github.com/palcoin-project/palcd@v1.0.0/blockchain/merkle.go (about)

     1  // Copyright (c) 2013-2016 The btcsuite developers
     2  // Use of this source code is governed by an ISC
     3  // license that can be found in the LICENSE file.
     4  
     5  package blockchain
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"math"
    11  
    12  	"github.com/palcoin-project/palcd/chaincfg/chainhash"
    13  	"github.com/palcoin-project/palcd/txscript"
    14  	"github.com/palcoin-project/palcutil"
    15  )
    16  
    17  const (
    18  	// CoinbaseWitnessDataLen is the required length of the only element within
    19  	// the coinbase's witness data if the coinbase transaction contains a
    20  	// witness commitment.
    21  	CoinbaseWitnessDataLen = 32
    22  
    23  	// CoinbaseWitnessPkScriptLength is the length of the public key script
    24  	// containing an OP_RETURN, the WitnessMagicBytes, and the witness
    25  	// commitment itself. In order to be a valid candidate for the output
    26  	// containing the witness commitment
    27  	CoinbaseWitnessPkScriptLength = 38
    28  )
    29  
    30  var (
    31  	// WitnessMagicBytes is the prefix marker within the public key script
    32  	// of a coinbase output to indicate that this output holds the witness
    33  	// commitment for a block.
    34  	WitnessMagicBytes = []byte{
    35  		txscript.OP_RETURN,
    36  		txscript.OP_DATA_36,
    37  		0xaa,
    38  		0x21,
    39  		0xa9,
    40  		0xed,
    41  	}
    42  )
    43  
    44  // nextPowerOfTwo returns the next highest power of two from a given number if
    45  // it is not already a power of two.  This is a helper function used during the
    46  // calculation of a merkle tree.
    47  func nextPowerOfTwo(n int) int {
    48  	// Return the number if it's already a power of 2.
    49  	if n&(n-1) == 0 {
    50  		return n
    51  	}
    52  
    53  	// Figure out and return the next power of two.
    54  	exponent := uint(math.Log2(float64(n))) + 1
    55  	return 1 << exponent // 2^exponent
    56  }
    57  
    58  // HashMerkleBranches takes two hashes, treated as the left and right tree
    59  // nodes, and returns the hash of their concatenation.  This is a helper
    60  // function used to aid in the generation of a merkle tree.
    61  func HashMerkleBranches(left *chainhash.Hash, right *chainhash.Hash) *chainhash.Hash {
    62  	// Concatenate the left and right nodes.
    63  	var hash [chainhash.HashSize * 2]byte
    64  	copy(hash[:chainhash.HashSize], left[:])
    65  	copy(hash[chainhash.HashSize:], right[:])
    66  
    67  	newHash := chainhash.DoubleHashH(hash[:])
    68  	return &newHash
    69  }
    70  
    71  // BuildMerkleTreeStore creates a merkle tree from a slice of transactions,
    72  // stores it using a linear array, and returns a slice of the backing array.  A
    73  // linear array was chosen as opposed to an actual tree structure since it uses
    74  // about half as much memory.  The following describes a merkle tree and how it
    75  // is stored in a linear array.
    76  //
    77  // A merkle tree is a tree in which every non-leaf node is the hash of its
    78  // children nodes.  A diagram depicting how this works for bitcoin transactions
    79  // where h(x) is a double sha256 follows:
    80  //
    81  //	         root = h1234 = h(h12 + h34)
    82  //	        /                           \
    83  //	  h12 = h(h1 + h2)            h34 = h(h3 + h4)
    84  //	   /            \              /            \
    85  //	h1 = h(tx1)  h2 = h(tx2)    h3 = h(tx3)  h4 = h(tx4)
    86  //
    87  // The above stored as a linear array is as follows:
    88  //
    89  // 	[h1 h2 h3 h4 h12 h34 root]
    90  //
    91  // As the above shows, the merkle root is always the last element in the array.
    92  //
    93  // The number of inputs is not always a power of two which results in a
    94  // balanced tree structure as above.  In that case, parent nodes with no
    95  // children are also zero and parent nodes with only a single left node
    96  // are calculated by concatenating the left node with itself before hashing.
    97  // Since this function uses nodes that are pointers to the hashes, empty nodes
    98  // will be nil.
    99  //
   100  // The additional bool parameter indicates if we are generating the merkle tree
   101  // using witness transaction id's rather than regular transaction id's. This
   102  // also presents an additional case wherein the wtxid of the coinbase transaction
   103  // is the zeroHash.
   104  func BuildMerkleTreeStore(transactions []*palcutil.Tx, witness bool) []*chainhash.Hash {
   105  	// Calculate how many entries are required to hold the binary merkle
   106  	// tree as a linear array and create an array of that size.
   107  	nextPoT := nextPowerOfTwo(len(transactions))
   108  	arraySize := nextPoT*2 - 1
   109  	merkles := make([]*chainhash.Hash, arraySize)
   110  
   111  	// Create the base transaction hashes and populate the array with them.
   112  	for i, tx := range transactions {
   113  		// If we're computing a witness merkle root, instead of the
   114  		// regular txid, we use the modified wtxid which includes a
   115  		// transaction's witness data within the digest. Additionally,
   116  		// the coinbase's wtxid is all zeroes.
   117  		switch {
   118  		case witness && i == 0:
   119  			var zeroHash chainhash.Hash
   120  			merkles[i] = &zeroHash
   121  		case witness:
   122  			wSha := tx.MsgTx().WitnessHash()
   123  			merkles[i] = &wSha
   124  		default:
   125  			merkles[i] = tx.Hash()
   126  		}
   127  
   128  	}
   129  
   130  	// Start the array offset after the last transaction and adjusted to the
   131  	// next power of two.
   132  	offset := nextPoT
   133  	for i := 0; i < arraySize-1; i += 2 {
   134  		switch {
   135  		// When there is no left child node, the parent is nil too.
   136  		case merkles[i] == nil:
   137  			merkles[offset] = nil
   138  
   139  		// When there is no right child, the parent is generated by
   140  		// hashing the concatenation of the left child with itself.
   141  		case merkles[i+1] == nil:
   142  			newHash := HashMerkleBranches(merkles[i], merkles[i])
   143  			merkles[offset] = newHash
   144  
   145  		// The normal case sets the parent node to the double sha256
   146  		// of the concatentation of the left and right children.
   147  		default:
   148  			newHash := HashMerkleBranches(merkles[i], merkles[i+1])
   149  			merkles[offset] = newHash
   150  		}
   151  		offset++
   152  	}
   153  
   154  	return merkles
   155  }
   156  
   157  // ExtractWitnessCommitment attempts to locate, and return the witness
   158  // commitment for a block. The witness commitment is of the form:
   159  // SHA256(witness root || witness nonce). The function additionally returns a
   160  // boolean indicating if the witness root was located within any of the txOut's
   161  // in the passed transaction. The witness commitment is stored as the data push
   162  // for an OP_RETURN with special magic bytes to aide in location.
   163  func ExtractWitnessCommitment(tx *palcutil.Tx) ([]byte, bool) {
   164  	// The witness commitment *must* be located within one of the coinbase
   165  	// transaction's outputs.
   166  	if !IsCoinBase(tx) {
   167  		return nil, false
   168  	}
   169  
   170  	msgTx := tx.MsgTx()
   171  	for i := len(msgTx.TxOut) - 1; i >= 0; i-- {
   172  		// The public key script that contains the witness commitment
   173  		// must shared a prefix with the WitnessMagicBytes, and be at
   174  		// least 38 bytes.
   175  		pkScript := msgTx.TxOut[i].PkScript
   176  		if len(pkScript) >= CoinbaseWitnessPkScriptLength &&
   177  			bytes.HasPrefix(pkScript, WitnessMagicBytes) {
   178  
   179  			// The witness commitment itself is a 32-byte hash
   180  			// directly after the WitnessMagicBytes. The remaining
   181  			// bytes beyond the 38th byte currently have no consensus
   182  			// meaning.
   183  			start := len(WitnessMagicBytes)
   184  			end := CoinbaseWitnessPkScriptLength
   185  			return msgTx.TxOut[i].PkScript[start:end], true
   186  		}
   187  	}
   188  
   189  	return nil, false
   190  }
   191  
   192  // ValidateWitnessCommitment validates the witness commitment (if any) found
   193  // within the coinbase transaction of the passed block.
   194  func ValidateWitnessCommitment(blk *palcutil.Block) error {
   195  	// If the block doesn't have any transactions at all, then we won't be
   196  	// able to extract a commitment from the non-existent coinbase
   197  	// transaction. So we exit early here.
   198  	if len(blk.Transactions()) == 0 {
   199  		str := "cannot validate witness commitment of block without " +
   200  			"transactions"
   201  		return ruleError(ErrNoTransactions, str)
   202  	}
   203  
   204  	coinbaseTx := blk.Transactions()[0]
   205  	if len(coinbaseTx.MsgTx().TxIn) == 0 {
   206  		return ruleError(ErrNoTxInputs, "transaction has no inputs")
   207  	}
   208  
   209  	witnessCommitment, witnessFound := ExtractWitnessCommitment(coinbaseTx)
   210  
   211  	// If we can't find a witness commitment in any of the coinbase's
   212  	// outputs, then the block MUST NOT contain any transactions with
   213  	// witness data.
   214  	if !witnessFound {
   215  		for _, tx := range blk.Transactions() {
   216  			msgTx := tx.MsgTx()
   217  			if msgTx.HasWitness() {
   218  				str := fmt.Sprintf("block contains transaction with witness" +
   219  					" data, yet no witness commitment present")
   220  				return ruleError(ErrUnexpectedWitness, str)
   221  			}
   222  		}
   223  		return nil
   224  	}
   225  
   226  	// At this point the block contains a witness commitment, so the
   227  	// coinbase transaction MUST have exactly one witness element within
   228  	// its witness data and that element must be exactly
   229  	// CoinbaseWitnessDataLen bytes.
   230  	coinbaseWitness := coinbaseTx.MsgTx().TxIn[0].Witness
   231  	if len(coinbaseWitness) != 1 {
   232  		str := fmt.Sprintf("the coinbase transaction has %d items in "+
   233  			"its witness stack when only one is allowed",
   234  			len(coinbaseWitness))
   235  		return ruleError(ErrInvalidWitnessCommitment, str)
   236  	}
   237  	witnessNonce := coinbaseWitness[0]
   238  	if len(witnessNonce) != CoinbaseWitnessDataLen {
   239  		str := fmt.Sprintf("the coinbase transaction witness nonce "+
   240  			"has %d bytes when it must be %d bytes",
   241  			len(witnessNonce), CoinbaseWitnessDataLen)
   242  		return ruleError(ErrInvalidWitnessCommitment, str)
   243  	}
   244  
   245  	// Finally, with the preliminary checks out of the way, we can check if
   246  	// the extracted witnessCommitment is equal to:
   247  	// SHA256(witnessMerkleRoot || witnessNonce). Where witnessNonce is the
   248  	// coinbase transaction's only witness item.
   249  	witnessMerkleTree := BuildMerkleTreeStore(blk.Transactions(), true)
   250  	witnessMerkleRoot := witnessMerkleTree[len(witnessMerkleTree)-1]
   251  
   252  	var witnessPreimage [chainhash.HashSize * 2]byte
   253  	copy(witnessPreimage[:], witnessMerkleRoot[:])
   254  	copy(witnessPreimage[chainhash.HashSize:], witnessNonce)
   255  
   256  	computedCommitment := chainhash.DoubleHashB(witnessPreimage[:])
   257  	if !bytes.Equal(computedCommitment, witnessCommitment) {
   258  		str := fmt.Sprintf("witness commitment does not match: "+
   259  			"computed %v, coinbase includes %v", computedCommitment,
   260  			witnessCommitment)
   261  		return ruleError(ErrWitnessCommitmentMismatch, str)
   262  	}
   263  
   264  	return nil
   265  }