github.com/palcoin-project/palcd@v1.0.0/btcec/btcec_test.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Copyright 2011 ThePiachu. All rights reserved.
     3  // Copyright 2013-2016 The btcsuite developers
     4  // Use of this source code is governed by an ISC
     5  // license that can be found in the LICENSE file.
     6  
     7  package btcec
     8  
     9  import (
    10  	"crypto/rand"
    11  	"fmt"
    12  	"math/big"
    13  	"testing"
    14  )
    15  
    16  // isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the
    17  // secp256k1 curve.
    18  func isJacobianOnS256Curve(x, y, z *fieldVal) bool {
    19  	// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
    20  	// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
    21  	// Thus:
    22  	// (y/z^3)^2 = (x/z^2)^3 + 7
    23  	// y^2/z^6 = x^3/z^6 + 7
    24  	// y^2 = x^3 + 7*z^6
    25  	var y2, z2, x3, result fieldVal
    26  	y2.SquareVal(y).Normalize()
    27  	z2.SquareVal(z)
    28  	x3.SquareVal(x).Mul(x)
    29  	result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
    30  	return y2.Equals(&result)
    31  }
    32  
    33  // TestAddJacobian tests addition of points projected in Jacobian coordinates.
    34  func TestAddJacobian(t *testing.T) {
    35  	tests := []struct {
    36  		x1, y1, z1 string // Coordinates (in hex) of first point to add
    37  		x2, y2, z2 string // Coordinates (in hex) of second point to add
    38  		x3, y3, z3 string // Coordinates (in hex) of expected point
    39  	}{
    40  		// Addition with a point at infinity (left hand side).
    41  		// ∞ + P = P
    42  		{
    43  			"0",
    44  			"0",
    45  			"0",
    46  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
    47  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
    48  			"1",
    49  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
    50  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
    51  			"1",
    52  		},
    53  		// Addition with a point at infinity (right hand side).
    54  		// P + ∞ = P
    55  		{
    56  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
    57  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
    58  			"1",
    59  			"0",
    60  			"0",
    61  			"0",
    62  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
    63  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
    64  			"1",
    65  		},
    66  		// Addition with z1=z2=1 different x values.
    67  		{
    68  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
    69  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
    70  			"1",
    71  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
    72  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
    73  			"1",
    74  			"0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6",
    75  			"e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87",
    76  			"44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f",
    77  		},
    78  		// Addition with z1=z2=1 same x opposite y.
    79  		// P(x, y, z) + P(x, -y, z) = infinity
    80  		{
    81  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
    82  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
    83  			"1",
    84  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
    85  			"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
    86  			"1",
    87  			"0",
    88  			"0",
    89  			"0",
    90  		},
    91  		// Addition with z1=z2=1 same point.
    92  		// P(x, y, z) + P(x, y, z) = 2P
    93  		{
    94  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
    95  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
    96  			"1",
    97  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
    98  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
    99  			"1",
   100  			"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
   101  			"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
   102  			"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
   103  		},
   104  
   105  		// Addition with z1=z2 (!=1) different x values.
   106  		{
   107  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   108  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   109  			"2",
   110  			"5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147",
   111  			"98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8",
   112  			"2",
   113  			"cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60",
   114  			"817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778",
   115  			"129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d",
   116  		},
   117  		// Addition with z1=z2 (!=1) same x opposite y.
   118  		// P(x, y, z) + P(x, -y, z) = infinity
   119  		{
   120  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   121  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   122  			"2",
   123  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   124  			"a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f",
   125  			"2",
   126  			"0",
   127  			"0",
   128  			"0",
   129  		},
   130  		// Addition with z1=z2 (!=1) same point.
   131  		// P(x, y, z) + P(x, y, z) = 2P
   132  		{
   133  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   134  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   135  			"2",
   136  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   137  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   138  			"2",
   139  			"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
   140  			"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
   141  			"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
   142  		},
   143  
   144  		// Addition with z1!=z2 and z2=1 different x values.
   145  		{
   146  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   147  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   148  			"2",
   149  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   150  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   151  			"1",
   152  			"3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3",
   153  			"0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04",
   154  			"252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a",
   155  		},
   156  		// Addition with z1!=z2 and z2=1 same x opposite y.
   157  		// P(x, y, z) + P(x, -y, z) = infinity
   158  		{
   159  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   160  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   161  			"2",
   162  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   163  			"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
   164  			"1",
   165  			"0",
   166  			"0",
   167  			"0",
   168  		},
   169  		// Addition with z1!=z2 and z2=1 same point.
   170  		// P(x, y, z) + P(x, y, z) = 2P
   171  		{
   172  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   173  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   174  			"2",
   175  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   176  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   177  			"1",
   178  			"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
   179  			"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
   180  			"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
   181  		},
   182  
   183  		// Addition with z1!=z2 and z2!=1 different x values.
   184  		// P(x, y, z) + P(x, y, z) = 2P
   185  		{
   186  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   187  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   188  			"2",
   189  			"91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4",
   190  			"03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1",
   191  			"3",
   192  			"3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e",
   193  			"949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031",
   194  			"eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931",
   195  		}, // Addition with z1!=z2 and z2!=1 same x opposite y.
   196  		// P(x, y, z) + P(x, -y, z) = infinity
   197  		{
   198  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   199  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   200  			"2",
   201  			"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
   202  			"cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18",
   203  			"3",
   204  			"0",
   205  			"0",
   206  			"0",
   207  		},
   208  		// Addition with z1!=z2 and z2!=1 same point.
   209  		// P(x, y, z) + P(x, y, z) = 2P
   210  		{
   211  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   212  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   213  			"2",
   214  			"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
   215  			"3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17",
   216  			"3",
   217  			"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
   218  			"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
   219  			"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
   220  		},
   221  	}
   222  
   223  	t.Logf("Running %d tests", len(tests))
   224  	for i, test := range tests {
   225  		// Convert hex to field values.
   226  		x1 := new(fieldVal).SetHex(test.x1)
   227  		y1 := new(fieldVal).SetHex(test.y1)
   228  		z1 := new(fieldVal).SetHex(test.z1)
   229  		x2 := new(fieldVal).SetHex(test.x2)
   230  		y2 := new(fieldVal).SetHex(test.y2)
   231  		z2 := new(fieldVal).SetHex(test.z2)
   232  		x3 := new(fieldVal).SetHex(test.x3)
   233  		y3 := new(fieldVal).SetHex(test.y3)
   234  		z3 := new(fieldVal).SetHex(test.z3)
   235  
   236  		// Ensure the test data is using points that are actually on
   237  		// the curve (or the point at infinity).
   238  		if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
   239  			t.Errorf("#%d first point is not on the curve -- "+
   240  				"invalid test data", i)
   241  			continue
   242  		}
   243  		if !z2.IsZero() && !isJacobianOnS256Curve(x2, y2, z2) {
   244  			t.Errorf("#%d second point is not on the curve -- "+
   245  				"invalid test data", i)
   246  			continue
   247  		}
   248  		if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
   249  			t.Errorf("#%d expected point is not on the curve -- "+
   250  				"invalid test data", i)
   251  			continue
   252  		}
   253  
   254  		// Add the two points.
   255  		rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
   256  		S256().addJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz)
   257  
   258  		// Ensure result matches expected.
   259  		if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
   260  			t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
   261  				"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
   262  			continue
   263  		}
   264  	}
   265  }
   266  
   267  // TestAddAffine tests addition of points in affine coordinates.
   268  func TestAddAffine(t *testing.T) {
   269  	tests := []struct {
   270  		x1, y1 string // Coordinates (in hex) of first point to add
   271  		x2, y2 string // Coordinates (in hex) of second point to add
   272  		x3, y3 string // Coordinates (in hex) of expected point
   273  	}{
   274  		// Addition with a point at infinity (left hand side).
   275  		// ∞ + P = P
   276  		{
   277  			"0",
   278  			"0",
   279  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   280  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   281  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   282  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   283  		},
   284  		// Addition with a point at infinity (right hand side).
   285  		// P + ∞ = P
   286  		{
   287  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   288  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   289  			"0",
   290  			"0",
   291  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   292  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   293  		},
   294  
   295  		// Addition with different x values.
   296  		{
   297  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   298  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   299  			"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
   300  			"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
   301  			"fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69",
   302  			"21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f",
   303  		},
   304  		// Addition with same x opposite y.
   305  		// P(x, y) + P(x, -y) = infinity
   306  		{
   307  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   308  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   309  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   310  			"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
   311  			"0",
   312  			"0",
   313  		},
   314  		// Addition with same point.
   315  		// P(x, y) + P(x, y) = 2P
   316  		{
   317  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   318  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   319  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   320  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   321  			"59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b",
   322  			"938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6",
   323  		},
   324  	}
   325  
   326  	t.Logf("Running %d tests", len(tests))
   327  	for i, test := range tests {
   328  		// Convert hex to field values.
   329  		x1, y1 := fromHex(test.x1), fromHex(test.y1)
   330  		x2, y2 := fromHex(test.x2), fromHex(test.y2)
   331  		x3, y3 := fromHex(test.x3), fromHex(test.y3)
   332  
   333  		// Ensure the test data is using points that are actually on
   334  		// the curve (or the point at infinity).
   335  		if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
   336  			t.Errorf("#%d first point is not on the curve -- "+
   337  				"invalid test data", i)
   338  			continue
   339  		}
   340  		if !(x2.Sign() == 0 && y2.Sign() == 0) && !S256().IsOnCurve(x2, y2) {
   341  			t.Errorf("#%d second point is not on the curve -- "+
   342  				"invalid test data", i)
   343  			continue
   344  		}
   345  		if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
   346  			t.Errorf("#%d expected point is not on the curve -- "+
   347  				"invalid test data", i)
   348  			continue
   349  		}
   350  
   351  		// Add the two points.
   352  		rx, ry := S256().Add(x1, y1, x2, y2)
   353  
   354  		// Ensure result matches expected.
   355  		if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
   356  			t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
   357  				"want: (%x, %x)", i, rx, ry, x3, y3)
   358  			continue
   359  		}
   360  	}
   361  }
   362  
   363  // TestDoubleJacobian tests doubling of points projected in Jacobian
   364  // coordinates.
   365  func TestDoubleJacobian(t *testing.T) {
   366  	tests := []struct {
   367  		x1, y1, z1 string // Coordinates (in hex) of point to double
   368  		x3, y3, z3 string // Coordinates (in hex) of expected point
   369  	}{
   370  		// Doubling a point at infinity is still infinity.
   371  		{
   372  			"0",
   373  			"0",
   374  			"0",
   375  			"0",
   376  			"0",
   377  			"0",
   378  		},
   379  		// Doubling with z1=1.
   380  		{
   381  			"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
   382  			"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
   383  			"1",
   384  			"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
   385  			"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
   386  			"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
   387  		},
   388  		// Doubling with z1!=1.
   389  		{
   390  			"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
   391  			"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
   392  			"2",
   393  			"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
   394  			"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
   395  			"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
   396  		},
   397  		// From btcd issue #709.
   398  		{
   399  			"201e3f75715136d2f93c4f4598f91826f94ca01f4233a5bd35de9708859ca50d",
   400  			"bdf18566445e7562c6ada68aef02d498d7301503de5b18c6aef6e2b1722412e1",
   401  			"0000000000000000000000000000000000000000000000000000000000000001",
   402  			"4a5e0559863ebb4e9ed85f5c4fa76003d05d9a7626616e614a1f738621e3c220",
   403  			"00000000000000000000000000000000000000000000000000000001b1388778",
   404  			"7be30acc88bceac58d5b4d15de05a931ae602a07bcb6318d5dedc563e4482993",
   405  		},
   406  	}
   407  
   408  	t.Logf("Running %d tests", len(tests))
   409  	for i, test := range tests {
   410  		// Convert hex to field values.
   411  		x1 := new(fieldVal).SetHex(test.x1)
   412  		y1 := new(fieldVal).SetHex(test.y1)
   413  		z1 := new(fieldVal).SetHex(test.z1)
   414  		x3 := new(fieldVal).SetHex(test.x3)
   415  		y3 := new(fieldVal).SetHex(test.y3)
   416  		z3 := new(fieldVal).SetHex(test.z3)
   417  
   418  		// Ensure the test data is using points that are actually on
   419  		// the curve (or the point at infinity).
   420  		if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
   421  			t.Errorf("#%d first point is not on the curve -- "+
   422  				"invalid test data", i)
   423  			continue
   424  		}
   425  		if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
   426  			t.Errorf("#%d expected point is not on the curve -- "+
   427  				"invalid test data", i)
   428  			continue
   429  		}
   430  
   431  		// Double the point.
   432  		rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
   433  		S256().doubleJacobian(x1, y1, z1, rx, ry, rz)
   434  
   435  		// Ensure result matches expected.
   436  		if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
   437  			t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
   438  				"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
   439  			continue
   440  		}
   441  	}
   442  }
   443  
   444  // TestDoubleAffine tests doubling of points in affine coordinates.
   445  func TestDoubleAffine(t *testing.T) {
   446  	tests := []struct {
   447  		x1, y1 string // Coordinates (in hex) of point to double
   448  		x3, y3 string // Coordinates (in hex) of expected point
   449  	}{
   450  		// Doubling a point at infinity is still infinity.
   451  		// 2*∞ = ∞ (point at infinity)
   452  
   453  		{
   454  			"0",
   455  			"0",
   456  			"0",
   457  			"0",
   458  		},
   459  
   460  		// Random points.
   461  		{
   462  			"e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86",
   463  			"1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899",
   464  			"88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19",
   465  			"3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1",
   466  		},
   467  		{
   468  			"b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c",
   469  			"c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a",
   470  			"e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1",
   471  			"2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789",
   472  		},
   473  		{
   474  			"2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340",
   475  			"9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1",
   476  			"2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2",
   477  			"bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95",
   478  		},
   479  		{
   480  			"61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a",
   481  			"ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd",
   482  			"5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4",
   483  			"a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0",
   484  		},
   485  	}
   486  
   487  	t.Logf("Running %d tests", len(tests))
   488  	for i, test := range tests {
   489  		// Convert hex to field values.
   490  		x1, y1 := fromHex(test.x1), fromHex(test.y1)
   491  		x3, y3 := fromHex(test.x3), fromHex(test.y3)
   492  
   493  		// Ensure the test data is using points that are actually on
   494  		// the curve (or the point at infinity).
   495  		if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
   496  			t.Errorf("#%d first point is not on the curve -- "+
   497  				"invalid test data", i)
   498  			continue
   499  		}
   500  		if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
   501  			t.Errorf("#%d expected point is not on the curve -- "+
   502  				"invalid test data", i)
   503  			continue
   504  		}
   505  
   506  		// Double the point.
   507  		rx, ry := S256().Double(x1, y1)
   508  
   509  		// Ensure result matches expected.
   510  		if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
   511  			t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
   512  				"want: (%x, %x)", i, rx, ry, x3, y3)
   513  			continue
   514  		}
   515  	}
   516  }
   517  
   518  func TestOnCurve(t *testing.T) {
   519  	s256 := S256()
   520  	if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
   521  		t.Errorf("FAIL S256")
   522  	}
   523  }
   524  
   525  type baseMultTest struct {
   526  	k    string
   527  	x, y string
   528  }
   529  
   530  //TODO: add more test vectors
   531  var s256BaseMultTests = []baseMultTest{
   532  	{
   533  		"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
   534  		"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
   535  		"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
   536  	},
   537  	{
   538  		"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
   539  		"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
   540  		"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
   541  	},
   542  	{
   543  		"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
   544  		"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
   545  		"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
   546  	},
   547  	{
   548  		"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
   549  		"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
   550  		"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
   551  	},
   552  	{
   553  		"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
   554  		"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
   555  		"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
   556  	},
   557  }
   558  
   559  //TODO: test different curves as well?
   560  func TestBaseMult(t *testing.T) {
   561  	s256 := S256()
   562  	for i, e := range s256BaseMultTests {
   563  		k, ok := new(big.Int).SetString(e.k, 16)
   564  		if !ok {
   565  			t.Errorf("%d: bad value for k: %s", i, e.k)
   566  		}
   567  		x, y := s256.ScalarBaseMult(k.Bytes())
   568  		if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
   569  			t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
   570  		}
   571  		if testing.Short() && i > 5 {
   572  			break
   573  		}
   574  	}
   575  }
   576  
   577  func TestBaseMultVerify(t *testing.T) {
   578  	s256 := S256()
   579  	for bytes := 1; bytes < 40; bytes++ {
   580  		for i := 0; i < 30; i++ {
   581  			data := make([]byte, bytes)
   582  			_, err := rand.Read(data)
   583  			if err != nil {
   584  				t.Errorf("failed to read random data for %d", i)
   585  				continue
   586  			}
   587  			x, y := s256.ScalarBaseMult(data)
   588  			xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data)
   589  			if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
   590  				t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
   591  			}
   592  			if testing.Short() && i > 2 {
   593  				break
   594  			}
   595  		}
   596  	}
   597  }
   598  
   599  func TestScalarMult(t *testing.T) {
   600  	tests := []struct {
   601  		x  string
   602  		y  string
   603  		k  string
   604  		rx string
   605  		ry string
   606  	}{
   607  		// base mult, essentially.
   608  		{
   609  			"79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
   610  			"483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8",
   611  			"18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725",
   612  			"50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352",
   613  			"2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6",
   614  		},
   615  		// From btcd issue #709.
   616  		{
   617  			"000000000000000000000000000000000000000000000000000000000000002c",
   618  			"420e7a99bba18a9d3952597510fd2b6728cfeafc21a4e73951091d4d8ddbe94e",
   619  			"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
   620  			"a2112dcdfbcd10ae1133a358de7b82db68e0a3eb4b492cc8268d1e7118c98788",
   621  			"27fc7463b7bb3c5f98ecf2c84a6272bb1681ed553d92c69f2dfe25a9f9fd3836",
   622  		},
   623  	}
   624  
   625  	s256 := S256()
   626  	for i, test := range tests {
   627  		x, _ := new(big.Int).SetString(test.x, 16)
   628  		y, _ := new(big.Int).SetString(test.y, 16)
   629  		k, _ := new(big.Int).SetString(test.k, 16)
   630  		xWant, _ := new(big.Int).SetString(test.rx, 16)
   631  		yWant, _ := new(big.Int).SetString(test.ry, 16)
   632  		xGot, yGot := s256.ScalarMult(x, y, k.Bytes())
   633  		if xGot.Cmp(xWant) != 0 || yGot.Cmp(yWant) != 0 {
   634  			t.Fatalf("%d: bad output: got (%X, %X), want (%X, %X)", i, xGot, yGot, xWant, yWant)
   635  		}
   636  	}
   637  }
   638  
   639  func TestScalarMultRand(t *testing.T) {
   640  	// Strategy for this test:
   641  	// Get a random exponent from the generator point at first
   642  	// This creates a new point which is used in the next iteration
   643  	// Use another random exponent on the new point.
   644  	// We use BaseMult to verify by multiplying the previous exponent
   645  	// and the new random exponent together (mod N)
   646  	s256 := S256()
   647  	x, y := s256.Gx, s256.Gy
   648  	exponent := big.NewInt(1)
   649  	for i := 0; i < 1024; i++ {
   650  		data := make([]byte, 32)
   651  		_, err := rand.Read(data)
   652  		if err != nil {
   653  			t.Fatalf("failed to read random data at %d", i)
   654  			break
   655  		}
   656  		x, y = s256.ScalarMult(x, y, data)
   657  		exponent.Mul(exponent, new(big.Int).SetBytes(data))
   658  		xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
   659  		if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
   660  			t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
   661  			break
   662  		}
   663  	}
   664  }
   665  
   666  func TestSplitK(t *testing.T) {
   667  	tests := []struct {
   668  		k      string
   669  		k1, k2 string
   670  		s1, s2 int
   671  	}{
   672  		{
   673  			"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
   674  			"00000000000000000000000000000000b776e53fb55f6b006a270d42d64ec2b1",
   675  			"00000000000000000000000000000000d6cc32c857f1174b604eefc544f0c7f7",
   676  			-1, -1,
   677  		},
   678  		{
   679  			"6ca00a8f10632170accc1b3baf2a118fa5725f41473f8959f34b8f860c47d88d",
   680  			"0000000000000000000000000000000007b21976c1795723c1bfbfa511e95b84",
   681  			"00000000000000000000000000000000d8d2d5f9d20fc64fd2cf9bda09a5bf90",
   682  			1, -1,
   683  		},
   684  		{
   685  			"b2eda8ab31b259032d39cbc2a234af17fcee89c863a8917b2740b67568166289",
   686  			"00000000000000000000000000000000507d930fecda7414fc4a523b95ef3c8c",
   687  			"00000000000000000000000000000000f65ffb179df189675338c6185cb839be",
   688  			-1, -1,
   689  		},
   690  		{
   691  			"f6f00e44f179936f2befc7442721b0633f6bafdf7161c167ffc6f7751980e3a0",
   692  			"0000000000000000000000000000000008d0264f10bcdcd97da3faa38f85308d",
   693  			"0000000000000000000000000000000065fed1506eb6605a899a54e155665f79",
   694  			-1, -1,
   695  		},
   696  		{
   697  			"8679085ab081dc92cdd23091ce3ee998f6b320e419c3475fae6b5b7d3081996e",
   698  			"0000000000000000000000000000000089fbf24fbaa5c3c137b4f1cedc51d975",
   699  			"00000000000000000000000000000000d38aa615bd6754d6f4d51ccdaf529fea",
   700  			-1, -1,
   701  		},
   702  		{
   703  			"6b1247bb7931dfcae5b5603c8b5ae22ce94d670138c51872225beae6bba8cdb3",
   704  			"000000000000000000000000000000008acc2a521b21b17cfb002c83be62f55d",
   705  			"0000000000000000000000000000000035f0eff4d7430950ecb2d94193dedc79",
   706  			-1, -1,
   707  		},
   708  		{
   709  			"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
   710  			"0000000000000000000000000000000045c53aa1bb56fcd68c011e2dad6758e4",
   711  			"00000000000000000000000000000000a2e79d200f27f2360fba57619936159b",
   712  			-1, -1,
   713  		},
   714  	}
   715  
   716  	s256 := S256()
   717  	for i, test := range tests {
   718  		k, ok := new(big.Int).SetString(test.k, 16)
   719  		if !ok {
   720  			t.Errorf("%d: bad value for k: %s", i, test.k)
   721  		}
   722  		k1, k2, k1Sign, k2Sign := s256.splitK(k.Bytes())
   723  		k1str := fmt.Sprintf("%064x", k1)
   724  		if test.k1 != k1str {
   725  			t.Errorf("%d: bad k1: got %v, want %v", i, k1str, test.k1)
   726  		}
   727  		k2str := fmt.Sprintf("%064x", k2)
   728  		if test.k2 != k2str {
   729  			t.Errorf("%d: bad k2: got %v, want %v", i, k2str, test.k2)
   730  		}
   731  		if test.s1 != k1Sign {
   732  			t.Errorf("%d: bad k1 sign: got %d, want %d", i, k1Sign, test.s1)
   733  		}
   734  		if test.s2 != k2Sign {
   735  			t.Errorf("%d: bad k2 sign: got %d, want %d", i, k2Sign, test.s2)
   736  		}
   737  		k1Int := new(big.Int).SetBytes(k1)
   738  		k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
   739  		k1Int.Mul(k1Int, k1SignInt)
   740  		k2Int := new(big.Int).SetBytes(k2)
   741  		k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
   742  		k2Int.Mul(k2Int, k2SignInt)
   743  		gotK := new(big.Int).Mul(k2Int, s256.lambda)
   744  		gotK.Add(k1Int, gotK)
   745  		gotK.Mod(gotK, s256.N)
   746  		if k.Cmp(gotK) != 0 {
   747  			t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
   748  		}
   749  	}
   750  }
   751  
   752  func TestSplitKRand(t *testing.T) {
   753  	s256 := S256()
   754  	for i := 0; i < 1024; i++ {
   755  		bytesK := make([]byte, 32)
   756  		_, err := rand.Read(bytesK)
   757  		if err != nil {
   758  			t.Fatalf("failed to read random data at %d", i)
   759  			break
   760  		}
   761  		k := new(big.Int).SetBytes(bytesK)
   762  		k1, k2, k1Sign, k2Sign := s256.splitK(bytesK)
   763  		k1Int := new(big.Int).SetBytes(k1)
   764  		k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
   765  		k1Int.Mul(k1Int, k1SignInt)
   766  		k2Int := new(big.Int).SetBytes(k2)
   767  		k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
   768  		k2Int.Mul(k2Int, k2SignInt)
   769  		gotK := new(big.Int).Mul(k2Int, s256.lambda)
   770  		gotK.Add(k1Int, gotK)
   771  		gotK.Mod(gotK, s256.N)
   772  		if k.Cmp(gotK) != 0 {
   773  			t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
   774  		}
   775  	}
   776  }
   777  
   778  // Test this curve's usage with the ecdsa package.
   779  
   780  func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) {
   781  	priv, err := NewPrivateKey(c)
   782  	if err != nil {
   783  		t.Errorf("%s: error: %s", tag, err)
   784  		return
   785  	}
   786  	if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
   787  		t.Errorf("%s: public key invalid: %s", tag, err)
   788  	}
   789  }
   790  
   791  func TestKeyGeneration(t *testing.T) {
   792  	testKeyGeneration(t, S256(), "S256")
   793  }
   794  
   795  func testSignAndVerify(t *testing.T, c *KoblitzCurve, tag string) {
   796  	priv, _ := NewPrivateKey(c)
   797  	pub := priv.PubKey()
   798  
   799  	hashed := []byte("testing")
   800  	sig, err := priv.Sign(hashed)
   801  	if err != nil {
   802  		t.Errorf("%s: error signing: %s", tag, err)
   803  		return
   804  	}
   805  
   806  	if !sig.Verify(hashed, pub) {
   807  		t.Errorf("%s: Verify failed", tag)
   808  	}
   809  
   810  	hashed[0] ^= 0xff
   811  	if sig.Verify(hashed, pub) {
   812  		t.Errorf("%s: Verify always works!", tag)
   813  	}
   814  }
   815  
   816  func TestSignAndVerify(t *testing.T) {
   817  	testSignAndVerify(t, S256(), "S256")
   818  }
   819  
   820  func TestNAF(t *testing.T) {
   821  	tests := []string{
   822  		"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
   823  		"b776e53fb55f6b006a270d42d64ec2b1",
   824  		"d6cc32c857f1174b604eefc544f0c7f7",
   825  		"45c53aa1bb56fcd68c011e2dad6758e4",
   826  		"a2e79d200f27f2360fba57619936159b",
   827  	}
   828  	negOne := big.NewInt(-1)
   829  	one := big.NewInt(1)
   830  	two := big.NewInt(2)
   831  	for i, test := range tests {
   832  		want, _ := new(big.Int).SetString(test, 16)
   833  		nafPos, nafNeg := NAF(want.Bytes())
   834  		got := big.NewInt(0)
   835  		// Check that the NAF representation comes up with the right number
   836  		for i := 0; i < len(nafPos); i++ {
   837  			bytePos := nafPos[i]
   838  			byteNeg := nafNeg[i]
   839  			for j := 7; j >= 0; j-- {
   840  				got.Mul(got, two)
   841  				if bytePos&0x80 == 0x80 {
   842  					got.Add(got, one)
   843  				} else if byteNeg&0x80 == 0x80 {
   844  					got.Add(got, negOne)
   845  				}
   846  				bytePos <<= 1
   847  				byteNeg <<= 1
   848  			}
   849  		}
   850  		if got.Cmp(want) != 0 {
   851  			t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
   852  		}
   853  	}
   854  }
   855  
   856  func TestNAFRand(t *testing.T) {
   857  	negOne := big.NewInt(-1)
   858  	one := big.NewInt(1)
   859  	two := big.NewInt(2)
   860  	for i := 0; i < 1024; i++ {
   861  		data := make([]byte, 32)
   862  		_, err := rand.Read(data)
   863  		if err != nil {
   864  			t.Fatalf("failed to read random data at %d", i)
   865  			break
   866  		}
   867  		nafPos, nafNeg := NAF(data)
   868  		want := new(big.Int).SetBytes(data)
   869  		got := big.NewInt(0)
   870  		// Check that the NAF representation comes up with the right number
   871  		for i := 0; i < len(nafPos); i++ {
   872  			bytePos := nafPos[i]
   873  			byteNeg := nafNeg[i]
   874  			for j := 7; j >= 0; j-- {
   875  				got.Mul(got, two)
   876  				if bytePos&0x80 == 0x80 {
   877  					got.Add(got, one)
   878  				} else if byteNeg&0x80 == 0x80 {
   879  					got.Add(got, negOne)
   880  				}
   881  				bytePos <<= 1
   882  				byteNeg <<= 1
   883  			}
   884  		}
   885  		if got.Cmp(want) != 0 {
   886  			t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
   887  		}
   888  	}
   889  }