github.com/oskarth/go-ethereum@v1.6.8-0.20191013093314-dac24a9d3494/common/math/big.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package math provides integer math utilities.
    18  package math
    19  
    20  import (
    21  	"fmt"
    22  	"math/big"
    23  )
    24  
    25  // Various big integer limit values.
    26  var (
    27  	tt255     = BigPow(2, 255)
    28  	tt256     = BigPow(2, 256)
    29  	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
    30  	tt63      = BigPow(2, 63)
    31  	MaxBig256 = new(big.Int).Set(tt256m1)
    32  	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
    33  )
    34  
    35  const (
    36  	// number of bits in a big.Word
    37  	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
    38  	// number of bytes in a big.Word
    39  	wordBytes = wordBits / 8
    40  )
    41  
    42  // HexOrDecimal256 marshals big.Int as hex or decimal.
    43  type HexOrDecimal256 big.Int
    44  
    45  // UnmarshalText implements encoding.TextUnmarshaler.
    46  func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
    47  	bigint, ok := ParseBig256(string(input))
    48  	if !ok {
    49  		return fmt.Errorf("invalid hex or decimal integer %q", input)
    50  	}
    51  	*i = HexOrDecimal256(*bigint)
    52  	return nil
    53  }
    54  
    55  // MarshalText implements encoding.TextMarshaler.
    56  func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
    57  	if i == nil {
    58  		return []byte("0x0"), nil
    59  	}
    60  	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
    61  }
    62  
    63  // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
    64  // Leading zeros are accepted. The empty string parses as zero.
    65  func ParseBig256(s string) (*big.Int, bool) {
    66  	if s == "" {
    67  		return new(big.Int), true
    68  	}
    69  	var bigint *big.Int
    70  	var ok bool
    71  	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
    72  		bigint, ok = new(big.Int).SetString(s[2:], 16)
    73  	} else {
    74  		bigint, ok = new(big.Int).SetString(s, 10)
    75  	}
    76  	if ok && bigint.BitLen() > 256 {
    77  		bigint, ok = nil, false
    78  	}
    79  	return bigint, ok
    80  }
    81  
    82  // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
    83  func MustParseBig256(s string) *big.Int {
    84  	v, ok := ParseBig256(s)
    85  	if !ok {
    86  		panic("invalid 256 bit integer: " + s)
    87  	}
    88  	return v
    89  }
    90  
    91  // BigPow returns a ** b as a big integer.
    92  func BigPow(a, b int64) *big.Int {
    93  	r := big.NewInt(a)
    94  	return r.Exp(r, big.NewInt(b), nil)
    95  }
    96  
    97  // BigMax returns the larger of x or y.
    98  func BigMax(x, y *big.Int) *big.Int {
    99  	if x.Cmp(y) < 0 {
   100  		return y
   101  	}
   102  	return x
   103  }
   104  
   105  // BigMin returns the smaller of x or y.
   106  func BigMin(x, y *big.Int) *big.Int {
   107  	if x.Cmp(y) > 0 {
   108  		return y
   109  	}
   110  	return x
   111  }
   112  
   113  // FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
   114  func FirstBitSet(v *big.Int) int {
   115  	for i := 0; i < v.BitLen(); i++ {
   116  		if v.Bit(i) > 0 {
   117  			return i
   118  		}
   119  	}
   120  	return v.BitLen()
   121  }
   122  
   123  // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
   124  // of the slice is at least n bytes.
   125  func PaddedBigBytes(bigint *big.Int, n int) []byte {
   126  	if bigint.BitLen()/8 >= n {
   127  		return bigint.Bytes()
   128  	}
   129  	ret := make([]byte, n)
   130  	ReadBits(bigint, ret)
   131  	return ret
   132  }
   133  
   134  // bigEndianByteAt returns the byte at position n,
   135  // in Big-Endian encoding
   136  // So n==0 returns the least significant byte
   137  func bigEndianByteAt(bigint *big.Int, n int) byte {
   138  	words := bigint.Bits()
   139  	// Check word-bucket the byte will reside in
   140  	i := n / wordBytes
   141  	if i >= len(words) {
   142  		return byte(0)
   143  	}
   144  	word := words[i]
   145  	// Offset of the byte
   146  	shift := 8 * uint(n%wordBytes)
   147  
   148  	return byte(word >> shift)
   149  }
   150  
   151  // Byte returns the byte at position n,
   152  // with the supplied padlength in Little-Endian encoding.
   153  // n==0 returns the MSB
   154  // Example: bigint '5', padlength 32, n=31 => 5
   155  func Byte(bigint *big.Int, padlength, n int) byte {
   156  	if n >= padlength {
   157  		return byte(0)
   158  	}
   159  	return bigEndianByteAt(bigint, padlength-1-n)
   160  }
   161  
   162  // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
   163  // that buf has enough space. If buf is too short the result will be incomplete.
   164  func ReadBits(bigint *big.Int, buf []byte) {
   165  	i := len(buf)
   166  	for _, d := range bigint.Bits() {
   167  		for j := 0; j < wordBytes && i > 0; j++ {
   168  			i--
   169  			buf[i] = byte(d)
   170  			d >>= 8
   171  		}
   172  	}
   173  }
   174  
   175  // U256 encodes as a 256 bit two's complement number. This operation is destructive.
   176  func U256(x *big.Int) *big.Int {
   177  	return x.And(x, tt256m1)
   178  }
   179  
   180  // S256 interprets x as a two's complement number.
   181  // x must not exceed 256 bits (the result is undefined if it does) and is not modified.
   182  //
   183  //   S256(0)        = 0
   184  //   S256(1)        = 1
   185  //   S256(2**255)   = -2**255
   186  //   S256(2**256-1) = -1
   187  func S256(x *big.Int) *big.Int {
   188  	if x.Cmp(tt255) < 0 {
   189  		return x
   190  	}
   191  	return new(big.Int).Sub(x, tt256)
   192  }
   193  
   194  // Exp implements exponentiation by squaring.
   195  // Exp returns a newly-allocated big integer and does not change
   196  // base or exponent. The result is truncated to 256 bits.
   197  //
   198  // Courtesy @karalabe and @chfast
   199  func Exp(base, exponent *big.Int) *big.Int {
   200  	result := big.NewInt(1)
   201  
   202  	for _, word := range exponent.Bits() {
   203  		for i := 0; i < wordBits; i++ {
   204  			if word&1 == 1 {
   205  				U256(result.Mul(result, base))
   206  			}
   207  			U256(base.Mul(base, base))
   208  			word >>= 1
   209  		}
   210  	}
   211  	return result
   212  }