github.com/pachyderm/pachyderm@v1.13.4/examples/ml/iris/python/iris-infer-python/pyinfer.py (about) 1 import pandas as pd 2 from sklearn.externals import joblib 3 import argparse 4 import os 5 6 # command line arguments 7 parser = argparse.ArgumentParser(description='Train a model for iris classification.') 8 parser.add_argument('inmodeldir', type=str, help='Input directory containing the training set') 9 parser.add_argument('inattdir', type=str, help='Input directory containing the input attributes') 10 parser.add_argument('outdir', type=str, help='Output directory for the trained model') 11 args = parser.parse_args() 12 13 # attribute column names 14 features = [ 15 "Sepal_Length", 16 "Sepal_Width", 17 "Petal_Length", 18 "Petal_Width" 19 ] 20 21 # load the model 22 mymodel = joblib.load(os.path.join(args.inmodeldir, 'model.pkl')) 23 24 # walk the input attributes directory and make an 25 # inference for every attributes file found 26 for dirpath, dirs, files in os.walk(args.inattdir): 27 for file in files: 28 29 # read in the attributes 30 attr = pd.read_csv(os.path.join(dirpath, file), names=features) 31 32 # make the inference 33 pred = mymodel.predict(attr) 34 35 # save the inference 36 output = pd.DataFrame(pred, columns=["Species"]) 37 output.to_csv(os.path.join(args.outdir, file.split(".")[0]), header=False, index=False) 38