertCloseNotify {
   721  			return c.in.setErrorLocked(io.EOF)
   722  		}
   723  		if c.vers == VersionTLS13 {
   724  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   725  		}
   726  		switch data[0] {
   727  		case alertLevelWarning:
   728  			// Drop the record on the floor and retry.
   729  			return c.retryReadRecord(expectChangeCipherSpec)
   730  		case alertLevelError:
   731  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   732  		default:
   733  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   734  		}
   735  
   736  	case recordTypeChangeCipherSpec:
   737  		if len(data) != 1 || data[0] != 1 {
   738  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   739  		}
   740  		// Handshake messages are not allowed to fragment across the CCS.
   741  		if c.hand.Len() > 0 {
   742  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   743  		}
   744  		// In TLS 1.3, change_cipher_spec records are ignored until the
   745  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   746  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   747  		// c.vers is still unset. That's not useful though and suspicious if the
   748  		// server then selects a lower protocol version, so don't allow that.
   749  		if c.vers == VersionTLS13 {
   750  			return c.retryReadRecord(expectChangeCipherSpec)
   751  		}
   752  		if !expectChangeCipherSpec {
   753  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   754  		}
   755  		if err := c.in.changeCipherSpec(); err != nil {
   756  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   757  		}
   758  
   759  	case recordTypeApplicationData:
   760  		if !handshakeComplete || expectChangeCipherSpec {
   761  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   762  		}
   763  		// Some OpenSSL servers send empty records in order to randomize the
   764  		// CBC IV. Ignore a limited number of empty records.
   765  		if len(data) == 0 {
   766  			return c.retryReadRecord(expectChangeCipherSpec)
   767  		}
   768  		// Note that data is owned by c.rawInput, following the Next call above,
   769  		// to avoid copying the plaintext. This is safe because c.rawInput is
   770  		// not read from or written to until c.input is drained.
   771  		c.input.Reset(data)
   772  
   773  	case recordTypeHandshake:
   774  		if len(data) == 0 || expectChangeCipherSpec {
   775  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   776  		}
   777  		c.hand.Write(data)
   778  	}
   779  
   780  	return nil
   781  }
   782  
   783  // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   784  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   785  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   786  	c.retryCount++
   787  	if c.retryCount > maxUselessRecords {
   788  		c.sendAlert(alertUnexpectedMessage)
   789  		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   790  	}
   791  	return c.readRecordOrCCS(expectChangeCipherSpec)
   792  }
   793  
   794  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   795  // read. It is different from an io.LimitedReader in that it doesn't cut short
   796  // the last Read call, and in that it considers an early EOF an error.
   797  type atLeastReader struct {
   798  	R io.Reader
   799  	N int64
   800  }
   801  
   802  func (r *atLeastReader) Read(p []byte) (int, error) {
   803  	if r.N <= 0 {
   804  		return 0, io.EOF
   805  	}
   806  	n, err := r.R.Read(p)
   807  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   808  	if r.N > 0 && err == io.EOF {
   809  		return n, io.ErrUnexpectedEOF
   810  	}
   811  	if r.N <= 0 && err == nil {
   812  		return n, io.EOF
   813  	}
   814  	return n, err
   815  }
   816  
   817  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   818  // at least n bytes or else returns an error.
   819  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   820  	if c.rawInput.Len() >= n {
   821  		return nil
   822  	}
   823  	needs := n - c.rawInput.Len()
   824  	// There might be extra input waiting on the wire. Make a best effort
   825  	// attempt to fetch it so that it can be used in (*Conn).Read to
   826  	// "predict" closeNotify alerts.
   827  	c.rawInput.Grow(needs + bytes.MinRead)
   828  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   829  	return err
   830  }
   831  
   832  // sendAlert sends a TLS alert message.
   833  func (c *Conn) sendAlertLocked(err alert) error {
   834  	switch err {
   835  	case alertNoRenegotiation, alertCloseNotify:
   836  		c.tmp[0] = alertLevelWarning
   837  	default:
   838  		c.tmp[0] = alertLevelError
   839  	}
   840  	c.tmp[1] = byte(err)
   841  
   842  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   843  	if err == alertCloseNotify {
   844  		// closeNotify is a special case in that it isn't an error.
   845  		return writeErr
   846  	}
   847  
   848  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   849  }
   850  
   851  // sendAlert sends a TLS alert message.
   852  func (c *Conn) sendAlert(err alert) error {
   853  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   854  		c.extraConfig.AlternativeRecordLayer.SendAlert(uint8(err))
   855  		return &net.OpError{Op: "local error", Err: err}
   856  	}
   857  
   858  	c.out.Lock()
   859  	defer c.out.Unlock()
   860  	return c.sendAlertLocked(err)
   861  }
   862  
   863  const (
   864  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   865  	// size (MSS). A constant is used, rather than querying the kernel for
   866  	// the actual MSS, to avoid complexity. The value here is the IPv6
   867  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   868  	// bytes) and a TCP header with timestamps (32 bytes).
   869  	tcpMSSEstimate = 1208
   870  
   871  	// recordSizeBoostThreshold is the number of bytes of application data
   872  	// sent after which the TLS record size will be increased to the
   873  	// maximum.
   874  	recordSizeBoostThreshold = 128 * 1024
   875  )
   876  
   877  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   878  // next application data record. There is the following trade-off:
   879  //
   880  //   - For latency-sensitive applications, such as web browsing, each TLS
   881  //     record should fit in one TCP segment.
   882  //   - For throughput-sensitive applications, such as large file transfers,
   883  //     larger TLS records better amortize framing and encryption overheads.
   884  //
   885  // A simple heuristic that works well in practice is to use small records for
   886  // the first 1MB of data, then use larger records for subsequent data, and
   887  // reset back to smaller records after the connection becomes idle. See "High
   888  // Performance Web Networking", Chapter 4, or:
   889  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   890  //
   891  // In the interests of simplicity and determinism, this code does not attempt
   892  // to reset the record size once the connection is idle, however.
   893  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   894  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   895  		return maxPlaintext
   896  	}
   897  
   898  	if c.bytesSent >= recordSizeBoostThreshold {
   899  		return maxPlaintext
   900  	}
   901  
   902  	// Subtract TLS overheads to get the maximum payload size.
   903  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   904  	if c.out.cipher != nil {
   905  		switch ciph := c.out.cipher.(type) {
   906  		case cipher.Stream:
   907  			payloadBytes -= c.out.mac.Size()
   908  		case cipher.AEAD:
   909  			payloadBytes -= ciph.Overhead()
   910  		case cbcMode:
   911  			blockSize := ciph.BlockSize()
   912  			// The payload must fit in a multiple of blockSize, with
   913  			// room for at least one padding byte.
   914  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   915  			// The MAC is appended before padding so affects the
   916  			// payload size directly.
   917  			payloadBytes -= c.out.mac.Size()
   918  		default:
   919  			panic("unknown cipher type")
   920  		}
   921  	}
   922  	if c.vers == VersionTLS13 {
   923  		payloadBytes-- // encrypted ContentType
   924  	}
   925  
   926  	// Allow packet growth in arithmetic progression up to max.
   927  	pkt := c.packetsSent
   928  	c.packetsSent++
   929  	if pkt > 1000 {
   930  		return maxPlaintext // avoid overflow in multiply below
   931  	}
   932  
   933  	n := payloadBytes * int(pkt+1)
   934  	if n > maxPlaintext {
   935  		n = maxPlaintext
   936  	}
   937  	return n
   938  }
   939  
   940  func (c *Conn) write(data []byte) (int, error) {
   941  	if c.buffering {
   942  		c.sendBuf = append(c.sendBuf, data...)
   943  		return len(data), nil
   944  	}
   945  
   946  	n, err := c.conn.Write(data)
   947  	c.bytesSent += int64(n)
   948  	return n, err
   949  }
   950  
   951  func (c *Conn) flush() (int, error) {
   952  	if len(c.sendBuf) == 0 {
   953  		return 0, nil
   954  	}
   955  
   956  	n, err := c.conn.Write(c.sendBuf)
   957  	c.bytesSent += int64(n)
   958  	c.sendBuf = nil
   959  	c.buffering = false
   960  	return n, err
   961  }
   962  
   963  // outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
   964  var outBufPool = sync.Pool{
   965  	New: func() interface{} {
   966  		return new([]byte)
   967  	},
   968  }
   969  
   970  // writeRecordLocked writes a TLS record with the given type and payload to the
   971  // connection and updates the record layer state.
   972  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   973  	outBufPtr := outBufPool.Get().(*[]byte)
   974  	outBuf := *outBufPtr
   975  	defer func() {
   976  		// You might be tempted to simplify this by just passing &outBuf to Put,
   977  		// but that would make the local copy of the outBuf slice header escape
   978  		// to the heap, causing an allocation. Instead, we keep around the
   979  		// pointer to the slice header returned by Get, which is already on the
   980  		// heap, and overwrite and return that.
   981  		*outBufPtr = outBuf
   982  		outBufPool.Put(outBufPtr)
   983  	}()
   984  
   985  	var n int
   986  	for len(data) > 0 {
   987  		m := len(data)
   988  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   989  			m = maxPayload
   990  		}
   991  
   992  		_, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
   993  		outBuf[0] = byte(typ)
   994  		vers := c.vers
   995  		if vers == 0 {
   996  			// Some TLS servers fail if the record version is
   997  			// greater than TLS 1.0 for the initial ClientHello.
   998  			vers = VersionTLS10
   999  		} else if vers == VersionTLS13 {
  1000  			// TLS 1.3 froze the record layer version to 1.2.
  1001  			// See RFC 8446, Section 5.1.
  1002  			vers = VersionTLS12
  1003  		}
  1004  		outBuf[1] = byte(vers >> 8)
  1005  		outBuf[2] = byte(vers)
  1006  		outBuf[3] = byte(m >> 8)
  1007  		outBuf[4] = byte(m)
  1008  
  1009  		var err error
  1010  		outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
  1011  		if err != nil {
  1012  			return n, err
  1013  		}
  1014  		if _, err := c.write(outBuf); err != nil {
  1015  			return n, err
  1016  		}
  1017  		n += m
  1018  		data = data[m:]
  1019  	}
  1020  
  1021  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
  1022  		if err := c.out.changeCipherSpec(); err != nil {
  1023  			return n, c.sendAlertLocked(err.(alert))
  1024  		}
  1025  	}
  1026  
  1027  	return n, nil
  1028  }
  1029  
  1030  // writeRecord writes a TLS record with the given type and payload to the
  1031  // connection and updates the record layer state.
  1032  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  1033  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1034  		if typ == recordTypeChangeCipherSpec {
  1035  			return len(data), nil
  1036  		}
  1037  		return c.extraConfig.AlternativeRecordLayer.WriteRecord(data)
  1038  	}
  1039  
  1040  	c.out.Lock()
  1041  	defer c.out.Unlock()
  1042  
  1043  	return c.writeRecordLocked(typ, data)
  1044  }
  1045  
  1046  // [Psiphon]
  1047  
  1048  func ReadClientHelloRandom(data []byte) ([]byte, error) {
  1049  	if len(data) < 1 {
  1050  		return nil, errors.New("tls: missing message type")
  1051  	}
  1052  	if data[0] != typeClientHello {
  1053  		return nil, errors.New("tls: unexpected message type")
  1054  	}
  1055  
  1056  	// Unlike readHandshake, m is not retained and so making a copy of the
  1057  	// input data is not necessary.
  1058  
  1059  	var m clientHelloMsg
  1060  	if !m.unmarshal(data) {
  1061  		return nil, errors.New("tls: unexpected message")
  1062  	}
  1063  
  1064  	return m.random, nil
  1065  }
  1066  
  1067  // readHandshake reads the next handshake message from
  1068  // the record layer.
  1069  func (c *Conn) readHandshake() (interface{}, error) {
  1070  	var data []byte
  1071  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1072  		var err error
  1073  		data, err = c.extraConfig.AlternativeRecordLayer.ReadHandshakeMessage()
  1074  		if err != nil {
  1075  			return nil, err
  1076  		}
  1077  	} else {
  1078  		for c.hand.Len() < 4 {
  1079  			if err := c.readRecord(); err != nil {
  1080  				return nil, err
  1081  			}
  1082  		}
  1083  
  1084  		data = c.hand.Bytes()
  1085  		n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1086  		if n > maxHandshake {
  1087  			c.sendAlertLocked(alertInternalError)
  1088  			return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1089  		}
  1090  		for c.hand.Len() < 4+n {
  1091  			if err := c.readRecord(); err != nil {
  1092  				return nil, err
  1093  			}
  1094  		}
  1095  		data = c.hand.Next(4 + n)
  1096  	}
  1097  	var m handshakeMessage
  1098  	switch data[0] {
  1099  	case typeHelloRequest:
  1100  		m = new(helloRequestMsg)
  1101  	case typeClientHello:
  1102  		m = new(clientHelloMsg)
  1103  	case typeServerHello:
  1104  		m = new(serverHelloMsg)
  1105  	case typeNewSessionTicket:
  1106  		if c.vers == VersionTLS13 {
  1107  			m = new(newSessionTicketMsgTLS13)
  1108  		} else {
  1109  			m = new(newSessionTicketMsg)
  1110  		}
  1111  	case typeCertificate:
  1112  		if c.vers == VersionTLS13 {
  1113  			m = new(certificateMsgTLS13)
  1114  		} else {
  1115  			m = new(certificateMsg)
  1116  		}
  1117  	case typeCertificateRequest:
  1118  		if c.vers == VersionTLS13 {
  1119  			m = new(certificateRequestMsgTLS13)
  1120  		} else {
  1121  			m = &certificateRequestMsg{
  1122  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1123  			}
  1124  		}
  1125  	case typeCertificateStatus:
  1126  		m = new(certificateStatusMsg)
  1127  	case typeServerKeyExchange:
  1128  		m = new(serverKeyExchangeMsg)
  1129  	case typeServerHelloDone:
  1130  		m = new(serverHelloDoneMsg)
  1131  	case typeClientKeyExchange:
  1132  		m = new(clientKeyExchangeMsg)
  1133  	case typeCertificateVerify:
  1134  		m = &certificateVerifyMsg{
  1135  			hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1136  		}
  1137  	case typeFinished:
  1138  		m = new(finishedMsg)
  1139  	case typeEncryptedExtensions:
  1140  		m = new(encryptedExtensionsMsg)
  1141  	case typeEndOfEarlyData:
  1142  		m = new(endOfEarlyDataMsg)
  1143  	case typeKeyUpdate:
  1144  		m = new(keyUpdateMsg)
  1145  	default:
  1146  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1147  	}
  1148  
  1149  	// The handshake message unmarshalers
  1150  	// expect to be able to keep references to data,
  1151  	// so pass in a fresh copy that won't be overwritten.
  1152  	data = append([]byte(nil), data...)
  1153  
  1154  	if !m.unmarshal(data) {
  1155  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1156  	}
  1157  	return m, nil
  1158  }
  1159  
  1160  var (
  1161  	errShutdown = errors.New("tls: protocol is shutdown")
  1162  )
  1163  
  1164  // Write writes data to the connection.
  1165  //
  1166  // As Write calls Handshake, in order to prevent indefinite blocking a deadline
  1167  // must be set for both Read and Write before Write is called when the handshake
  1168  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1169  // SetWriteDeadline.
  1170  func (c *Conn) Write(b []byte) (int, error) {
  1171  	// interlock with Close below
  1172  	for {
  1173  		x := atomic.LoadInt32(&c.activeCall)
  1174  		if x&1 != 0 {
  1175  			return 0, net.ErrClosed
  1176  		}
  1177  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1178  			break
  1179  		}
  1180  	}
  1181  	defer atomic.AddInt32(&c.activeCall, -2)
  1182  
  1183  	if err := c.Handshake(); err != nil {
  1184  		return 0, err
  1185  	}
  1186  
  1187  	c.out.Lock()
  1188  	defer c.out.Unlock()
  1189  
  1190  	if err := c.out.err; err != nil {
  1191  		return 0, err
  1192  	}
  1193  
  1194  	if !c.handshakeComplete() {
  1195  		return 0, alertInternalError
  1196  	}
  1197  
  1198  	if c.closeNotifySent {
  1199  		return 0, errShutdown
  1200  	}
  1201  
  1202  	// TLS 1.0 is susceptible to a chosen-plaintext
  1203  	// attack when using block mode ciphers due to predictable IVs.
  1204  	// This can be prevented by splitting each Application Data
  1205  	// record into two records, effectively randomizing the IV.
  1206  	//
  1207  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1208  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1209  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1210  
  1211  	var m int
  1212  	if len(b) > 1 && c.vers == VersionTLS10 {
  1213  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1214  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1215  			if err != nil {
  1216  				return n, c.out.setErrorLocked(err)
  1217  			}
  1218  			m, b = 1, b[1:]
  1219  		}
  1220  	}
  1221  
  1222  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1223  	return n + m, c.out.setErrorLocked(err)
  1224  }
  1225  
  1226  // handleRenegotiation processes a HelloRequest handshake message.
  1227  func (c *Conn) handleRenegotiation() error {
  1228  	if c.vers == VersionTLS13 {
  1229  		return errors.New("tls: internal error: unexpected renegotiation")
  1230  	}
  1231  
  1232  	msg, err := c.readHandshake()
  1233  	if err != nil {
  1234  		return err
  1235  	}
  1236  
  1237  	helloReq, ok := msg.(*helloRequestMsg)
  1238  	if !ok {
  1239  		c.sendAlert(alertUnexpectedMessage)
  1240  		return unexpectedMessageError(helloReq, msg)
  1241  	}
  1242  
  1243  	if !c.isClient {
  1244  		return c.sendAlert(alertNoRenegotiation)
  1245  	}
  1246  
  1247  	switch c.config.Renegotiation {
  1248  	case RenegotiateNever:
  1249  		return c.sendAlert(alertNoRenegotiation)
  1250  	case RenegotiateOnceAsClient:
  1251  		if c.handshakes > 1 {
  1252  			return c.sendAlert(alertNoRenegotiation)
  1253  		}
  1254  	case RenegotiateFreelyAsClient:
  1255  		// Ok.
  1256  	default:
  1257  		c.sendAlert(alertInternalError)
  1258  		return errors.New("tls: unknown Renegotiation value")
  1259  	}
  1260  
  1261  	c.handshakeMutex.Lock()
  1262  	defer c.handshakeMutex.Unlock()
  1263  
  1264  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1265  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1266  		c.handshakes++
  1267  	}
  1268  	return c.handshakeErr
  1269  }
  1270  
  1271  func (c *Conn) HandlePostHandshakeMessage() error {
  1272  	return c.handlePostHandshakeMessage()
  1273  }
  1274  
  1275  // handlePostHandshakeMessage processes a handshake message arrived after the
  1276  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1277  func (c *Conn) handlePostHandshakeMessage() error {
  1278  	if c.vers != VersionTLS13 {
  1279  		return c.handleRenegotiation()
  1280  	}
  1281  
  1282  	msg, err := c.readHandshake()
  1283  	if err != nil {
  1284  		return err
  1285  	}
  1286  
  1287  	c.retryCount++
  1288  	if c.retryCount > maxUselessRecords {
  1289  		c.sendAlert(alertUnexpectedMessage)
  1290  		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1291  	}
  1292  
  1293  	switch msg := msg.(type) {
  1294  	case *newSessionTicketMsgTLS13:
  1295  		return c.handleNewSessionTicket(msg)
  1296  	case *keyUpdateMsg:
  1297  		return c.handleKeyUpdate(msg)
  1298  	default:
  1299  		c.sendAlert(alertUnexpectedMessage)
  1300  		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1301  	}
  1302  }
  1303  
  1304  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1305  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1306  	if cipherSuite == nil {
  1307  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1308  	}
  1309  
  1310  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1311  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1312  
  1313  	if keyUpdate.updateRequested {
  1314  		c.out.Lock()
  1315  		defer c.out.Unlock()
  1316  
  1317  		msg := &keyUpdateMsg{}
  1318  		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1319  		if err != nil {
  1320  			// Surface the error at the next write.
  1321  			c.out.setErrorLocked(err)
  1322  			return nil
  1323  		}
  1324  
  1325  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1326  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1327  	}
  1328  
  1329  	return nil
  1330  }
  1331  
  1332  // Read reads data from the connection.
  1333  //
  1334  // As Read calls Handshake, in order to prevent indefinite blocking a deadline
  1335  // must be set for both Read and Write before Read is called when the handshake
  1336  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1337  // SetWriteDeadline.
  1338  func (c *Conn) Read(b []byte) (int, error) {
  1339  	if err := c.Handshake(); err != nil {
  1340  		return 0, err
  1341  	}
  1342  	if len(b) == 0 {
  1343  		// Put this after Handshake, in case people were calling
  1344  		// Read(nil) for the side effect of the Handshake.
  1345  		return 0, nil
  1346  	}
  1347  
  1348  	c.in.Lock()
  1349  	defer c.in.Unlock()
  1350  
  1351  	for c.input.Len() == 0 {
  1352  		if err := c.readRecord(); err != nil {
  1353  			return 0, err
  1354  		}
  1355  		for c.hand.Len() > 0 {
  1356  			if err := c.handlePostHandshakeMessage(); err != nil {
  1357  				return 0, err
  1358  			}
  1359  		}
  1360  	}
  1361  
  1362  	n, _ := c.input.Read(b)
  1363  
  1364  	// If a close-notify alert is waiting, read it so that we can return (n,
  1365  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1366  	// goroutine that the connection is now closed. This eliminates a race
  1367  	// where the HTTP response reading goroutine would otherwise not observe
  1368  	// the EOF until its next read, by which time a client goroutine might
  1369  	// have already tried to reuse the HTTP connection for a new request.
  1370  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1371  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1372  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1373  		if err := c.readRecord(); err != nil {
  1374  			return n, err // will be io.EOF on closeNotify
  1375  		}
  1376  	}
  1377  
  1378  	return n, nil
  1379  }
  1380  
  1381  // Close closes the connection.
  1382  func (c *Conn) Close() error {
  1383  	// Interlock with Conn.Write above.
  1384  	var x int32
  1385  	for {
  1386  		x = atomic.LoadInt32(&c.activeCall)
  1387  		if x&1 != 0 {
  1388  			return net.ErrClosed
  1389  		}
  1390  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1391  			break
  1392  		}
  1393  	}
  1394  	if x != 0 {
  1395  		// io.Writer and io.Closer should not be used concurrently.
  1396  		// If Close is called while a Write is currently in-flight,
  1397  		// interpret that as a sign that this Close is really just
  1398  		// being used to break the Write and/or clean up resources and
  1399  		// avoid sending the alertCloseNotify, which may block
  1400  		// waiting on handshakeMutex or the c.out mutex.
  1401  		return c.conn.Close()
  1402  	}
  1403  
  1404  	var alertErr error
  1405  	if c.handshakeComplete() {
  1406  		if err := c.closeNotify(); err != nil {
  1407  			alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
  1408  		}
  1409  	}
  1410  
  1411  	if err := c.conn.Close(); err != nil {
  1412  		return err
  1413  	}
  1414  	return alertErr
  1415  }
  1416  
  1417  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1418  
  1419  // CloseWrite shuts down the writing side of the connection. It should only be
  1420  // called once the handshake has completed and does not call CloseWrite on the
  1421  // underlying connection. Most callers should just use Close.
  1422  func (c *Conn) CloseWrite() error {
  1423  	if !c.handshakeComplete() {
  1424  		return errEarlyCloseWrite
  1425  	}
  1426  
  1427  	return c.closeNotify()
  1428  }
  1429  
  1430  func (c *Conn) closeNotify() error {
  1431  	c.out.Lock()
  1432  	defer c.out.Unlock()
  1433  
  1434  	if !c.closeNotifySent {
  1435  		// Set a Write Deadline to prevent possibly blocking forever.
  1436  		c.SetWriteDeadline(time.Now().Add(time.Second * 5))
  1437  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1438  		c.closeNotifySent = true
  1439  		// Any subsequent writes will fail.
  1440  		c.SetWriteDeadline(time.Now())
  1441  	}
  1442  	return c.closeNotifyErr
  1443  }
  1444  
  1445  // Handshake runs the client or server handshake
  1446  // protocol if it has not yet been run.
  1447  //
  1448  // Most uses of this package need not call Handshake explicitly: the
  1449  // first Read or Write will call it automatically.
  1450  //
  1451  // For control over canceling or setting a timeout on a handshake, use
  1452  // the Dialer's DialContext method.
  1453  func (c *Conn) Handshake() error {
  1454  	c.handshakeMutex.Lock()
  1455  	defer c.handshakeMutex.Unlock()
  1456  
  1457  	if err := c.handshakeErr; err != nil {
  1458  		return err
  1459  	}
  1460  	if c.handshakeComplete() {
  1461  		return nil
  1462  	}
  1463  
  1464  	c.in.Lock()
  1465  	defer c.in.Unlock()
  1466  
  1467  	c.handshakeErr = c.handshakeFn()
  1468  	if c.handshakeErr == nil {
  1469  		c.handshakes++
  1470  	} else {
  1471  		// If an error occurred during the handshake try to flush the
  1472  		// alert that might be left in the buffer.
  1473  		c.flush()
  1474  	}
  1475  
  1476  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1477  		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1478  	}
  1479  
  1480  	return c.handshakeErr
  1481  }
  1482  
  1483  // ConnectionState returns basic TLS details about the connection.
  1484  func (c *Conn) ConnectionState() ConnectionState {
  1485  	c.handshakeMutex.Lock()
  1486  	defer c.handshakeMutex.Unlock()
  1487  	return c.connectionStateLocked()
  1488  }
  1489  
  1490  // ConnectionStateWith0RTT returns basic TLS details (incl. 0-RTT status) about the connection.
  1491  func (c *Conn) ConnectionStateWith0RTT() ConnectionStateWith0RTT {
  1492  	c.handshakeMutex.Lock()
  1493  	defer c.handshakeMutex.Unlock()
  1494  	return ConnectionStateWith0RTT{
  1495  		ConnectionState: c.connectionStateLocked(),
  1496  		Used0RTT:        c.used0RTT,
  1497  	}
  1498  }
  1499  
  1500  func (c *Conn) connectionStateLocked() ConnectionState {
  1501  	var state connectionState
  1502  	state.HandshakeComplete = c.handshakeComplete()
  1503  	state.Version = c.vers
  1504  	state.NegotiatedProtocol = c.clientProtocol
  1505  	state.DidResume = c.didResume
  1506  	state.NegotiatedProtocolIsMutual = true
  1507  	state.ServerName = c.serverName
  1508  	state.CipherSuite = c.cipherSuite
  1509  	state.PeerCertificates = c.peerCertificates
  1510  	state.VerifiedChains = c.verifiedChains
  1511  	state.SignedCertificateTimestamps = c.scts
  1512  	state.OCSPResponse = c.ocspResponse
  1513  	if !c.didResume && c.vers != VersionTLS13 {
  1514  		if c.clientFinishedIsFirst {
  1515  			state.TLSUnique = c.clientFinished[:]
  1516  		} else {
  1517  			state.TLSUnique = c.serverFinished[:]
  1518  		}
  1519  	}
  1520  	if c.config.Renegotiation != RenegotiateNever {
  1521  		state.ekm = noExportedKeyingMaterial
  1522  	} else {
  1523  		state.ekm = c.ekm
  1524  	}
  1525  	return toConnectionState(state)
  1526  }
  1527  
  1528  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1529  // any. (Only valid for client connections.)
  1530  func (c *Conn) OCSPResponse() []byte {
  1531  	c.handshakeMutex.Lock()
  1532  	defer c.handshakeMutex.Unlock()
  1533  
  1534  	return c.ocspResponse
  1535  }
  1536  
  1537  // VerifyHostname checks that the peer certificate chain is valid for
  1538  // connecting to host. If so, it returns nil; if not, it returns an error
  1539  // describing the problem.
  1540  func (c *Conn) VerifyHostname(host string) error {
  1541  	c.handshakeMutex.Lock()
  1542  	defer c.handshakeMutex.Unlock()
  1543  	if !c.isClient {
  1544  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1545  	}
  1546  	if !c.handshakeComplete() {
  1547  		return errors.New("tls: handshake has not yet been performed")
  1548  	}
  1549  	if len(c.verifiedChains) == 0 {
  1550  		return errors.New("tls: handshake did not verify certificate chain")
  1551  	}
  1552  	return c.peerCertificates[0].VerifyHostname(host)
  1553  }
  1554  
  1555  func (c *Conn) handshakeComplete() bool {
  1556  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1557  }