github.com/palcoin-project/palcd@v1.0.0/btcec/btcec.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Copyright 2011 ThePiachu. All rights reserved.
     3  // Copyright 2013-2014 The btcsuite developers
     4  // Use of this source code is governed by an ISC
     5  // license that can be found in the LICENSE file.
     6  
     7  package btcec
     8  
     9  // References:
    10  //   [SECG]: Recommended Elliptic Curve Domain Parameters
    11  //     http://www.secg.org/sec2-v2.pdf
    12  //
    13  //   [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
    14  
    15  // This package operates, internally, on Jacobian coordinates. For a given
    16  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
    17  // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
    18  // calculation can be performed within the transform (as in ScalarMult and
    19  // ScalarBaseMult). But even for Add and Double, it's faster to apply and
    20  // reverse the transform than to operate in affine coordinates.
    21  
    22  import (
    23  	"crypto/elliptic"
    24  	"math/big"
    25  	"sync"
    26  )
    27  
    28  var (
    29  	// fieldOne is simply the integer 1 in field representation.  It is
    30  	// used to avoid needing to create it multiple times during the internal
    31  	// arithmetic.
    32  	fieldOne = new(fieldVal).SetInt(1)
    33  )
    34  
    35  // KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
    36  // interface from crypto/elliptic.
    37  type KoblitzCurve struct {
    38  	*elliptic.CurveParams
    39  
    40  	// q is the value (P+1)/4 used to compute the square root of field
    41  	// elements.
    42  	q *big.Int
    43  
    44  	H         int      // cofactor of the curve.
    45  	halfOrder *big.Int // half the order N
    46  
    47  	// fieldB is the constant B of the curve as a fieldVal.
    48  	fieldB *fieldVal
    49  
    50  	// byteSize is simply the bit size / 8 and is provided for convenience
    51  	// since it is calculated repeatedly.
    52  	byteSize int
    53  
    54  	// bytePoints
    55  	bytePoints *[32][256][3]fieldVal
    56  
    57  	// The next 6 values are used specifically for endomorphism
    58  	// optimizations in ScalarMult.
    59  
    60  	// lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
    61  	lambda *big.Int
    62  
    63  	// beta must fulfill beta^3 = 1 mod P where P is the prime field of the
    64  	// curve.
    65  	beta *fieldVal
    66  
    67  	// See the EndomorphismVectors in gensecp256k1.go to see how these are
    68  	// derived.
    69  	a1 *big.Int
    70  	b1 *big.Int
    71  	a2 *big.Int
    72  	b2 *big.Int
    73  }
    74  
    75  // Params returns the parameters for the curve.
    76  func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
    77  	return curve.CurveParams
    78  }
    79  
    80  // bigAffineToField takes an affine point (x, y) as big integers and converts
    81  // it to an affine point as field values.
    82  func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
    83  	x3, y3 := new(fieldVal), new(fieldVal)
    84  	x3.SetByteSlice(x.Bytes())
    85  	y3.SetByteSlice(y.Bytes())
    86  
    87  	return x3, y3
    88  }
    89  
    90  // fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
    91  // converts it to an affine point as big integers.
    92  func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
    93  	// Inversions are expensive and both point addition and point doubling
    94  	// are faster when working with points that have a z value of one.  So,
    95  	// if the point needs to be converted to affine, go ahead and normalize
    96  	// the point itself at the same time as the calculation is the same.
    97  	var zInv, tempZ fieldVal
    98  	zInv.Set(z).Inverse()   // zInv = Z^-1
    99  	tempZ.SquareVal(&zInv)  // tempZ = Z^-2
   100  	x.Mul(&tempZ)           // X = X/Z^2 (mag: 1)
   101  	y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
   102  	z.SetInt(1)             // Z = 1 (mag: 1)
   103  
   104  	// Normalize the x and y values.
   105  	x.Normalize()
   106  	y.Normalize()
   107  
   108  	// Convert the field values for the now affine point to big.Ints.
   109  	x3, y3 := new(big.Int), new(big.Int)
   110  	x3.SetBytes(x.Bytes()[:])
   111  	y3.SetBytes(y.Bytes()[:])
   112  	return x3, y3
   113  }
   114  
   115  // IsOnCurve returns boolean if the point (x,y) is on the curve.
   116  // Part of the elliptic.Curve interface. This function differs from the
   117  // crypto/elliptic algorithm since a = 0 not -3.
   118  func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
   119  	// Convert big ints to field values for faster arithmetic.
   120  	fx, fy := curve.bigAffineToField(x, y)
   121  
   122  	// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
   123  	y2 := new(fieldVal).SquareVal(fy).Normalize()
   124  	result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
   125  	return y2.Equals(result)
   126  }
   127  
   128  // addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
   129  // z values of 1 and stores the result in (x3, y3, z3).  That is to say
   130  // (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3).  It performs faster addition than
   131  // the generic add routine since less arithmetic is needed due to the ability to
   132  // avoid the z value multiplications.
   133  func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
   134  	// To compute the point addition efficiently, this implementation splits
   135  	// the equation into intermediate elements which are used to minimize
   136  	// the number of field multiplications using the method shown at:
   137  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
   138  	//
   139  	// In particular it performs the calculations using the following:
   140  	// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
   141  	// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
   142  	//
   143  	// This results in a cost of 4 field multiplications, 2 field squarings,
   144  	// 6 field additions, and 5 integer multiplications.
   145  
   146  	// When the x coordinates are the same for two points on the curve, the
   147  	// y coordinates either must be the same, in which case it is point
   148  	// doubling, or they are opposite and the result is the point at
   149  	// infinity per the group law for elliptic curve cryptography.
   150  	x1.Normalize()
   151  	y1.Normalize()
   152  	x2.Normalize()
   153  	y2.Normalize()
   154  	if x1.Equals(x2) {
   155  		if y1.Equals(y2) {
   156  			// Since x1 == x2 and y1 == y2, point doubling must be
   157  			// done, otherwise the addition would end up dividing
   158  			// by zero.
   159  			curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
   160  			return
   161  		}
   162  
   163  		// Since x1 == x2 and y1 == -y2, the sum is the point at
   164  		// infinity per the group law.
   165  		x3.SetInt(0)
   166  		y3.SetInt(0)
   167  		z3.SetInt(0)
   168  		return
   169  	}
   170  
   171  	// Calculate X3, Y3, and Z3 according to the intermediate elements
   172  	// breakdown above.
   173  	var h, i, j, r, v fieldVal
   174  	var negJ, neg2V, negX3 fieldVal
   175  	h.Set(x1).Negate(1).Add(x2)                // H = X2-X1 (mag: 3)
   176  	i.SquareVal(&h).MulInt(4)                  // I = 4*H^2 (mag: 4)
   177  	j.Mul2(&h, &i)                             // J = H*I (mag: 1)
   178  	r.Set(y1).Negate(1).Add(y2).MulInt(2)      // r = 2*(Y2-Y1) (mag: 6)
   179  	v.Mul2(x1, &i)                             // V = X1*I (mag: 1)
   180  	negJ.Set(&j).Negate(1)                     // negJ = -J (mag: 2)
   181  	neg2V.Set(&v).MulInt(2).Negate(2)          // neg2V = -(2*V) (mag: 3)
   182  	x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
   183  	negX3.Set(x3).Negate(6)                    // negX3 = -X3 (mag: 7)
   184  	j.Mul(y1).MulInt(2).Negate(2)              // J = -(2*Y1*J) (mag: 3)
   185  	y3.Set(&v).Add(&negX3).Mul(&r).Add(&j)     // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
   186  	z3.Set(&h).MulInt(2)                       // Z3 = 2*H (mag: 6)
   187  
   188  	// Normalize the resulting field values to a magnitude of 1 as needed.
   189  	x3.Normalize()
   190  	y3.Normalize()
   191  	z3.Normalize()
   192  }
   193  
   194  // addZ1EqualsZ2 adds two Jacobian points that are already known to have the
   195  // same z value and stores the result in (x3, y3, z3).  That is to say
   196  // (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3).  It performs faster addition than
   197  // the generic add routine since less arithmetic is needed due to the known
   198  // equivalence.
   199  func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
   200  	// To compute the point addition efficiently, this implementation splits
   201  	// the equation into intermediate elements which are used to minimize
   202  	// the number of field multiplications using a slightly modified version
   203  	// of the method shown at:
   204  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
   205  	//
   206  	// In particular it performs the calculations using the following:
   207  	// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
   208  	// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
   209  	//
   210  	// This results in a cost of 5 field multiplications, 2 field squarings,
   211  	// 9 field additions, and 0 integer multiplications.
   212  
   213  	// When the x coordinates are the same for two points on the curve, the
   214  	// y coordinates either must be the same, in which case it is point
   215  	// doubling, or they are opposite and the result is the point at
   216  	// infinity per the group law for elliptic curve cryptography.
   217  	x1.Normalize()
   218  	y1.Normalize()
   219  	x2.Normalize()
   220  	y2.Normalize()
   221  	if x1.Equals(x2) {
   222  		if y1.Equals(y2) {
   223  			// Since x1 == x2 and y1 == y2, point doubling must be
   224  			// done, otherwise the addition would end up dividing
   225  			// by zero.
   226  			curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
   227  			return
   228  		}
   229  
   230  		// Since x1 == x2 and y1 == -y2, the sum is the point at
   231  		// infinity per the group law.
   232  		x3.SetInt(0)
   233  		y3.SetInt(0)
   234  		z3.SetInt(0)
   235  		return
   236  	}
   237  
   238  	// Calculate X3, Y3, and Z3 according to the intermediate elements
   239  	// breakdown above.
   240  	var a, b, c, d, e, f fieldVal
   241  	var negX1, negY1, negE, negX3 fieldVal
   242  	negX1.Set(x1).Negate(1)                // negX1 = -X1 (mag: 2)
   243  	negY1.Set(y1).Negate(1)                // negY1 = -Y1 (mag: 2)
   244  	a.Set(&negX1).Add(x2)                  // A = X2-X1 (mag: 3)
   245  	b.SquareVal(&a)                        // B = A^2 (mag: 1)
   246  	c.Set(&negY1).Add(y2)                  // C = Y2-Y1 (mag: 3)
   247  	d.SquareVal(&c)                        // D = C^2 (mag: 1)
   248  	e.Mul2(x1, &b)                         // E = X1*B (mag: 1)
   249  	negE.Set(&e).Negate(1)                 // negE = -E (mag: 2)
   250  	f.Mul2(x2, &b)                         // F = X2*B (mag: 1)
   251  	x3.Add2(&e, &f).Negate(3).Add(&d)      // X3 = D-E-F (mag: 5)
   252  	negX3.Set(x3).Negate(5).Normalize()    // negX3 = -X3 (mag: 1)
   253  	y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
   254  	y3.Add(e.Add(&negX3).Mul(&c))          // Y3 = C*(E-X3)+Y3 (mag: 5)
   255  	z3.Mul2(z1, &a)                        // Z3 = Z1*A (mag: 1)
   256  
   257  	// Normalize the resulting field values to a magnitude of 1 as needed.
   258  	x3.Normalize()
   259  	y3.Normalize()
   260  }
   261  
   262  // addZ2EqualsOne adds two Jacobian points when the second point is already
   263  // known to have a z value of 1 (and the z value for the first point is not 1)
   264  // and stores the result in (x3, y3, z3).  That is to say (x1, y1, z1) +
   265  // (x2, y2, 1) = (x3, y3, z3).  It performs faster addition than the generic
   266  // add routine since less arithmetic is needed due to the ability to avoid
   267  // multiplications by the second point's z value.
   268  func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
   269  	// To compute the point addition efficiently, this implementation splits
   270  	// the equation into intermediate elements which are used to minimize
   271  	// the number of field multiplications using the method shown at:
   272  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
   273  	//
   274  	// In particular it performs the calculations using the following:
   275  	// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
   276  	// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
   277  	// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
   278  	//
   279  	// This results in a cost of 7 field multiplications, 4 field squarings,
   280  	// 9 field additions, and 4 integer multiplications.
   281  
   282  	// When the x coordinates are the same for two points on the curve, the
   283  	// y coordinates either must be the same, in which case it is point
   284  	// doubling, or they are opposite and the result is the point at
   285  	// infinity per the group law for elliptic curve cryptography.  Since
   286  	// any number of Jacobian coordinates can represent the same affine
   287  	// point, the x and y values need to be converted to like terms.  Due to
   288  	// the assumption made for this function that the second point has a z
   289  	// value of 1 (z2=1), the first point is already "converted".
   290  	var z1z1, u2, s2 fieldVal
   291  	x1.Normalize()
   292  	y1.Normalize()
   293  	z1z1.SquareVal(z1)                        // Z1Z1 = Z1^2 (mag: 1)
   294  	u2.Set(x2).Mul(&z1z1).Normalize()         // U2 = X2*Z1Z1 (mag: 1)
   295  	s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
   296  	if x1.Equals(&u2) {
   297  		if y1.Equals(&s2) {
   298  			// Since x1 == x2 and y1 == y2, point doubling must be
   299  			// done, otherwise the addition would end up dividing
   300  			// by zero.
   301  			curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
   302  			return
   303  		}
   304  
   305  		// Since x1 == x2 and y1 == -y2, the sum is the point at
   306  		// infinity per the group law.
   307  		x3.SetInt(0)
   308  		y3.SetInt(0)
   309  		z3.SetInt(0)
   310  		return
   311  	}
   312  
   313  	// Calculate X3, Y3, and Z3 according to the intermediate elements
   314  	// breakdown above.
   315  	var h, hh, i, j, r, rr, v fieldVal
   316  	var negX1, negY1, negX3 fieldVal
   317  	negX1.Set(x1).Negate(1)                // negX1 = -X1 (mag: 2)
   318  	h.Add2(&u2, &negX1)                    // H = U2-X1 (mag: 3)
   319  	hh.SquareVal(&h)                       // HH = H^2 (mag: 1)
   320  	i.Set(&hh).MulInt(4)                   // I = 4 * HH (mag: 4)
   321  	j.Mul2(&h, &i)                         // J = H*I (mag: 1)
   322  	negY1.Set(y1).Negate(1)                // negY1 = -Y1 (mag: 2)
   323  	r.Set(&s2).Add(&negY1).MulInt(2)       // r = 2*(S2-Y1) (mag: 6)
   324  	rr.SquareVal(&r)                       // rr = r^2 (mag: 1)
   325  	v.Mul2(x1, &i)                         // V = X1*I (mag: 1)
   326  	x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
   327  	x3.Add(&rr)                            // X3 = r^2+X3 (mag: 5)
   328  	negX3.Set(x3).Negate(5)                // negX3 = -X3 (mag: 6)
   329  	y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
   330  	y3.Add(v.Add(&negX3).Mul(&r))          // Y3 = r*(V-X3)+Y3 (mag: 4)
   331  	z3.Add2(z1, &h).Square()               // Z3 = (Z1+H)^2 (mag: 1)
   332  	z3.Add(z1z1.Add(&hh).Negate(2))        // Z3 = Z3-(Z1Z1+HH) (mag: 4)
   333  
   334  	// Normalize the resulting field values to a magnitude of 1 as needed.
   335  	x3.Normalize()
   336  	y3.Normalize()
   337  	z3.Normalize()
   338  }
   339  
   340  // addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
   341  // assumptions about the z values of the two points and stores the result in
   342  // (x3, y3, z3).  That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3).  It
   343  // is the slowest of the add routines due to requiring the most arithmetic.
   344  func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
   345  	// To compute the point addition efficiently, this implementation splits
   346  	// the equation into intermediate elements which are used to minimize
   347  	// the number of field multiplications using the method shown at:
   348  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   349  	//
   350  	// In particular it performs the calculations using the following:
   351  	// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
   352  	// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
   353  	// V = U1*I
   354  	// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
   355  	//
   356  	// This results in a cost of 11 field multiplications, 5 field squarings,
   357  	// 9 field additions, and 4 integer multiplications.
   358  
   359  	// When the x coordinates are the same for two points on the curve, the
   360  	// y coordinates either must be the same, in which case it is point
   361  	// doubling, or they are opposite and the result is the point at
   362  	// infinity.  Since any number of Jacobian coordinates can represent the
   363  	// same affine point, the x and y values need to be converted to like
   364  	// terms.
   365  	var z1z1, z2z2, u1, u2, s1, s2 fieldVal
   366  	z1z1.SquareVal(z1)                        // Z1Z1 = Z1^2 (mag: 1)
   367  	z2z2.SquareVal(z2)                        // Z2Z2 = Z2^2 (mag: 1)
   368  	u1.Set(x1).Mul(&z2z2).Normalize()         // U1 = X1*Z2Z2 (mag: 1)
   369  	u2.Set(x2).Mul(&z1z1).Normalize()         // U2 = X2*Z1Z1 (mag: 1)
   370  	s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
   371  	s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
   372  	if u1.Equals(&u2) {
   373  		if s1.Equals(&s2) {
   374  			// Since x1 == x2 and y1 == y2, point doubling must be
   375  			// done, otherwise the addition would end up dividing
   376  			// by zero.
   377  			curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
   378  			return
   379  		}
   380  
   381  		// Since x1 == x2 and y1 == -y2, the sum is the point at
   382  		// infinity per the group law.
   383  		x3.SetInt(0)
   384  		y3.SetInt(0)
   385  		z3.SetInt(0)
   386  		return
   387  	}
   388  
   389  	// Calculate X3, Y3, and Z3 according to the intermediate elements
   390  	// breakdown above.
   391  	var h, i, j, r, rr, v fieldVal
   392  	var negU1, negS1, negX3 fieldVal
   393  	negU1.Set(&u1).Negate(1)               // negU1 = -U1 (mag: 2)
   394  	h.Add2(&u2, &negU1)                    // H = U2-U1 (mag: 3)
   395  	i.Set(&h).MulInt(2).Square()           // I = (2*H)^2 (mag: 2)
   396  	j.Mul2(&h, &i)                         // J = H*I (mag: 1)
   397  	negS1.Set(&s1).Negate(1)               // negS1 = -S1 (mag: 2)
   398  	r.Set(&s2).Add(&negS1).MulInt(2)       // r = 2*(S2-S1) (mag: 6)
   399  	rr.SquareVal(&r)                       // rr = r^2 (mag: 1)
   400  	v.Mul2(&u1, &i)                        // V = U1*I (mag: 1)
   401  	x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
   402  	x3.Add(&rr)                            // X3 = r^2+X3 (mag: 5)
   403  	negX3.Set(x3).Negate(5)                // negX3 = -X3 (mag: 6)
   404  	y3.Mul2(&s1, &j).MulInt(2).Negate(2)   // Y3 = -(2*S1*J) (mag: 3)
   405  	y3.Add(v.Add(&negX3).Mul(&r))          // Y3 = r*(V-X3)+Y3 (mag: 4)
   406  	z3.Add2(z1, z2).Square()               // Z3 = (Z1+Z2)^2 (mag: 1)
   407  	z3.Add(z1z1.Add(&z2z2).Negate(2))      // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
   408  	z3.Mul(&h)                             // Z3 = Z3*H (mag: 1)
   409  
   410  	// Normalize the resulting field values to a magnitude of 1 as needed.
   411  	x3.Normalize()
   412  	y3.Normalize()
   413  }
   414  
   415  // addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
   416  // together and stores the result in (x3, y3, z3).
   417  func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
   418  	// A point at infinity is the identity according to the group law for
   419  	// elliptic curve cryptography.  Thus, ∞ + P = P and P + ∞ = P.
   420  	if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
   421  		x3.Set(x2)
   422  		y3.Set(y2)
   423  		z3.Set(z2)
   424  		return
   425  	}
   426  	if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
   427  		x3.Set(x1)
   428  		y3.Set(y1)
   429  		z3.Set(z1)
   430  		return
   431  	}
   432  
   433  	// Faster point addition can be achieved when certain assumptions are
   434  	// met.  For example, when both points have the same z value, arithmetic
   435  	// on the z values can be avoided.  This section thus checks for these
   436  	// conditions and calls an appropriate add function which is accelerated
   437  	// by using those assumptions.
   438  	z1.Normalize()
   439  	z2.Normalize()
   440  	isZ1One := z1.Equals(fieldOne)
   441  	isZ2One := z2.Equals(fieldOne)
   442  	switch {
   443  	case isZ1One && isZ2One:
   444  		curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
   445  		return
   446  	case z1.Equals(z2):
   447  		curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
   448  		return
   449  	case isZ2One:
   450  		curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
   451  		return
   452  	}
   453  
   454  	// None of the above assumptions are true, so fall back to generic
   455  	// point addition.
   456  	curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
   457  }
   458  
   459  // Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
   460  // interface.
   461  func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   462  	// A point at infinity is the identity according to the group law for
   463  	// elliptic curve cryptography.  Thus, ∞ + P = P and P + ∞ = P.
   464  	if x1.Sign() == 0 && y1.Sign() == 0 {
   465  		return x2, y2
   466  	}
   467  	if x2.Sign() == 0 && y2.Sign() == 0 {
   468  		return x1, y1
   469  	}
   470  
   471  	// Convert the affine coordinates from big integers to field values
   472  	// and do the point addition in Jacobian projective space.
   473  	fx1, fy1 := curve.bigAffineToField(x1, y1)
   474  	fx2, fy2 := curve.bigAffineToField(x2, y2)
   475  	fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
   476  	fOne := new(fieldVal).SetInt(1)
   477  	curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
   478  
   479  	// Convert the Jacobian coordinate field values back to affine big
   480  	// integers.
   481  	return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
   482  }
   483  
   484  // doubleZ1EqualsOne performs point doubling on the passed Jacobian point
   485  // when the point is already known to have a z value of 1 and stores
   486  // the result in (x3, y3, z3).  That is to say (x3, y3, z3) = 2*(x1, y1, 1).  It
   487  // performs faster point doubling than the generic routine since less arithmetic
   488  // is needed due to the ability to avoid multiplication by the z value.
   489  func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
   490  	// This function uses the assumptions that z1 is 1, thus the point
   491  	// doubling formulas reduce to:
   492  	//
   493  	// X3 = (3*X1^2)^2 - 8*X1*Y1^2
   494  	// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
   495  	// Z3 = 2*Y1
   496  	//
   497  	// To compute the above efficiently, this implementation splits the
   498  	// equation into intermediate elements which are used to minimize the
   499  	// number of field multiplications in favor of field squarings which
   500  	// are roughly 35% faster than field multiplications with the current
   501  	// implementation at the time this was written.
   502  	//
   503  	// This uses a slightly modified version of the method shown at:
   504  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
   505  	//
   506  	// In particular it performs the calculations using the following:
   507  	// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
   508  	// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
   509  	// Z3 = 2*Y1
   510  	//
   511  	// This results in a cost of 1 field multiplication, 5 field squarings,
   512  	// 6 field additions, and 5 integer multiplications.
   513  	var a, b, c, d, e, f fieldVal
   514  	z3.Set(y1).MulInt(2)                     // Z3 = 2*Y1 (mag: 2)
   515  	a.SquareVal(x1)                          // A = X1^2 (mag: 1)
   516  	b.SquareVal(y1)                          // B = Y1^2 (mag: 1)
   517  	c.SquareVal(&b)                          // C = B^2 (mag: 1)
   518  	b.Add(x1).Square()                       // B = (X1+B)^2 (mag: 1)
   519  	d.Set(&a).Add(&c).Negate(2)              // D = -(A+C) (mag: 3)
   520  	d.Add(&b).MulInt(2)                      // D = 2*(B+D)(mag: 8)
   521  	e.Set(&a).MulInt(3)                      // E = 3*A (mag: 3)
   522  	f.SquareVal(&e)                          // F = E^2 (mag: 1)
   523  	x3.Set(&d).MulInt(2).Negate(16)          // X3 = -(2*D) (mag: 17)
   524  	x3.Add(&f)                               // X3 = F+X3 (mag: 18)
   525  	f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
   526  	y3.Set(&c).MulInt(8).Negate(8)           // Y3 = -(8*C) (mag: 9)
   527  	y3.Add(f.Mul(&e))                        // Y3 = E*F+Y3 (mag: 10)
   528  
   529  	// Normalize the field values back to a magnitude of 1.
   530  	x3.Normalize()
   531  	y3.Normalize()
   532  	z3.Normalize()
   533  }
   534  
   535  // doubleGeneric performs point doubling on the passed Jacobian point without
   536  // any assumptions about the z value and stores the result in (x3, y3, z3).
   537  // That is to say (x3, y3, z3) = 2*(x1, y1, z1).  It is the slowest of the point
   538  // doubling routines due to requiring the most arithmetic.
   539  func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
   540  	// Point doubling formula for Jacobian coordinates for the secp256k1
   541  	// curve:
   542  	// X3 = (3*X1^2)^2 - 8*X1*Y1^2
   543  	// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
   544  	// Z3 = 2*Y1*Z1
   545  	//
   546  	// To compute the above efficiently, this implementation splits the
   547  	// equation into intermediate elements which are used to minimize the
   548  	// number of field multiplications in favor of field squarings which
   549  	// are roughly 35% faster than field multiplications with the current
   550  	// implementation at the time this was written.
   551  	//
   552  	// This uses a slightly modified version of the method shown at:
   553  	// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   554  	//
   555  	// In particular it performs the calculations using the following:
   556  	// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
   557  	// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
   558  	// Z3 = 2*Y1*Z1
   559  	//
   560  	// This results in a cost of 1 field multiplication, 5 field squarings,
   561  	// 6 field additions, and 5 integer multiplications.
   562  	var a, b, c, d, e, f fieldVal
   563  	z3.Mul2(y1, z1).MulInt(2)                // Z3 = 2*Y1*Z1 (mag: 2)
   564  	a.SquareVal(x1)                          // A = X1^2 (mag: 1)
   565  	b.SquareVal(y1)                          // B = Y1^2 (mag: 1)
   566  	c.SquareVal(&b)                          // C = B^2 (mag: 1)
   567  	b.Add(x1).Square()                       // B = (X1+B)^2 (mag: 1)
   568  	d.Set(&a).Add(&c).Negate(2)              // D = -(A+C) (mag: 3)
   569  	d.Add(&b).MulInt(2)                      // D = 2*(B+D)(mag: 8)
   570  	e.Set(&a).MulInt(3)                      // E = 3*A (mag: 3)
   571  	f.SquareVal(&e)                          // F = E^2 (mag: 1)
   572  	x3.Set(&d).MulInt(2).Negate(16)          // X3 = -(2*D) (mag: 17)
   573  	x3.Add(&f)                               // X3 = F+X3 (mag: 18)
   574  	f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
   575  	y3.Set(&c).MulInt(8).Negate(8)           // Y3 = -(8*C) (mag: 9)
   576  	y3.Add(f.Mul(&e))                        // Y3 = E*F+Y3 (mag: 10)
   577  
   578  	// Normalize the field values back to a magnitude of 1.
   579  	x3.Normalize()
   580  	y3.Normalize()
   581  	z3.Normalize()
   582  }
   583  
   584  // doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
   585  // result in (x3, y3, z3).
   586  func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
   587  	// Doubling a point at infinity is still infinity.
   588  	if y1.IsZero() || z1.IsZero() {
   589  		x3.SetInt(0)
   590  		y3.SetInt(0)
   591  		z3.SetInt(0)
   592  		return
   593  	}
   594  
   595  	// Slightly faster point doubling can be achieved when the z value is 1
   596  	// by avoiding the multiplication on the z value.  This section calls
   597  	// a point doubling function which is accelerated by using that
   598  	// assumption when possible.
   599  	if z1.Normalize().Equals(fieldOne) {
   600  		curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
   601  		return
   602  	}
   603  
   604  	// Fall back to generic point doubling which works with arbitrary z
   605  	// values.
   606  	curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
   607  }
   608  
   609  // Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
   610  func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   611  	if y1.Sign() == 0 {
   612  		return new(big.Int), new(big.Int)
   613  	}
   614  
   615  	// Convert the affine coordinates from big integers to field values
   616  	// and do the point doubling in Jacobian projective space.
   617  	fx1, fy1 := curve.bigAffineToField(x1, y1)
   618  	fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
   619  	fOne := new(fieldVal).SetInt(1)
   620  	curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
   621  
   622  	// Convert the Jacobian coordinate field values back to affine big
   623  	// integers.
   624  	return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
   625  }
   626  
   627  // splitK returns a balanced length-two representation of k and their signs.
   628  // This is algorithm 3.74 from [GECC].
   629  //
   630  // One thing of note about this algorithm is that no matter what c1 and c2 are,
   631  // the final equation of k = k1 + k2 * lambda (mod n) will hold.  This is
   632  // provable mathematically due to how a1/b1/a2/b2 are computed.
   633  //
   634  // c1 and c2 are chosen to minimize the max(k1,k2).
   635  func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
   636  	// All math here is done with big.Int, which is slow.
   637  	// At some point, it might be useful to write something similar to
   638  	// fieldVal but for N instead of P as the prime field if this ends up
   639  	// being a bottleneck.
   640  	bigIntK := new(big.Int)
   641  	c1, c2 := new(big.Int), new(big.Int)
   642  	tmp1, tmp2 := new(big.Int), new(big.Int)
   643  	k1, k2 := new(big.Int), new(big.Int)
   644  
   645  	bigIntK.SetBytes(k)
   646  	// c1 = round(b2 * k / n) from step 4.
   647  	// Rounding isn't really necessary and costs too much, hence skipped
   648  	c1.Mul(curve.b2, bigIntK)
   649  	c1.Div(c1, curve.N)
   650  	// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
   651  	// Rounding isn't really necessary and costs too much, hence skipped
   652  	c2.Mul(curve.b1, bigIntK)
   653  	c2.Div(c2, curve.N)
   654  	// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
   655  	tmp1.Mul(c1, curve.a1)
   656  	tmp2.Mul(c2, curve.a2)
   657  	k1.Sub(bigIntK, tmp1)
   658  	k1.Add(k1, tmp2)
   659  	// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
   660  	tmp1.Mul(c1, curve.b1)
   661  	tmp2.Mul(c2, curve.b2)
   662  	k2.Sub(tmp2, tmp1)
   663  
   664  	// Note Bytes() throws out the sign of k1 and k2. This matters
   665  	// since k1 and/or k2 can be negative. Hence, we pass that
   666  	// back separately.
   667  	return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
   668  }
   669  
   670  // moduloReduce reduces k from more than 32 bytes to 32 bytes and under.  This
   671  // is done by doing a simple modulo curve.N.  We can do this since G^N = 1 and
   672  // thus any other valid point on the elliptic curve has the same order.
   673  func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
   674  	// Since the order of G is curve.N, we can use a much smaller number
   675  	// by doing modulo curve.N
   676  	if len(k) > curve.byteSize {
   677  		// Reduce k by performing modulo curve.N.
   678  		tmpK := new(big.Int).SetBytes(k)
   679  		tmpK.Mod(tmpK, curve.N)
   680  		return tmpK.Bytes()
   681  	}
   682  
   683  	return k
   684  }
   685  
   686  // NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
   687  // byte slices.  The first is where 1s will be.  The second is where -1s will
   688  // be.  NAF is convenient in that on average, only 1/3rd of its values are
   689  // non-zero.  This is algorithm 3.30 from [GECC].
   690  //
   691  // Essentially, this makes it possible to minimize the number of operations
   692  // since the resulting ints returned will be at least 50% 0s.
   693  func NAF(k []byte) ([]byte, []byte) {
   694  	// The essence of this algorithm is that whenever we have consecutive 1s
   695  	// in the binary, we want to put a -1 in the lowest bit and get a bunch
   696  	// of 0s up to the highest bit of consecutive 1s.  This is due to this
   697  	// identity:
   698  	// 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
   699  	//
   700  	// The algorithm thus may need to go 1 more bit than the length of the
   701  	// bits we actually have, hence bits being 1 bit longer than was
   702  	// necessary.  Since we need to know whether adding will cause a carry,
   703  	// we go from right-to-left in this addition.
   704  	var carry, curIsOne, nextIsOne bool
   705  	// these default to zero
   706  	retPos := make([]byte, len(k)+1)
   707  	retNeg := make([]byte, len(k)+1)
   708  	for i := len(k) - 1; i >= 0; i-- {
   709  		curByte := k[i]
   710  		for j := uint(0); j < 8; j++ {
   711  			curIsOne = curByte&1 == 1
   712  			if j == 7 {
   713  				if i == 0 {
   714  					nextIsOne = false
   715  				} else {
   716  					nextIsOne = k[i-1]&1 == 1
   717  				}
   718  			} else {
   719  				nextIsOne = curByte&2 == 2
   720  			}
   721  			if carry {
   722  				if curIsOne {
   723  					// This bit is 1, so continue to carry
   724  					// and don't need to do anything.
   725  				} else {
   726  					// We've hit a 0 after some number of
   727  					// 1s.
   728  					if nextIsOne {
   729  						// Start carrying again since
   730  						// a new sequence of 1s is
   731  						// starting.
   732  						retNeg[i+1] += 1 << j
   733  					} else {
   734  						// Stop carrying since 1s have
   735  						// stopped.
   736  						carry = false
   737  						retPos[i+1] += 1 << j
   738  					}
   739  				}
   740  			} else if curIsOne {
   741  				if nextIsOne {
   742  					// If this is the start of at least 2
   743  					// consecutive 1s, set the current one
   744  					// to -1 and start carrying.
   745  					retNeg[i+1] += 1 << j
   746  					carry = true
   747  				} else {
   748  					// This is a singleton, not consecutive
   749  					// 1s.
   750  					retPos[i+1] += 1 << j
   751  				}
   752  			}
   753  			curByte >>= 1
   754  		}
   755  	}
   756  	if carry {
   757  		retPos[0] = 1
   758  		return retPos, retNeg
   759  	}
   760  	return retPos[1:], retNeg[1:]
   761  }
   762  
   763  // ScalarMult returns k*(Bx, By) where k is a big endian integer.
   764  // Part of the elliptic.Curve interface.
   765  func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
   766  	// Point Q = ∞ (point at infinity).
   767  	qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
   768  
   769  	// Decompose K into k1 and k2 in order to halve the number of EC ops.
   770  	// See Algorithm 3.74 in [GECC].
   771  	k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
   772  
   773  	// The main equation here to remember is:
   774  	//   k * P = k1 * P + k2 * ϕ(P)
   775  	//
   776  	// P1 below is P in the equation, P2 below is ϕ(P) in the equation
   777  	p1x, p1y := curve.bigAffineToField(Bx, By)
   778  	p1yNeg := new(fieldVal).NegateVal(p1y, 1)
   779  	p1z := new(fieldVal).SetInt(1)
   780  
   781  	// NOTE: ϕ(x,y) = (βx,y).  The Jacobian z coordinate is 1, so this math
   782  	// goes through.
   783  	p2x := new(fieldVal).Mul2(p1x, curve.beta)
   784  	p2y := new(fieldVal).Set(p1y)
   785  	p2yNeg := new(fieldVal).NegateVal(p2y, 1)
   786  	p2z := new(fieldVal).SetInt(1)
   787  
   788  	// Flip the positive and negative values of the points as needed
   789  	// depending on the signs of k1 and k2.  As mentioned in the equation
   790  	// above, each of k1 and k2 are multiplied by the respective point.
   791  	// Since -k * P is the same thing as k * -P, and the group law for
   792  	// elliptic curves states that P(x, y) = -P(x, -y), it's faster and
   793  	// simplifies the code to just make the point negative.
   794  	if signK1 == -1 {
   795  		p1y, p1yNeg = p1yNeg, p1y
   796  	}
   797  	if signK2 == -1 {
   798  		p2y, p2yNeg = p2yNeg, p2y
   799  	}
   800  
   801  	// NAF versions of k1 and k2 should have a lot more zeros.
   802  	//
   803  	// The Pos version of the bytes contain the +1s and the Neg versions
   804  	// contain the -1s.
   805  	k1PosNAF, k1NegNAF := NAF(k1)
   806  	k2PosNAF, k2NegNAF := NAF(k2)
   807  	k1Len := len(k1PosNAF)
   808  	k2Len := len(k2PosNAF)
   809  
   810  	m := k1Len
   811  	if m < k2Len {
   812  		m = k2Len
   813  	}
   814  
   815  	// Add left-to-right using the NAF optimization.  See algorithm 3.77
   816  	// from [GECC].  This should be faster overall since there will be a lot
   817  	// more instances of 0, hence reducing the number of Jacobian additions
   818  	// at the cost of 1 possible extra doubling.
   819  	var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
   820  	for i := 0; i < m; i++ {
   821  		// Since we're going left-to-right, pad the front with 0s.
   822  		if i < m-k1Len {
   823  			k1BytePos = 0
   824  			k1ByteNeg = 0
   825  		} else {
   826  			k1BytePos = k1PosNAF[i-(m-k1Len)]
   827  			k1ByteNeg = k1NegNAF[i-(m-k1Len)]
   828  		}
   829  		if i < m-k2Len {
   830  			k2BytePos = 0
   831  			k2ByteNeg = 0
   832  		} else {
   833  			k2BytePos = k2PosNAF[i-(m-k2Len)]
   834  			k2ByteNeg = k2NegNAF[i-(m-k2Len)]
   835  		}
   836  
   837  		for j := 7; j >= 0; j-- {
   838  			// Q = 2 * Q
   839  			curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
   840  
   841  			if k1BytePos&0x80 == 0x80 {
   842  				curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
   843  					qx, qy, qz)
   844  			} else if k1ByteNeg&0x80 == 0x80 {
   845  				curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
   846  					qx, qy, qz)
   847  			}
   848  
   849  			if k2BytePos&0x80 == 0x80 {
   850  				curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
   851  					qx, qy, qz)
   852  			} else if k2ByteNeg&0x80 == 0x80 {
   853  				curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
   854  					qx, qy, qz)
   855  			}
   856  			k1BytePos <<= 1
   857  			k1ByteNeg <<= 1
   858  			k2BytePos <<= 1
   859  			k2ByteNeg <<= 1
   860  		}
   861  	}
   862  
   863  	// Convert the Jacobian coordinate field values back to affine big.Ints.
   864  	return curve.fieldJacobianToBigAffine(qx, qy, qz)
   865  }
   866  
   867  // ScalarBaseMult returns k*G where G is the base point of the group and k is a
   868  // big endian integer.
   869  // Part of the elliptic.Curve interface.
   870  func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   871  	newK := curve.moduloReduce(k)
   872  	diff := len(curve.bytePoints) - len(newK)
   873  
   874  	// Point Q = ∞ (point at infinity).
   875  	qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
   876  
   877  	// curve.bytePoints has all 256 byte points for each 8-bit window. The
   878  	// strategy is to add up the byte points. This is best understood by
   879  	// expressing k in base-256 which it already sort of is.
   880  	// Each "digit" in the 8-bit window can be looked up using bytePoints
   881  	// and added together.
   882  	for i, byteVal := range newK {
   883  		p := curve.bytePoints[diff+i][byteVal]
   884  		curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
   885  	}
   886  	return curve.fieldJacobianToBigAffine(qx, qy, qz)
   887  }
   888  
   889  // QPlus1Div4 returns the (P+1)/4 constant for the curve for use in calculating
   890  // square roots via exponentiation.
   891  //
   892  // DEPRECATED: The actual value returned is (P+1)/4, where as the original
   893  // method name implies that this value is (((P+1)/4)+1)/4. This method is kept
   894  // to maintain backwards compatibility of the API. Use Q() instead.
   895  func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
   896  	return curve.q
   897  }
   898  
   899  // Q returns the (P+1)/4 constant for the curve for use in calculating square
   900  // roots via exponentiation.
   901  func (curve *KoblitzCurve) Q() *big.Int {
   902  	return curve.q
   903  }
   904  
   905  var initonce sync.Once
   906  var secp256k1 KoblitzCurve
   907  
   908  func initAll() {
   909  	initS256()
   910  }
   911  
   912  // fromHex converts the passed hex string into a big integer pointer and will
   913  // panic is there is an error.  This is only provided for the hard-coded
   914  // constants so errors in the source code can bet detected. It will only (and
   915  // must only) be called for initialization purposes.
   916  func fromHex(s string) *big.Int {
   917  	r, ok := new(big.Int).SetString(s, 16)
   918  	if !ok {
   919  		panic("invalid hex in source file: " + s)
   920  	}
   921  	return r
   922  }
   923  
   924  func initS256() {
   925  	// Curve parameters taken from [SECG] section 2.4.1.
   926  	secp256k1.CurveParams = new(elliptic.CurveParams)
   927  	secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
   928  	secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
   929  	secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
   930  	secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
   931  	secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
   932  	secp256k1.BitSize = 256
   933  	// Curve name taken from https://safecurves.cr.yp.to/.
   934  	secp256k1.Name = "secp256k1"
   935  	secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
   936  		big.NewInt(1)), big.NewInt(4))
   937  	secp256k1.H = 1
   938  	secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1)
   939  	secp256k1.fieldB = new(fieldVal).SetByteSlice(secp256k1.B.Bytes())
   940  
   941  	// Provided for convenience since this gets computed repeatedly.
   942  	secp256k1.byteSize = secp256k1.BitSize / 8
   943  
   944  	// Deserialize and set the pre-computed table used to accelerate scalar
   945  	// base multiplication.  This is hard-coded data, so any errors are
   946  	// panics because it means something is wrong in the source code.
   947  	if err := loadS256BytePoints(); err != nil {
   948  		panic(err)
   949  	}
   950  
   951  	// Next 6 constants are from Hal Finney's bitcointalk.org post:
   952  	// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
   953  	// May he rest in peace.
   954  	//
   955  	// They have also been independently derived from the code in the
   956  	// EndomorphismVectors function in gensecp256k1.go.
   957  	secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
   958  	secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
   959  	secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
   960  	secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
   961  	secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
   962  	secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
   963  
   964  	// Alternatively, we can use the parameters below, however, they seem
   965  	//  to be about 8% slower.
   966  	// secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
   967  	// secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
   968  	// secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
   969  	// secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
   970  	// secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
   971  	// secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
   972  }
   973  
   974  // S256 returns a Curve which implements secp256k1.
   975  func S256() *KoblitzCurve {
   976  	initonce.Do(initAll)
   977  	return &secp256k1
   978  }