github.com/palcoin-project/palcd@v1.0.0/btcec/gensecp256k1.go (about) 1 // Copyright (c) 2014-2015 The btcsuite developers 2 // Use of this source code is governed by an ISC 3 // license that can be found in the LICENSE file. 4 5 // This file is ignored during the regular build due to the following build tag. 6 // This build tag is set during go generate. 7 // +build gensecp256k1 8 9 package btcec 10 11 // References: 12 // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) 13 14 import ( 15 "encoding/binary" 16 "math/big" 17 ) 18 19 // secp256k1BytePoints are dummy points used so the code which generates the 20 // real values can compile. 21 var secp256k1BytePoints = "" 22 23 // getDoublingPoints returns all the possible G^(2^i) for i in 24 // 0..n-1 where n is the curve's bit size (256 in the case of secp256k1) 25 // the coordinates are recorded as Jacobian coordinates. 26 func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal { 27 doublingPoints := make([][3]fieldVal, curve.BitSize) 28 29 // initialize px, py, pz to the Jacobian coordinates for the base point 30 px, py := curve.bigAffineToField(curve.Gx, curve.Gy) 31 pz := new(fieldVal).SetInt(1) 32 for i := 0; i < curve.BitSize; i++ { 33 doublingPoints[i] = [3]fieldVal{*px, *py, *pz} 34 // P = 2*P 35 curve.doubleJacobian(px, py, pz, px, py, pz) 36 } 37 return doublingPoints 38 } 39 40 // SerializedBytePoints returns a serialized byte slice which contains all of 41 // the possible points per 8-bit window. This is used to when generating 42 // secp256k1.go. 43 func (curve *KoblitzCurve) SerializedBytePoints() []byte { 44 doublingPoints := curve.getDoublingPoints() 45 46 // Segregate the bits into byte-sized windows 47 serialized := make([]byte, curve.byteSize*256*3*10*4) 48 offset := 0 49 for byteNum := 0; byteNum < curve.byteSize; byteNum++ { 50 // Grab the 8 bits that make up this byte from doublingPoints. 51 startingBit := 8 * (curve.byteSize - byteNum - 1) 52 computingPoints := doublingPoints[startingBit : startingBit+8] 53 54 // Compute all points in this window and serialize them. 55 for i := 0; i < 256; i++ { 56 px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal) 57 for j := 0; j < 8; j++ { 58 if i>>uint(j)&1 == 1 { 59 curve.addJacobian(px, py, pz, &computingPoints[j][0], 60 &computingPoints[j][1], &computingPoints[j][2], px, py, pz) 61 } 62 } 63 for i := 0; i < 10; i++ { 64 binary.LittleEndian.PutUint32(serialized[offset:], px.n[i]) 65 offset += 4 66 } 67 for i := 0; i < 10; i++ { 68 binary.LittleEndian.PutUint32(serialized[offset:], py.n[i]) 69 offset += 4 70 } 71 for i := 0; i < 10; i++ { 72 binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i]) 73 offset += 4 74 } 75 } 76 } 77 78 return serialized 79 } 80 81 // sqrt returns the square root of the provided big integer using Newton's 82 // method. It's only compiled and used during generation of pre-computed 83 // values, so speed is not a huge concern. 84 func sqrt(n *big.Int) *big.Int { 85 // Initial guess = 2^(log_2(n)/2) 86 guess := big.NewInt(2) 87 guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil) 88 89 // Now refine using Newton's method. 90 big2 := big.NewInt(2) 91 prevGuess := big.NewInt(0) 92 for { 93 prevGuess.Set(guess) 94 guess.Add(guess, new(big.Int).Div(n, guess)) 95 guess.Div(guess, big2) 96 if guess.Cmp(prevGuess) == 0 { 97 break 98 } 99 } 100 return guess 101 } 102 103 // EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to 104 // generate the linearly independent vectors needed to generate a balanced 105 // length-two representation of a multiplier such that k = k1 + k2λ (mod N) and 106 // returns them. Since the values will always be the same given the fact that N 107 // and λ are fixed, the final results can be accelerated by storing the 108 // precomputed values with the curve. 109 func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) { 110 bigMinus1 := big.NewInt(-1) 111 112 // This section uses an extended Euclidean algorithm to generate a 113 // sequence of equations: 114 // s[i] * N + t[i] * λ = r[i] 115 116 nSqrt := sqrt(curve.N) 117 u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda) 118 x1, y1 := big.NewInt(1), big.NewInt(0) 119 x2, y2 := big.NewInt(0), big.NewInt(1) 120 q, r := new(big.Int), new(big.Int) 121 qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int) 122 s, t := new(big.Int), new(big.Int) 123 ri, ti := new(big.Int), new(big.Int) 124 a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int) 125 found, oneMore := false, false 126 for u.Sign() != 0 { 127 // q = v/u 128 q.Div(v, u) 129 130 // r = v - q*u 131 qu.Mul(q, u) 132 r.Sub(v, qu) 133 134 // s = x2 - q*x1 135 qx1.Mul(q, x1) 136 s.Sub(x2, qx1) 137 138 // t = y2 - q*y1 139 qy1.Mul(q, y1) 140 t.Sub(y2, qy1) 141 142 // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t 143 v.Set(u) 144 u.Set(r) 145 x2.Set(x1) 146 x1.Set(s) 147 y2.Set(y1) 148 y1.Set(t) 149 150 // As soon as the remainder is less than the sqrt of n, the 151 // values of a1 and b1 are known. 152 if !found && r.Cmp(nSqrt) < 0 { 153 // When this condition executes ri and ti represent the 154 // r[i] and t[i] values such that i is the greatest 155 // index for which r >= sqrt(n). Meanwhile, the current 156 // r and t values are r[i+1] and t[i+1], respectively. 157 158 // a1 = r[i+1], b1 = -t[i+1] 159 a1.Set(r) 160 b1.Mul(t, bigMinus1) 161 found = true 162 oneMore = true 163 164 // Skip to the next iteration so ri and ti are not 165 // modified. 166 continue 167 168 } else if oneMore { 169 // When this condition executes ri and ti still 170 // represent the r[i] and t[i] values while the current 171 // r and t are r[i+2] and t[i+2], respectively. 172 173 // sum1 = r[i]^2 + t[i]^2 174 rSquared := new(big.Int).Mul(ri, ri) 175 tSquared := new(big.Int).Mul(ti, ti) 176 sum1 := new(big.Int).Add(rSquared, tSquared) 177 178 // sum2 = r[i+2]^2 + t[i+2]^2 179 r2Squared := new(big.Int).Mul(r, r) 180 t2Squared := new(big.Int).Mul(t, t) 181 sum2 := new(big.Int).Add(r2Squared, t2Squared) 182 183 // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2) 184 if sum1.Cmp(sum2) <= 0 { 185 // a2 = r[i], b2 = -t[i] 186 a2.Set(ri) 187 b2.Mul(ti, bigMinus1) 188 } else { 189 // a2 = r[i+2], b2 = -t[i+2] 190 a2.Set(r) 191 b2.Mul(t, bigMinus1) 192 } 193 194 // All done. 195 break 196 } 197 198 ri.Set(r) 199 ti.Set(t) 200 } 201 202 return a1, b1, a2, b2 203 }