github.com/ooni/psiphon/tunnel-core@v0.0.0-20230105123940-fe12a24c96ee/oovendor/qtls-go1-17/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package qtls
     8  
     9  import (
    10  	"bytes"
    11  	"context"
    12  	"crypto/cipher"
    13  	"crypto/subtle"
    14  	"crypto/x509"
    15  	"errors"
    16  	"fmt"
    17  	"hash"
    18  	"io"
    19  	"net"
    20  	"sync"
    21  	"sync/atomic"
    22  	"time"
    23  )
    24  
    25  // A Conn represents a secured connection.
    26  // It implements the net.Conn interface.
    27  type Conn struct {
    28  	// constant
    29  	conn        net.Conn
    30  	isClient    bool
    31  	handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
    32  
    33  	// handshakeStatus is 1 if the connection is currently transferring
    34  	// application data (i.e. is not currently processing a handshake).
    35  	// This field is only to be accessed with sync/atomic.
    36  	handshakeStatus uint32
    37  	// constant after handshake; protected by handshakeMutex
    38  	handshakeMutex sync.Mutex
    39  	handshakeErr   error   // error resulting from handshake
    40  	vers           uint16  // TLS version
    41  	haveVers       bool    // version has been negotiated
    42  	config         *config // configuration passed to constructor
    43  	// handshakes counts the number of handshakes performed on the
    44  	// connection so far. If renegotiation is disabled then this is either
    45  	// zero or one.
    46  	extraConfig *ExtraConfig
    47  
    48  	handshakes       int
    49  	didResume        bool // whether this connection was a session resumption
    50  	cipherSuite      uint16
    51  	ocspResponse     []byte   // stapled OCSP response
    52  	scts             [][]byte // signed certificate timestamps from server
    53  	peerCertificates []*x509.Certificate
    54  	// verifiedChains contains the certificate chains that we built, as
    55  	// opposed to the ones presented by the server.
    56  	verifiedChains [][]*x509.Certificate
    57  	// serverName contains the server name indicated by the client, if any.
    58  	serverName string
    59  	// secureRenegotiation is true if the server echoed the secure
    60  	// renegotiation extension. (This is meaningless as a server because
    61  	// renegotiation is not supported in that case.)
    62  	secureRenegotiation bool
    63  	// ekm is a closure for exporting keying material.
    64  	ekm func(label string, context []byte, length int) ([]byte, error)
    65  	// For the client:
    66  	// resumptionSecret is the resumption_master_secret for handling
    67  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    68  	// For the server:
    69  	// resumptionSecret is the resumption_master_secret for generating
    70  	// NewSessionTicket messages. Only used when the alternative record
    71  	// layer is set. nil if config.SessionTicketsDisabled.
    72  	resumptionSecret []byte
    73  
    74  	// ticketKeys is the set of active session ticket keys for this
    75  	// connection. The first one is used to encrypt new tickets and
    76  	// all are tried to decrypt tickets.
    77  	ticketKeys []ticketKey
    78  
    79  	// clientFinishedIsFirst is true if the client sent the first Finished
    80  	// message during the most recent handshake. This is recorded because
    81  	// the first transmitted Finished message is the tls-unique
    82  	// channel-binding value.
    83  	clientFinishedIsFirst bool
    84  
    85  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    86  	closeNotifyErr error
    87  	// closeNotifySent is true if the Conn attempted to send an
    88  	// alertCloseNotify record.
    89  	closeNotifySent bool
    90  
    91  	// clientFinished and serverFinished contain the Finished message sent
    92  	// by the client or server in the most recent handshake. This is
    93  	// retained to support the renegotiation extension and tls-unique
    94  	// channel-binding.
    95  	clientFinished [12]byte
    96  	serverFinished [12]byte
    97  
    98  	// clientProtocol is the negotiated ALPN protocol.
    99  	clientProtocol string
   100  
   101  	// input/output
   102  	in, out   halfConn
   103  	rawInput  bytes.Buffer // raw input, starting with a record header
   104  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
   105  	hand      bytes.Buffer // handshake data waiting to be read
   106  	buffering bool         // whether records are buffered in sendBuf
   107  	sendBuf   []byte       // a buffer of records waiting to be sent
   108  
   109  	// bytesSent counts the bytes of application data sent.
   110  	// packetsSent counts packets.
   111  	bytesSent   int64
   112  	packetsSent int64
   113  
   114  	// retryCount counts the number of consecutive non-advancing records
   115  	// received by Conn.readRecord. That is, records that neither advance the
   116  	// handshake, nor deliver application data. Protected by in.Mutex.
   117  	retryCount int
   118  
   119  	// activeCall is an atomic int32; the low bit is whether Close has
   120  	// been called. the rest of the bits are the number of goroutines
   121  	// in Conn.Write.
   122  	activeCall int32
   123  
   124  	used0RTT bool
   125  
   126  	tmp [16]byte
   127  }
   128  
   129  // Access to net.Conn methods.
   130  // Cannot just embed net.Conn because that would
   131  // export the struct field too.
   132  
   133  // LocalAddr returns the local network address.
   134  func (c *Conn) LocalAddr() net.Addr {
   135  	return c.conn.LocalAddr()
   136  }
   137  
   138  // RemoteAddr returns the remote network address.
   139  func (c *Conn) RemoteAddr() net.Addr {
   140  	return c.conn.RemoteAddr()
   141  }
   142  
   143  // SetDeadline sets the read and write deadlines associated with the connection.
   144  // A zero value for t means Read and Write will not time out.
   145  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   146  func (c *Conn) SetDeadline(t time.Time) error {
   147  	return c.conn.SetDeadline(t)
   148  }
   149  
   150  // SetReadDeadline sets the read deadline on the underlying connection.
   151  // A zero value for t means Read will not time out.
   152  func (c *Conn) SetReadDeadline(t time.Time) error {
   153  	return c.conn.SetReadDeadline(t)
   154  }
   155  
   156  // SetWriteDeadline sets the write deadline on the underlying connection.
   157  // A zero value for t means Write will not time out.
   158  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   159  func (c *Conn) SetWriteDeadline(t time.Time) error {
   160  	return c.conn.SetWriteDeadline(t)
   161  }
   162  
   163  // A halfConn represents one direction of the record layer
   164  // connection, either sending or receiving.
   165  type halfConn struct {
   166  	sync.Mutex
   167  
   168  	err     error       // first permanent error
   169  	version uint16      // protocol version
   170  	cipher  interface{} // cipher algorithm
   171  	mac     hash.Hash
   172  	seq     [8]byte // 64-bit sequence number
   173  
   174  	scratchBuf [13]byte // to avoid allocs; interface method args escape
   175  
   176  	nextCipher interface{} // next encryption state
   177  	nextMac    hash.Hash   // next MAC algorithm
   178  
   179  	trafficSecret []byte // current TLS 1.3 traffic secret
   180  
   181  	setKeyCallback func(encLevel EncryptionLevel, suite *CipherSuiteTLS13, trafficSecret []byte)
   182  }
   183  
   184  type permanentError struct {
   185  	err net.Error
   186  }
   187  
   188  func (e *permanentError) Error() string   { return e.err.Error() }
   189  func (e *permanentError) Unwrap() error   { return e.err }
   190  func (e *permanentError) Timeout() bool   { return e.err.Timeout() }
   191  func (e *permanentError) Temporary() bool { return false }
   192  
   193  func (hc *halfConn) setErrorLocked(err error) error {
   194  	if e, ok := err.(net.Error); ok {
   195  		hc.err = &permanentError{err: e}
   196  	} else {
   197  		hc.err = err
   198  	}
   199  	return hc.err
   200  }
   201  
   202  // prepareCipherSpec sets the encryption and MAC states
   203  // that a subsequent changeCipherSpec will use.
   204  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac hash.Hash) {
   205  	hc.version = version
   206  	hc.nextCipher = cipher
   207  	hc.nextMac = mac
   208  }
   209  
   210  // changeCipherSpec changes the encryption and MAC states
   211  // to the ones previously passed to prepareCipherSpec.
   212  func (hc *halfConn) changeCipherSpec() error {
   213  	if hc.nextCipher == nil || hc.version == VersionTLS13 {
   214  		return alertInternalError
   215  	}
   216  	hc.cipher = hc.nextCipher
   217  	hc.mac = hc.nextMac
   218  	hc.nextCipher = nil
   219  	hc.nextMac = nil
   220  	for i := range hc.seq {
   221  		hc.seq[i] = 0
   222  	}
   223  	return nil
   224  }
   225  
   226  func (hc *halfConn) exportKey(encLevel EncryptionLevel, suite *cipherSuiteTLS13, trafficSecret []byte) {
   227  	if hc.setKeyCallback != nil {
   228  		s := &CipherSuiteTLS13{
   229  			ID:     suite.id,
   230  			KeyLen: suite.keyLen,
   231  			Hash:   suite.hash,
   232  			AEAD:   func(key, fixedNonce []byte) cipher.AEAD { return suite.aead(key, fixedNonce) },
   233  		}
   234  		hc.setKeyCallback(encLevel, s, trafficSecret)
   235  	}
   236  }
   237  
   238  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   239  	hc.trafficSecret = secret
   240  	key, iv := suite.trafficKey(secret)
   241  	hc.cipher = suite.aead(key, iv)
   242  	for i := range hc.seq {
   243  		hc.seq[i] = 0
   244  	}
   245  }
   246  
   247  // incSeq increments the sequence number.
   248  func (hc *halfConn) incSeq() {
   249  	for i := 7; i >= 0; i-- {
   250  		hc.seq[i]++
   251  		if hc.seq[i] != 0 {
   252  			return
   253  		}
   254  	}
   255  
   256  	// Not allowed to let sequence number wrap.
   257  	// Instead, must renegotiate before it does.
   258  	// Not likely enough to bother.
   259  	panic("TLS: sequence number wraparound")
   260  }
   261  
   262  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   263  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   264  // and in certain AEAD modes in TLS 1.2.
   265  func (hc *halfConn) explicitNonceLen() int {
   266  	if hc.cipher == nil {
   267  		return 0
   268  	}
   269  
   270  	switch c := hc.cipher.(type) {
   271  	case cipher.Stream:
   272  		return 0
   273  	case aead:
   274  		return c.explicitNonceLen()
   275  	case cbcMode:
   276  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   277  		if hc.version >= VersionTLS11 {
   278  			return c.BlockSize()
   279  		}
   280  		return 0
   281  	default:
   282  		panic("unknown cipher type")
   283  	}
   284  }
   285  
   286  // extractPadding returns, in constant time, the length of the padding to remove
   287  // from the end of payload. It also returns a byte which is equal to 255 if the
   288  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   289  func extractPadding(payload []byte) (toRemove int, good byte) {
   290  	if len(payload) < 1 {
   291  		return 0, 0
   292  	}
   293  
   294  	paddingLen := payload[len(payload)-1]
   295  	t := uint(len(payload)-1) - uint(paddingLen)
   296  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   297  	good = byte(int32(^t) >> 31)
   298  
   299  	// The maximum possible padding length plus the actual length field
   300  	toCheck := 256
   301  	// The length of the padded data is public, so we can use an if here
   302  	if toCheck > len(payload) {
   303  		toCheck = len(payload)
   304  	}
   305  
   306  	for i := 0; i < toCheck; i++ {
   307  		t := uint(paddingLen) - uint(i)
   308  		// if i <= paddingLen then the MSB of t is zero
   309  		mask := byte(int32(^t) >> 31)
   310  		b := payload[len(payload)-1-i]
   311  		good &^= mask&paddingLen ^ mask&b
   312  	}
   313  
   314  	// We AND together the bits of good and replicate the result across
   315  	// all the bits.
   316  	good &= good << 4
   317  	good &= good << 2
   318  	good &= good << 1
   319  	good = uint8(int8(good) >> 7)
   320  
   321  	// Zero the padding length on error. This ensures any unchecked bytes
   322  	// are included in the MAC. Otherwise, an attacker that could
   323  	// distinguish MAC failures from padding failures could mount an attack
   324  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   325  	// full block's worth of padding, replace the final block with another
   326  	// block. If the MAC check passed but the padding check failed, the
   327  	// last byte of that block decrypted to the block size.
   328  	//
   329  	// See also macAndPaddingGood logic below.
   330  	paddingLen &= good
   331  
   332  	toRemove = int(paddingLen) + 1
   333  	return
   334  }
   335  
   336  func roundUp(a, b int) int {
   337  	return a + (b-a%b)%b
   338  }
   339  
   340  // cbcMode is an interface for block ciphers using cipher block chaining.
   341  type cbcMode interface {
   342  	cipher.BlockMode
   343  	SetIV([]byte)
   344  }
   345  
   346  // decrypt authenticates and decrypts the record if protection is active at
   347  // this stage. The returned plaintext might overlap with the input.
   348  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   349  	var plaintext []byte
   350  	typ := recordType(record[0])
   351  	payload := record[recordHeaderLen:]
   352  
   353  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   354  	// decrypted. See RFC 8446, Appendix D.4.
   355  	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   356  		return payload, typ, nil
   357  	}
   358  
   359  	paddingGood := byte(255)
   360  	paddingLen := 0
   361  
   362  	explicitNonceLen := hc.explicitNonceLen()
   363  
   364  	if hc.cipher != nil {
   365  		switch c := hc.cipher.(type) {
   366  		case cipher.Stream:
   367  			c.XORKeyStream(payload, payload)
   368  		case aead:
   369  			if len(payload) < explicitNonceLen {
   370  				return nil, 0, alertBadRecordMAC
   371  			}
   372  			nonce := payload[:explicitNonceLen]
   373  			if len(nonce) == 0 {
   374  				nonce = hc.seq[:]
   375  			}
   376  			payload = payload[explicitNonceLen:]
   377  
   378  			var additionalData []byte
   379  			if hc.version == VersionTLS13 {
   380  				additionalData = record[:recordHeaderLen]
   381  			} else {
   382  				additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
   383  				additionalData = append(additionalData, record[:3]...)
   384  				n := len(payload) - c.Overhead()
   385  				additionalData = append(additionalData, byte(n>>8), byte(n))
   386  			}
   387  
   388  			var err error
   389  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   390  			if err != nil {
   391  				return nil, 0, alertBadRecordMAC
   392  			}
   393  		case cbcMode:
   394  			blockSize := c.BlockSize()
   395  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   396  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   397  				return nil, 0, alertBadRecordMAC
   398  			}
   399  
   400  			if explicitNonceLen > 0 {
   401  				c.SetIV(payload[:explicitNonceLen])
   402  				payload = payload[explicitNonceLen:]
   403  			}
   404  			c.CryptBlocks(payload, payload)
   405  
   406  			// In a limited attempt to protect against CBC padding oracles like
   407  			// Lucky13, the data past paddingLen (which is secret) is passed to
   408  			// the MAC function as extra data, to be fed into the HMAC after
   409  			// computing the digest. This makes the MAC roughly constant time as
   410  			// long as the digest computation is constant time and does not
   411  			// affect the subsequent write, modulo cache effects.
   412  			paddingLen, paddingGood = extractPadding(payload)
   413  		default:
   414  			panic("unknown cipher type")
   415  		}
   416  
   417  		if hc.version == VersionTLS13 {
   418  			if typ != recordTypeApplicationData {
   419  				return nil, 0, alertUnexpectedMessage
   420  			}
   421  			if len(plaintext) > maxPlaintext+1 {
   422  				return nil, 0, alertRecordOverflow
   423  			}
   424  			// Remove padding and find the ContentType scanning from the end.
   425  			for i := len(plaintext) - 1; i >= 0; i-- {
   426  				if plaintext[i] != 0 {
   427  					typ = recordType(plaintext[i])
   428  					plaintext = plaintext[:i]
   429  					break
   430  				}
   431  				if i == 0 {
   432  					return nil, 0, alertUnexpectedMessage
   433  				}
   434  			}
   435  		}
   436  	} else {
   437  		plaintext = payload
   438  	}
   439  
   440  	if hc.mac != nil {
   441  		macSize := hc.mac.Size()
   442  		if len(payload) < macSize {
   443  			return nil, 0, alertBadRecordMAC
   444  		}
   445  
   446  		n := len(payload) - macSize - paddingLen
   447  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   448  		record[3] = byte(n >> 8)
   449  		record[4] = byte(n)
   450  		remoteMAC := payload[n : n+macSize]
   451  		localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   452  
   453  		// This is equivalent to checking the MACs and paddingGood
   454  		// separately, but in constant-time to prevent distinguishing
   455  		// padding failures from MAC failures. Depending on what value
   456  		// of paddingLen was returned on bad padding, distinguishing
   457  		// bad MAC from bad padding can lead to an attack.
   458  		//
   459  		// See also the logic at the end of extractPadding.
   460  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   461  		if macAndPaddingGood != 1 {
   462  			return nil, 0, alertBadRecordMAC
   463  		}
   464  
   465  		plaintext = payload[:n]
   466  	}
   467  
   468  	hc.incSeq()
   469  	return plaintext, typ, nil
   470  }
   471  
   472  func (c *Conn) setAlternativeRecordLayer() {
   473  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   474  		c.in.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetReadKey
   475  		c.out.setKeyCallback = c.extraConfig.AlternativeRecordLayer.SetWriteKey
   476  	}
   477  }
   478  
   479  // sliceForAppend extends the input slice by n bytes. head is the full extended
   480  // slice, while tail is the appended part. If the original slice has sufficient
   481  // capacity no allocation is performed.
   482  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   483  	if total := len(in) + n; cap(in) >= total {
   484  		head = in[:total]
   485  	} else {
   486  		head = make([]byte, total)
   487  		copy(head, in)
   488  	}
   489  	tail = head[len(in):]
   490  	return
   491  }
   492  
   493  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   494  // appends it to record, which must already contain the record header.
   495  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   496  	if hc.cipher == nil {
   497  		return append(record, payload...), nil
   498  	}
   499  
   500  	var explicitNonce []byte
   501  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   502  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   503  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   504  			// The AES-GCM construction in TLS has an explicit nonce so that the
   505  			// nonce can be random. However, the nonce is only 8 bytes which is
   506  			// too small for a secure, random nonce. Therefore we use the
   507  			// sequence number as the nonce. The 3DES-CBC construction also has
   508  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   509  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   510  			// 3DES' biggest problem anyway because the birthday bound on block
   511  			// collision is reached first due to its similarly small block size
   512  			// (see the Sweet32 attack).
   513  			copy(explicitNonce, hc.seq[:])
   514  		} else {
   515  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   516  				return nil, err
   517  			}
   518  		}
   519  	}
   520  
   521  	var dst []byte
   522  	switch c := hc.cipher.(type) {
   523  	case cipher.Stream:
   524  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   525  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   526  		c.XORKeyStream(dst[:len(payload)], payload)
   527  		c.XORKeyStream(dst[len(payload):], mac)
   528  	case aead:
   529  		nonce := explicitNonce
   530  		if len(nonce) == 0 {
   531  			nonce = hc.seq[:]
   532  		}
   533  
   534  		if hc.version == VersionTLS13 {
   535  			record = append(record, payload...)
   536  
   537  			// Encrypt the actual ContentType and replace the plaintext one.
   538  			record = append(record, record[0])
   539  			record[0] = byte(recordTypeApplicationData)
   540  
   541  			n := len(payload) + 1 + c.Overhead()
   542  			record[3] = byte(n >> 8)
   543  			record[4] = byte(n)
   544  
   545  			record = c.Seal(record[:recordHeaderLen],
   546  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   547  		} else {
   548  			additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
   549  			additionalData = append(additionalData, record[:recordHeaderLen]...)
   550  			record = c.Seal(record, nonce, payload, additionalData)
   551  		}
   552  	case cbcMode:
   553  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   554  		blockSize := c.BlockSize()
   555  		plaintextLen := len(payload) + len(mac)
   556  		paddingLen := blockSize - plaintextLen%blockSize
   557  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   558  		copy(dst, payload)
   559  		copy(dst[len(payload):], mac)
   560  		for i := plaintextLen; i < len(dst); i++ {
   561  			dst[i] = byte(paddingLen - 1)
   562  		}
   563  		if len(explicitNonce) > 0 {
   564  			c.SetIV(explicitNonce)
   565  		}
   566  		c.CryptBlocks(dst, dst)
   567  	default:
   568  		panic("unknown cipher type")
   569  	}
   570  
   571  	// Update length to include nonce, MAC and any block padding needed.
   572  	n := len(record) - recordHeaderLen
   573  	record[3] = byte(n >> 8)
   574  	record[4] = byte(n)
   575  	hc.incSeq()
   576  
   577  	return record, nil
   578  }
   579  
   580  // RecordHeaderError is returned when a TLS record header is invalid.
   581  type RecordHeaderError struct {
   582  	// Msg contains a human readable string that describes the error.
   583  	Msg string
   584  	// RecordHeader contains the five bytes of TLS record header that
   585  	// triggered the error.
   586  	RecordHeader [5]byte
   587  	// Conn provides the underlying net.Conn in the case that a client
   588  	// sent an initial handshake that didn't look like TLS.
   589  	// It is nil if there's already been a handshake or a TLS alert has
   590  	// been written to the connection.
   591  	Conn net.Conn
   592  }
   593  
   594  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   595  
   596  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   597  	err.Msg = msg
   598  	err.Conn = conn
   599  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   600  	return err
   601  }
   602  
   603  func (c *Conn) readRecord() error {
   604  	return c.readRecordOrCCS(false)
   605  }
   606  
   607  func (c *Conn) readChangeCipherSpec() error {
   608  	return c.readRecordOrCCS(true)
   609  }
   610  
   611  // readRecordOrCCS reads one or more TLS records from the connection and
   612  // updates the record layer state. Some invariants:
   613  //   * c.in must be locked
   614  //   * c.input must be empty
   615  // During the handshake one and only one of the following will happen:
   616  //   - c.hand grows
   617  //   - c.in.changeCipherSpec is called
   618  //   - an error is returned
   619  // After the handshake one and only one of the following will happen:
   620  //   - c.hand grows
   621  //   - c.input is set
   622  //   - an error is returned
   623  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   624  	if c.in.err != nil {
   625  		return c.in.err
   626  	}
   627  	handshakeComplete := c.handshakeComplete()
   628  
   629  	// This function modifies c.rawInput, which owns the c.input memory.
   630  	if c.input.Len() != 0 {
   631  		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   632  	}
   633  	c.input.Reset(nil)
   634  
   635  	// Read header, payload.
   636  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   637  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   638  		// is an error, but popular web sites seem to do this, so we accept it
   639  		// if and only if at the record boundary.
   640  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   641  			err = io.EOF
   642  		}
   643  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   644  			c.in.setErrorLocked(err)
   645  		}
   646  		return err
   647  	}
   648  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   649  	typ := recordType(hdr[0])
   650  
   651  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   652  	// start with a uint16 length where the MSB is set and the first record
   653  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   654  	// an SSLv2 client.
   655  	if !handshakeComplete && typ == 0x80 {
   656  		c.sendAlert(alertProtocolVersion)
   657  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   658  	}
   659  
   660  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   661  	n := int(hdr[3])<<8 | int(hdr[4])
   662  	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   663  		c.sendAlert(alertProtocolVersion)
   664  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   665  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   666  	}
   667  	if !c.haveVers {
   668  		// First message, be extra suspicious: this might not be a TLS
   669  		// client. Bail out before reading a full 'body', if possible.
   670  		// The current max version is 3.3 so if the version is >= 16.0,
   671  		// it's probably not real.
   672  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   673  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   674  		}
   675  	}
   676  	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   677  		c.sendAlert(alertRecordOverflow)
   678  		msg := fmt.Sprintf("oversized record received with length %d", n)
   679  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   680  	}
   681  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   682  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   683  			c.in.setErrorLocked(err)
   684  		}
   685  		return err
   686  	}
   687  
   688  	// Process message.
   689  	record := c.rawInput.Next(recordHeaderLen + n)
   690  	data, typ, err := c.in.decrypt(record)
   691  	if err != nil {
   692  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   693  	}
   694  	if len(data) > maxPlaintext {
   695  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   696  	}
   697  
   698  	// Application Data messages are always protected.
   699  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   700  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   701  	}
   702  
   703  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   704  		// This is a state-advancing message: reset the retry count.
   705  		c.retryCount = 0
   706  	}
   707  
   708  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   709  	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   710  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   711  	}
   712  
   713  	switch typ {
   714  	default:
   715  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   716  
   717  	case recordTypeAlert:
   718  		if len(data) != 2 {
   719  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   720  		}
   721  		if alert(data[1]) == alertCloseNotify {
   722  			return c.in.setErrorLocked(io.EOF)
   723  		}
   724  		if c.vers == VersionTLS13 {
   725  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   726  		}
   727  		switch data[0] {
   728  		case alertLevelWarning:
   729  			// Drop the record on the floor and retry.
   730  			return c.retryReadRecord(expectChangeCipherSpec)
   731  		case alertLevelError:
   732  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   733  		default:
   734  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   735  		}
   736  
   737  	case recordTypeChangeCipherSpec:
   738  		if len(data) != 1 || data[0] != 1 {
   739  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   740  		}
   741  		// Handshake messages are not allowed to fragment across the CCS.
   742  		if c.hand.Len() > 0 {
   743  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   744  		}
   745  		// In TLS 1.3, change_cipher_spec records are ignored until the
   746  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   747  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   748  		// c.vers is still unset. That's not useful though and suspicious if the
   749  		// server then selects a lower protocol version, so don't allow that.
   750  		if c.vers == VersionTLS13 {
   751  			return c.retryReadRecord(expectChangeCipherSpec)
   752  		}
   753  		if !expectChangeCipherSpec {
   754  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   755  		}
   756  		if err := c.in.changeCipherSpec(); err != nil {
   757  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   758  		}
   759  
   760  	case recordTypeApplicationData:
   761  		if !handshakeComplete || expectChangeCipherSpec {
   762  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   763  		}
   764  		// Some OpenSSL servers send empty records in order to randomize the
   765  		// CBC IV. Ignore a limited number of empty records.
   766  		if len(data) == 0 {
   767  			return c.retryReadRecord(expectChangeCipherSpec)
   768  		}
   769  		// Note that data is owned by c.rawInput, following the Next call above,
   770  		// to avoid copying the plaintext. This is safe because c.rawInput is
   771  		// not read from or written to until c.input is drained.
   772  		c.input.Reset(data)
   773  
   774  	case recordTypeHandshake:
   775  		if len(data) == 0 || expectChangeCipherSpec {
   776  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   777  		}
   778  		c.hand.Write(data)
   779  	}
   780  
   781  	return nil
   782  }
   783  
   784  // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   785  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   786  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   787  	c.retryCount++
   788  	if c.retryCount > maxUselessRecords {
   789  		c.sendAlert(alertUnexpectedMessage)
   790  		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   791  	}
   792  	return c.readRecordOrCCS(expectChangeCipherSpec)
   793  }
   794  
   795  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   796  // read. It is different from an io.LimitedReader in that it doesn't cut short
   797  // the last Read call, and in that it considers an early EOF an error.
   798  type atLeastReader struct {
   799  	R io.Reader
   800  	N int64
   801  }
   802  
   803  func (r *atLeastReader) Read(p []byte) (int, error) {
   804  	if r.N <= 0 {
   805  		return 0, io.EOF
   806  	}
   807  	n, err := r.R.Read(p)
   808  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   809  	if r.N > 0 && err == io.EOF {
   810  		return n, io.ErrUnexpectedEOF
   811  	}
   812  	if r.N <= 0 && err == nil {
   813  		return n, io.EOF
   814  	}
   815  	return n, err
   816  }
   817  
   818  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   819  // at least n bytes or else returns an error.
   820  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   821  	if c.rawInput.Len() >= n {
   822  		return nil
   823  	}
   824  	needs := n - c.rawInput.Len()
   825  	// There might be extra input waiting on the wire. Make a best effort
   826  	// attempt to fetch it so that it can be used in (*Conn).Read to
   827  	// "predict" closeNotify alerts.
   828  	c.rawInput.Grow(needs + bytes.MinRead)
   829  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   830  	return err
   831  }
   832  
   833  // sendAlert sends a TLS alert message.
   834  func (c *Conn) sendAlertLocked(err alert) error {
   835  	switch err {
   836  	case alertNoRenegotiation, alertCloseNotify:
   837  		c.tmp[0] = alertLevelWarning
   838  	default:
   839  		c.tmp[0] = alertLevelError
   840  	}
   841  	c.tmp[1] = byte(err)
   842  
   843  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   844  	if err == alertCloseNotify {
   845  		// closeNotify is a special case in that it isn't an error.
   846  		return writeErr
   847  	}
   848  
   849  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   850  }
   851  
   852  // sendAlert sends a TLS alert message.
   853  func (c *Conn) sendAlert(err alert) error {
   854  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
   855  		c.extraConfig.AlternativeRecordLayer.SendAlert(uint8(err))
   856  		return &net.OpError{Op: "local error", Err: err}
   857  	}
   858  
   859  	c.out.Lock()
   860  	defer c.out.Unlock()
   861  	return c.sendAlertLocked(err)
   862  }
   863  
   864  const (
   865  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   866  	// size (MSS). A constant is used, rather than querying the kernel for
   867  	// the actual MSS, to avoid complexity. The value here is the IPv6
   868  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   869  	// bytes) and a TCP header with timestamps (32 bytes).
   870  	tcpMSSEstimate = 1208
   871  
   872  	// recordSizeBoostThreshold is the number of bytes of application data
   873  	// sent after which the TLS record size will be increased to the
   874  	// maximum.
   875  	recordSizeBoostThreshold = 128 * 1024
   876  )
   877  
   878  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   879  // next application data record. There is the following trade-off:
   880  //
   881  //   - For latency-sensitive applications, such as web browsing, each TLS
   882  //     record should fit in one TCP segment.
   883  //   - For throughput-sensitive applications, such as large file transfers,
   884  //     larger TLS records better amortize framing and encryption overheads.
   885  //
   886  // A simple heuristic that works well in practice is to use small records for
   887  // the first 1MB of data, then use larger records for subsequent data, and
   888  // reset back to smaller records after the connection becomes idle. See "High
   889  // Performance Web Networking", Chapter 4, or:
   890  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   891  //
   892  // In the interests of simplicity and determinism, this code does not attempt
   893  // to reset the record size once the connection is idle, however.
   894  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   895  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   896  		return maxPlaintext
   897  	}
   898  
   899  	if c.bytesSent >= recordSizeBoostThreshold {
   900  		return maxPlaintext
   901  	}
   902  
   903  	// Subtract TLS overheads to get the maximum payload size.
   904  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   905  	if c.out.cipher != nil {
   906  		switch ciph := c.out.cipher.(type) {
   907  		case cipher.Stream:
   908  			payloadBytes -= c.out.mac.Size()
   909  		case cipher.AEAD:
   910  			payloadBytes -= ciph.Overhead()
   911  		case cbcMode:
   912  			blockSize := ciph.BlockSize()
   913  			// The payload must fit in a multiple of blockSize, with
   914  			// room for at least one padding byte.
   915  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   916  			// The MAC is appended before padding so affects the
   917  			// payload size directly.
   918  			payloadBytes -= c.out.mac.Size()
   919  		default:
   920  			panic("unknown cipher type")
   921  		}
   922  	}
   923  	if c.vers == VersionTLS13 {
   924  		payloadBytes-- // encrypted ContentType
   925  	}
   926  
   927  	// Allow packet growth in arithmetic progression up to max.
   928  	pkt := c.packetsSent
   929  	c.packetsSent++
   930  	if pkt > 1000 {
   931  		return maxPlaintext // avoid overflow in multiply below
   932  	}
   933  
   934  	n := payloadBytes * int(pkt+1)
   935  	if n > maxPlaintext {
   936  		n = maxPlaintext
   937  	}
   938  	return n
   939  }
   940  
   941  func (c *Conn) write(data []byte) (int, error) {
   942  	if c.buffering {
   943  		c.sendBuf = append(c.sendBuf, data...)
   944  		return len(data), nil
   945  	}
   946  
   947  	n, err := c.conn.Write(data)
   948  	c.bytesSent += int64(n)
   949  	return n, err
   950  }
   951  
   952  func (c *Conn) flush() (int, error) {
   953  	if len(c.sendBuf) == 0 {
   954  		return 0, nil
   955  	}
   956  
   957  	n, err := c.conn.Write(c.sendBuf)
   958  	c.bytesSent += int64(n)
   959  	c.sendBuf = nil
   960  	c.buffering = false
   961  	return n, err
   962  }
   963  
   964  // outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
   965  var outBufPool = sync.Pool{
   966  	New: func() interface{} {
   967  		return new([]byte)
   968  	},
   969  }
   970  
   971  // writeRecordLocked writes a TLS record with the given type and payload to the
   972  // connection and updates the record layer state.
   973  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   974  	outBufPtr := outBufPool.Get().(*[]byte)
   975  	outBuf := *outBufPtr
   976  	defer func() {
   977  		// You might be tempted to simplify this by just passing &outBuf to Put,
   978  		// but that would make the local copy of the outBuf slice header escape
   979  		// to the heap, causing an allocation. Instead, we keep around the
   980  		// pointer to the slice header returned by Get, which is already on the
   981  		// heap, and overwrite and return that.
   982  		*outBufPtr = outBuf
   983  		outBufPool.Put(outBufPtr)
   984  	}()
   985  
   986  	var n int
   987  	for len(data) > 0 {
   988  		m := len(data)
   989  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   990  			m = maxPayload
   991  		}
   992  
   993  		_, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
   994  		outBuf[0] = byte(typ)
   995  		vers := c.vers
   996  		if vers == 0 {
   997  			// Some TLS servers fail if the record version is
   998  			// greater than TLS 1.0 for the initial ClientHello.
   999  			vers = VersionTLS10
  1000  		} else if vers == VersionTLS13 {
  1001  			// TLS 1.3 froze the record layer version to 1.2.
  1002  			// See RFC 8446, Section 5.1.
  1003  			vers = VersionTLS12
  1004  		}
  1005  		outBuf[1] = byte(vers >> 8)
  1006  		outBuf[2] = byte(vers)
  1007  		outBuf[3] = byte(m >> 8)
  1008  		outBuf[4] = byte(m)
  1009  
  1010  		var err error
  1011  		outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
  1012  		if err != nil {
  1013  			return n, err
  1014  		}
  1015  		if _, err := c.write(outBuf); err != nil {
  1016  			return n, err
  1017  		}
  1018  		n += m
  1019  		data = data[m:]
  1020  	}
  1021  
  1022  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
  1023  		if err := c.out.changeCipherSpec(); err != nil {
  1024  			return n, c.sendAlertLocked(err.(alert))
  1025  		}
  1026  	}
  1027  
  1028  	return n, nil
  1029  }
  1030  
  1031  // writeRecord writes a TLS record with the given type and payload to the
  1032  // connection and updates the record layer state.
  1033  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  1034  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1035  		if typ == recordTypeChangeCipherSpec {
  1036  			return len(data), nil
  1037  		}
  1038  		return c.extraConfig.AlternativeRecordLayer.WriteRecord(data)
  1039  	}
  1040  
  1041  	c.out.Lock()
  1042  	defer c.out.Unlock()
  1043  
  1044  	return c.writeRecordLocked(typ, data)
  1045  }
  1046  
  1047  // [Psiphon]
  1048  
  1049  func ReadClientHelloRandom(data []byte) ([]byte, error) {
  1050  	if len(data) < 1 {
  1051  		return nil, errors.New("tls: missing message type")
  1052  	}
  1053  	if data[0] != typeClientHello {
  1054  		return nil, errors.New("tls: unexpected message type")
  1055  	}
  1056  
  1057  	// Unlike readHandshake, m is not retained and so making a copy of the
  1058  	// input data is not necessary.
  1059  
  1060  	var m clientHelloMsg
  1061  	if !m.unmarshal(data) {
  1062  		return nil, errors.New("tls: unexpected message")
  1063  	}
  1064  
  1065  	return m.random, nil
  1066  }
  1067  
  1068  // readHandshake reads the next handshake message from
  1069  // the record layer.
  1070  func (c *Conn) readHandshake() (interface{}, error) {
  1071  	var data []byte
  1072  	if c.extraConfig != nil && c.extraConfig.AlternativeRecordLayer != nil {
  1073  		var err error
  1074  		data, err = c.extraConfig.AlternativeRecordLayer.ReadHandshakeMessage()
  1075  		if err != nil {
  1076  			return nil, err
  1077  		}
  1078  	} else {
  1079  		for c.hand.Len() < 4 {
  1080  			if err := c.readRecord(); err != nil {
  1081  				return nil, err
  1082  			}
  1083  		}
  1084  
  1085  		data = c.hand.Bytes()
  1086  		n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1087  		if n > maxHandshake {
  1088  			c.sendAlertLocked(alertInternalError)
  1089  			return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1090  		}
  1091  		for c.hand.Len() < 4+n {
  1092  			if err := c.readRecord(); err != nil {
  1093  				return nil, err
  1094  			}
  1095  		}
  1096  		data = c.hand.Next(4 + n)
  1097  	}
  1098  	var m handshakeMessage
  1099  	switch data[0] {
  1100  	case typeHelloRequest:
  1101  		m = new(helloRequestMsg)
  1102  	case typeClientHello:
  1103  		m = new(clientHelloMsg)
  1104  	case typeServerHello:
  1105  		m = new(serverHelloMsg)
  1106  	case typeNewSessionTicket:
  1107  		if c.vers == VersionTLS13 {
  1108  			m = new(newSessionTicketMsgTLS13)
  1109  		} else {
  1110  			m = new(newSessionTicketMsg)
  1111  		}
  1112  	case typeCertificate:
  1113  		if c.vers == VersionTLS13 {
  1114  			m = new(certificateMsgTLS13)
  1115  		} else {
  1116  			m = new(certificateMsg)
  1117  		}
  1118  	case typeCertificateRequest:
  1119  		if c.vers == VersionTLS13 {
  1120  			m = new(certificateRequestMsgTLS13)
  1121  		} else {
  1122  			m = &certificateRequestMsg{
  1123  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1124  			}
  1125  		}
  1126  	case typeCertificateStatus:
  1127  		m = new(certificateStatusMsg)
  1128  	case typeServerKeyExchange:
  1129  		m = new(serverKeyExchangeMsg)
  1130  	case typeServerHelloDone:
  1131  		m = new(serverHelloDoneMsg)
  1132  	case typeClientKeyExchange:
  1133  		m = new(clientKeyExchangeMsg)
  1134  	case typeCertificateVerify:
  1135  		m = &certificateVerifyMsg{
  1136  			hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1137  		}
  1138  	case typeFinished:
  1139  		m = new(finishedMsg)
  1140  	case typeEncryptedExtensions:
  1141  		m = new(encryptedExtensionsMsg)
  1142  	case typeEndOfEarlyData:
  1143  		m = new(endOfEarlyDataMsg)
  1144  	case typeKeyUpdate:
  1145  		m = new(keyUpdateMsg)
  1146  	default:
  1147  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1148  	}
  1149  
  1150  	// The handshake message unmarshalers
  1151  	// expect to be able to keep references to data,
  1152  	// so pass in a fresh copy that won't be overwritten.
  1153  	data = append([]byte(nil), data...)
  1154  
  1155  	if !m.unmarshal(data) {
  1156  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1157  	}
  1158  	return m, nil
  1159  }
  1160  
  1161  var (
  1162  	errShutdown = errors.New("tls: protocol is shutdown")
  1163  )
  1164  
  1165  // Write writes data to the connection.
  1166  //
  1167  // As Write calls Handshake, in order to prevent indefinite blocking a deadline
  1168  // must be set for both Read and Write before Write is called when the handshake
  1169  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1170  // SetWriteDeadline.
  1171  func (c *Conn) Write(b []byte) (int, error) {
  1172  	// interlock with Close below
  1173  	for {
  1174  		x := atomic.LoadInt32(&c.activeCall)
  1175  		if x&1 != 0 {
  1176  			return 0, net.ErrClosed
  1177  		}
  1178  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1179  			break
  1180  		}
  1181  	}
  1182  	defer atomic.AddInt32(&c.activeCall, -2)
  1183  
  1184  	if err := c.Handshake(); err != nil {
  1185  		return 0, err
  1186  	}
  1187  
  1188  	c.out.Lock()
  1189  	defer c.out.Unlock()
  1190  
  1191  	if err := c.out.err; err != nil {
  1192  		return 0, err
  1193  	}
  1194  
  1195  	if !c.handshakeComplete() {
  1196  		return 0, alertInternalError
  1197  	}
  1198  
  1199  	if c.closeNotifySent {
  1200  		return 0, errShutdown
  1201  	}
  1202  
  1203  	// TLS 1.0 is susceptible to a chosen-plaintext
  1204  	// attack when using block mode ciphers due to predictable IVs.
  1205  	// This can be prevented by splitting each Application Data
  1206  	// record into two records, effectively randomizing the IV.
  1207  	//
  1208  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1209  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1210  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1211  
  1212  	var m int
  1213  	if len(b) > 1 && c.vers == VersionTLS10 {
  1214  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1215  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1216  			if err != nil {
  1217  				return n, c.out.setErrorLocked(err)
  1218  			}
  1219  			m, b = 1, b[1:]
  1220  		}
  1221  	}
  1222  
  1223  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1224  	return n + m, c.out.setErrorLocked(err)
  1225  }
  1226  
  1227  // handleRenegotiation processes a HelloRequest handshake message.
  1228  func (c *Conn) handleRenegotiation() error {
  1229  	if c.vers == VersionTLS13 {
  1230  		return errors.New("tls: internal error: unexpected renegotiation")
  1231  	}
  1232  
  1233  	msg, err := c.readHandshake()
  1234  	if err != nil {
  1235  		return err
  1236  	}
  1237  
  1238  	helloReq, ok := msg.(*helloRequestMsg)
  1239  	if !ok {
  1240  		c.sendAlert(alertUnexpectedMessage)
  1241  		return unexpectedMessageError(helloReq, msg)
  1242  	}
  1243  
  1244  	if !c.isClient {
  1245  		return c.sendAlert(alertNoRenegotiation)
  1246  	}
  1247  
  1248  	switch c.config.Renegotiation {
  1249  	case RenegotiateNever:
  1250  		return c.sendAlert(alertNoRenegotiation)
  1251  	case RenegotiateOnceAsClient:
  1252  		if c.handshakes > 1 {
  1253  			return c.sendAlert(alertNoRenegotiation)
  1254  		}
  1255  	case RenegotiateFreelyAsClient:
  1256  		// Ok.
  1257  	default:
  1258  		c.sendAlert(alertInternalError)
  1259  		return errors.New("tls: unknown Renegotiation value")
  1260  	}
  1261  
  1262  	c.handshakeMutex.Lock()
  1263  	defer c.handshakeMutex.Unlock()
  1264  
  1265  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1266  	if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
  1267  		c.handshakes++
  1268  	}
  1269  	return c.handshakeErr
  1270  }
  1271  
  1272  func (c *Conn) HandlePostHandshakeMessage() error {
  1273  	return c.handlePostHandshakeMessage()
  1274  }
  1275  
  1276  // handlePostHandshakeMessage processes a handshake message arrived after the
  1277  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1278  func (c *Conn) handlePostHandshakeMessage() error {
  1279  	if c.vers != VersionTLS13 {
  1280  		return c.handleRenegotiation()
  1281  	}
  1282  
  1283  	msg, err := c.readHandshake()
  1284  	if err != nil {
  1285  		return err
  1286  	}
  1287  
  1288  	c.retryCount++
  1289  	if c.retryCount > maxUselessRecords {
  1290  		c.sendAlert(alertUnexpectedMessage)
  1291  		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1292  	}
  1293  
  1294  	switch msg := msg.(type) {
  1295  	case *newSessionTicketMsgTLS13:
  1296  		return c.handleNewSessionTicket(msg)
  1297  	case *keyUpdateMsg:
  1298  		return c.handleKeyUpdate(msg)
  1299  	default:
  1300  		c.sendAlert(alertUnexpectedMessage)
  1301  		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1302  	}
  1303  }
  1304  
  1305  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1306  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1307  	if cipherSuite == nil {
  1308  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1309  	}
  1310  
  1311  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1312  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1313  
  1314  	if keyUpdate.updateRequested {
  1315  		c.out.Lock()
  1316  		defer c.out.Unlock()
  1317  
  1318  		msg := &keyUpdateMsg{}
  1319  		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1320  		if err != nil {
  1321  			// Surface the error at the next write.
  1322  			c.out.setErrorLocked(err)
  1323  			return nil
  1324  		}
  1325  
  1326  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1327  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1328  	}
  1329  
  1330  	return nil
  1331  }
  1332  
  1333  // Read reads data from the connection.
  1334  //
  1335  // As Read calls Handshake, in order to prevent indefinite blocking a deadline
  1336  // must be set for both Read and Write before Read is called when the handshake
  1337  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1338  // SetWriteDeadline.
  1339  func (c *Conn) Read(b []byte) (int, error) {
  1340  	if err := c.Handshake(); err != nil {
  1341  		return 0, err
  1342  	}
  1343  	if len(b) == 0 {
  1344  		// Put this after Handshake, in case people were calling
  1345  		// Read(nil) for the side effect of the Handshake.
  1346  		return 0, nil
  1347  	}
  1348  
  1349  	c.in.Lock()
  1350  	defer c.in.Unlock()
  1351  
  1352  	for c.input.Len() == 0 {
  1353  		if err := c.readRecord(); err != nil {
  1354  			return 0, err
  1355  		}
  1356  		for c.hand.Len() > 0 {
  1357  			if err := c.handlePostHandshakeMessage(); err != nil {
  1358  				return 0, err
  1359  			}
  1360  		}
  1361  	}
  1362  
  1363  	n, _ := c.input.Read(b)
  1364  
  1365  	// If a close-notify alert is waiting, read it so that we can return (n,
  1366  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1367  	// goroutine that the connection is now closed. This eliminates a race
  1368  	// where the HTTP response reading goroutine would otherwise not observe
  1369  	// the EOF until its next read, by which time a client goroutine might
  1370  	// have already tried to reuse the HTTP connection for a new request.
  1371  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1372  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1373  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1374  		if err := c.readRecord(); err != nil {
  1375  			return n, err // will be io.EOF on closeNotify
  1376  		}
  1377  	}
  1378  
  1379  	return n, nil
  1380  }
  1381  
  1382  // Close closes the connection.
  1383  func (c *Conn) Close() error {
  1384  	// Interlock with Conn.Write above.
  1385  	var x int32
  1386  	for {
  1387  		x = atomic.LoadInt32(&c.activeCall)
  1388  		if x&1 != 0 {
  1389  			return net.ErrClosed
  1390  		}
  1391  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1392  			break
  1393  		}
  1394  	}
  1395  	if x != 0 {
  1396  		// io.Writer and io.Closer should not be used concurrently.
  1397  		// If Close is called while a Write is currently in-flight,
  1398  		// interpret that as a sign that this Close is really just
  1399  		// being used to break the Write and/or clean up resources and
  1400  		// avoid sending the alertCloseNotify, which may block
  1401  		// waiting on handshakeMutex or the c.out mutex.
  1402  		return c.conn.Close()
  1403  	}
  1404  
  1405  	var alertErr error
  1406  	if c.handshakeComplete() {
  1407  		if err := c.closeNotify(); err != nil {
  1408  			alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
  1409  		}
  1410  	}
  1411  
  1412  	if err := c.conn.Close(); err != nil {
  1413  		return err
  1414  	}
  1415  	return alertErr
  1416  }
  1417  
  1418  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1419  
  1420  // CloseWrite shuts down the writing side of the connection. It should only be
  1421  // called once the handshake has completed and does not call CloseWrite on the
  1422  // underlying connection. Most callers should just use Close.
  1423  func (c *Conn) CloseWrite() error {
  1424  	if !c.handshakeComplete() {
  1425  		return errEarlyCloseWrite
  1426  	}
  1427  
  1428  	return c.closeNotify()
  1429  }
  1430  
  1431  func (c *Conn) closeNotify() error {
  1432  	c.out.Lock()
  1433  	defer c.out.Unlock()
  1434  
  1435  	if !c.closeNotifySent {
  1436  		// Set a Write Deadline to prevent possibly blocking forever.
  1437  		c.SetWriteDeadline(time.Now().Add(time.Second * 5))
  1438  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1439  		c.closeNotifySent = true
  1440  		// Any subsequent writes will fail.
  1441  		c.SetWriteDeadline(time.Now())
  1442  	}
  1443  	return c.closeNotifyErr
  1444  }
  1445  
  1446  // Handshake runs the client or server handshake
  1447  // protocol if it has not yet been run.
  1448  //
  1449  // Most uses of this package need not call Handshake explicitly: the
  1450  // first Read or Write will call it automatically.
  1451  //
  1452  // For control over canceling or setting a timeout on a handshake, use
  1453  // HandshakeContext or the Dialer's DialContext method instead.
  1454  func (c *Conn) Handshake() error {
  1455  	return c.HandshakeContext(context.Background())
  1456  }
  1457  
  1458  // HandshakeContext runs the client or server handshake
  1459  // protocol if it has not yet been run.
  1460  //
  1461  // The provided Context must be non-nil. If the context is canceled before
  1462  // the handshake is complete, the handshake is interrupted and an error is returned.
  1463  // Once the handshake has completed, cancellation of the context will not affect the
  1464  // connection.
  1465  //
  1466  // Most uses of this package need not call HandshakeContext explicitly: the
  1467  // first Read or Write will call it automatically.
  1468  func (c *Conn) HandshakeContext(ctx context.Context) error {
  1469  	// Delegate to unexported method for named return
  1470  	// without confusing documented signature.
  1471  	return c.handshakeContext(ctx)
  1472  }
  1473  
  1474  func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
  1475  	handshakeCtx, cancel := context.WithCancel(ctx)
  1476  	// Note: defer this before starting the "interrupter" goroutine
  1477  	// so that we can tell the difference between the input being canceled and
  1478  	// this cancellation. In the former case, we need to close the connection.
  1479  	defer cancel()
  1480  
  1481  	// Start the "interrupter" goroutine, if this context might be canceled.
  1482  	// (The background context cannot).
  1483  	//
  1484  	// The interrupter goroutine waits for the input context to be done and
  1485  	// closes the connection if this happens before the function returns.
  1486  	if ctx.Done() != nil {
  1487  		done := make(chan struct{})
  1488  		interruptRes := make(chan error, 1)
  1489  		defer func() {
  1490  			close(done)
  1491  			if ctxErr := <-interruptRes; ctxErr != nil {
  1492  				// Return context error to user.
  1493  				ret = ctxErr
  1494  			}
  1495  		}()
  1496  		go func() {
  1497  			select {
  1498  			case <-handshakeCtx.Done():
  1499  				// Close the connection, discarding the error
  1500  				_ = c.conn.Close()
  1501  				interruptRes <- handshakeCtx.Err()
  1502  			case <-done:
  1503  				interruptRes <- nil
  1504  			}
  1505  		}()
  1506  	}
  1507  
  1508  	c.handshakeMutex.Lock()
  1509  	defer c.handshakeMutex.Unlock()
  1510  
  1511  	if err := c.handshakeErr; err != nil {
  1512  		return err
  1513  	}
  1514  	if c.handshakeComplete() {
  1515  		return nil
  1516  	}
  1517  
  1518  	c.in.Lock()
  1519  	defer c.in.Unlock()
  1520  
  1521  	c.handshakeErr = c.handshakeFn(handshakeCtx)
  1522  	if c.handshakeErr == nil {
  1523  		c.handshakes++
  1524  	} else {
  1525  		// If an error occurred during the handshake try to flush the
  1526  		// alert that might be left in the buffer.
  1527  		c.flush()
  1528  	}
  1529  
  1530  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1531  		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1532  	}
  1533  
  1534  	return c.handshakeErr
  1535  }
  1536  
  1537  // ConnectionState returns basic TLS details about the connection.
  1538  func (c *Conn) ConnectionState() ConnectionState {
  1539  	c.handshakeMutex.Lock()
  1540  	defer c.handshakeMutex.Unlock()
  1541  	return c.connectionStateLocked()
  1542  }
  1543  
  1544  // ConnectionStateWith0RTT returns basic TLS details (incl. 0-RTT status) about the connection.
  1545  func (c *Conn) ConnectionStateWith0RTT() ConnectionStateWith0RTT {
  1546  	c.handshakeMutex.Lock()
  1547  	defer c.handshakeMutex.Unlock()
  1548  	return ConnectionStateWith0RTT{
  1549  		ConnectionState: c.connectionStateLocked(),
  1550  		Used0RTT:        c.used0RTT,
  1551  	}
  1552  }
  1553  
  1554  func (c *Conn) connectionStateLocked() ConnectionState {
  1555  	var state connectionState
  1556  	state.HandshakeComplete = c.handshakeComplete()
  1557  	state.Version = c.vers
  1558  	state.NegotiatedProtocol = c.clientProtocol
  1559  	state.DidResume = c.didResume
  1560  	state.NegotiatedProtocolIsMutual = true
  1561  	state.ServerName = c.serverName
  1562  	state.CipherSuite = c.cipherSuite
  1563  	state.PeerCertificates = c.peerCertificates
  1564  	state.VerifiedChains = c.verifiedChains
  1565  	state.SignedCertificateTimestamps = c.scts
  1566  	state.OCSPResponse = c.ocspResponse
  1567  	if !c.didResume && c.vers != VersionTLS13 {
  1568  		if c.clientFinishedIsFirst {
  1569  			state.TLSUnique = c.clientFinished[:]
  1570  		} else {
  1571  			state.TLSUnique = c.serverFinished[:]
  1572  		}
  1573  	}
  1574  	if c.config.Renegotiation != RenegotiateNever {
  1575  		state.ekm = noExportedKeyingMaterial
  1576  	} else {
  1577  		state.ekm = c.ekm
  1578  	}
  1579  	return toConnectionState(state)
  1580  }
  1581  
  1582  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1583  // any. (Only valid for client connections.)
  1584  func (c *Conn) OCSPResponse() []byte {
  1585  	c.handshakeMutex.Lock()
  1586  	defer c.handshakeMutex.Unlock()
  1587  
  1588  	return c.ocspResponse
  1589  }
  1590  
  1591  // VerifyHostname checks that the peer certificate chain is valid for
  1592  // connecting to host. If so, it returns nil; if not, it returns an error
  1593  // describing the problem.
  1594  func (c *Conn) VerifyHostname(host string) error {
  1595  	c.handshakeMutex.Lock()
  1596  	defer c.handshakeMutex.Unlock()
  1597  	if !c.isClient {
  1598  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1599  	}
  1600  	if !c.handshakeComplete() {
  1601  		return errors.New("tls: handshake has not yet been performed")
  1602  	}
  1603  	if len(c.verifiedChains) == 0 {
  1604  		return errors.New("tls: handshake did not verify certificate chain")
  1605  	}
  1606  	return c.peerCertificates[0].VerifyHostname(host)
  1607  }
  1608  
  1609  func (c *Conn) handshakeComplete() bool {
  1610  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1611  }