github.com/pachyderm/pachyderm@v1.13.4/examples/ml/hyperparameter/train/pytrain.py (about) 1 import pandas as pd 2 from sklearn import svm 3 from sklearn.externals import joblib 4 import argparse 5 import os 6 7 # command line arguments 8 parser = argparse.ArgumentParser(description='Train a model for iris classification.') 9 parser.add_argument('indir', type=str, help='Input directory containing the training set') 10 parser.add_argument('outdir', type=str, help='Output directory for the trained model') 11 parser.add_argument('cparam', type=float, help='Parameter C for SVM') 12 parser.add_argument('gammaparam', type=float, help='Parameter Gamma for SVM') 13 args = parser.parse_args() 14 15 # training set column names 16 cols = [ 17 "Sepal_Length", 18 "Sepal_Width", 19 "Petal_Length", 20 "Petal_Width", 21 "Species" 22 ] 23 24 features = [ 25 "Sepal_Length", 26 "Sepal_Width", 27 "Petal_Length", 28 "Petal_Width" 29 ] 30 31 # import the iris training set 32 irisDF = pd.read_csv(os.path.join(args.indir, "iris.csv"), names=cols) 33 34 # fit the model 35 svc = svm.SVC(kernel='linear', C=args.cparam, gamma=args.gammaparam).fit(irisDF[features], irisDF["Species"]) 36 37 # persist the model 38 joblib.dump(svc, os.path.join(args.outdir, 'model_C' + str(args.cparam) + '_G' + str(args.gammaparam) + '.pkl'))