github.com/palcoin-project/palcd@v1.0.0/btcec/signature.go (about) 1 // Copyright (c) 2013-2017 The btcsuite developers 2 // Use of this source code is governed by an ISC 3 // license that can be found in the LICENSE file. 4 5 package btcec 6 7 import ( 8 "bytes" 9 "crypto/ecdsa" 10 "crypto/elliptic" 11 "crypto/hmac" 12 "crypto/sha256" 13 "errors" 14 "fmt" 15 "hash" 16 "math/big" 17 ) 18 19 // Errors returned by canonicalPadding. 20 var ( 21 errNegativeValue = errors.New("value may be interpreted as negative") 22 errExcessivelyPaddedValue = errors.New("value is excessively padded") 23 ) 24 25 // Signature is a type representing an ecdsa signature. 26 type Signature struct { 27 R *big.Int 28 S *big.Int 29 } 30 31 var ( 32 // Used in RFC6979 implementation when testing the nonce for correctness 33 one = big.NewInt(1) 34 35 // oneInitializer is used to fill a byte slice with byte 0x01. It is provided 36 // here to avoid the need to create it multiple times. 37 oneInitializer = []byte{0x01} 38 ) 39 40 // Serialize returns the ECDSA signature in the more strict DER format. Note 41 // that the serialized bytes returned do not include the appended hash type 42 // used in Bitcoin signature scripts. 43 // 44 // encoding/asn1 is broken so we hand roll this output: 45 // 46 // 0x30 <length> 0x02 <length r> r 0x02 <length s> s 47 func (sig *Signature) Serialize() []byte { 48 // low 'S' malleability breaker 49 sigS := sig.S 50 if sigS.Cmp(S256().halfOrder) == 1 { 51 sigS = new(big.Int).Sub(S256().N, sigS) 52 } 53 // Ensure the encoded bytes for the r and s values are canonical and 54 // thus suitable for DER encoding. 55 rb := canonicalizeInt(sig.R) 56 sb := canonicalizeInt(sigS) 57 58 // total length of returned signature is 1 byte for each magic and 59 // length (6 total), plus lengths of r and s 60 length := 6 + len(rb) + len(sb) 61 b := make([]byte, length) 62 63 b[0] = 0x30 64 b[1] = byte(length - 2) 65 b[2] = 0x02 66 b[3] = byte(len(rb)) 67 offset := copy(b[4:], rb) + 4 68 b[offset] = 0x02 69 b[offset+1] = byte(len(sb)) 70 copy(b[offset+2:], sb) 71 return b 72 } 73 74 // Verify calls ecdsa.Verify to verify the signature of hash using the public 75 // key. It returns true if the signature is valid, false otherwise. 76 func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool { 77 return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S) 78 } 79 80 // IsEqual compares this Signature instance to the one passed, returning true 81 // if both Signatures are equivalent. A signature is equivalent to another, if 82 // they both have the same scalar value for R and S. 83 func (sig *Signature) IsEqual(otherSig *Signature) bool { 84 return sig.R.Cmp(otherSig.R) == 0 && 85 sig.S.Cmp(otherSig.S) == 0 86 } 87 88 // MinSigLen is the minimum length of a DER encoded signature and is when both R 89 // and S are 1 byte each. 90 // 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte> 91 const MinSigLen = 8 92 93 func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) { 94 // Originally this code used encoding/asn1 in order to parse the 95 // signature, but a number of problems were found with this approach. 96 // Despite the fact that signatures are stored as DER, the difference 97 // between go's idea of a bignum (and that they have sign) doesn't agree 98 // with the openssl one (where they do not). The above is true as of 99 // Go 1.1. In the end it was simpler to rewrite the code to explicitly 100 // understand the format which is this: 101 // 0x30 <length of whole message> <0x02> <length of R> <R> 0x2 102 // <length of S> <S>. 103 104 signature := &Signature{} 105 106 if len(sigStr) < MinSigLen { 107 return nil, errors.New("malformed signature: too short") 108 } 109 // 0x30 110 index := 0 111 if sigStr[index] != 0x30 { 112 return nil, errors.New("malformed signature: no header magic") 113 } 114 index++ 115 // length of remaining message 116 siglen := sigStr[index] 117 index++ 118 119 // siglen should be less than the entire message and greater than 120 // the minimal message size. 121 if int(siglen+2) > len(sigStr) || int(siglen+2) < MinSigLen { 122 return nil, errors.New("malformed signature: bad length") 123 } 124 // trim the slice we're working on so we only look at what matters. 125 sigStr = sigStr[:siglen+2] 126 127 // 0x02 128 if sigStr[index] != 0x02 { 129 return nil, 130 errors.New("malformed signature: no 1st int marker") 131 } 132 index++ 133 134 // Length of signature R. 135 rLen := int(sigStr[index]) 136 // must be positive, must be able to fit in another 0x2, <len> <s> 137 // hence the -3. We assume that the length must be at least one byte. 138 index++ 139 if rLen <= 0 || rLen > len(sigStr)-index-3 { 140 return nil, errors.New("malformed signature: bogus R length") 141 } 142 143 // Then R itself. 144 rBytes := sigStr[index : index+rLen] 145 if der { 146 switch err := canonicalPadding(rBytes); err { 147 case errNegativeValue: 148 return nil, errors.New("signature R is negative") 149 case errExcessivelyPaddedValue: 150 return nil, errors.New("signature R is excessively padded") 151 } 152 } 153 signature.R = new(big.Int).SetBytes(rBytes) 154 index += rLen 155 // 0x02. length already checked in previous if. 156 if sigStr[index] != 0x02 { 157 return nil, errors.New("malformed signature: no 2nd int marker") 158 } 159 index++ 160 161 // Length of signature S. 162 sLen := int(sigStr[index]) 163 index++ 164 // S should be the rest of the string. 165 if sLen <= 0 || sLen > len(sigStr)-index { 166 return nil, errors.New("malformed signature: bogus S length") 167 } 168 169 // Then S itself. 170 sBytes := sigStr[index : index+sLen] 171 if der { 172 switch err := canonicalPadding(sBytes); err { 173 case errNegativeValue: 174 return nil, errors.New("signature S is negative") 175 case errExcessivelyPaddedValue: 176 return nil, errors.New("signature S is excessively padded") 177 } 178 } 179 signature.S = new(big.Int).SetBytes(sBytes) 180 index += sLen 181 182 // sanity check length parsing 183 if index != len(sigStr) { 184 return nil, fmt.Errorf("malformed signature: bad final length %v != %v", 185 index, len(sigStr)) 186 } 187 188 // Verify also checks this, but we can be more sure that we parsed 189 // correctly if we verify here too. 190 // FWIW the ecdsa spec states that R and S must be | 1, N - 1 | 191 // but crypto/ecdsa only checks for Sign != 0. Mirror that. 192 if signature.R.Sign() != 1 { 193 return nil, errors.New("signature R isn't 1 or more") 194 } 195 if signature.S.Sign() != 1 { 196 return nil, errors.New("signature S isn't 1 or more") 197 } 198 if signature.R.Cmp(curve.Params().N) >= 0 { 199 return nil, errors.New("signature R is >= curve.N") 200 } 201 if signature.S.Cmp(curve.Params().N) >= 0 { 202 return nil, errors.New("signature S is >= curve.N") 203 } 204 205 return signature, nil 206 } 207 208 // ParseSignature parses a signature in BER format for the curve type `curve' 209 // into a Signature type, perfoming some basic sanity checks. If parsing 210 // according to the more strict DER format is needed, use ParseDERSignature. 211 func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { 212 return parseSig(sigStr, curve, false) 213 } 214 215 // ParseDERSignature parses a signature in DER format for the curve type 216 // `curve` into a Signature type. If parsing according to the less strict 217 // BER format is needed, use ParseSignature. 218 func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { 219 return parseSig(sigStr, curve, true) 220 } 221 222 // canonicalizeInt returns the bytes for the passed big integer adjusted as 223 // necessary to ensure that a big-endian encoded integer can't possibly be 224 // misinterpreted as a negative number. This can happen when the most 225 // significant bit is set, so it is padded by a leading zero byte in this case. 226 // Also, the returned bytes will have at least a single byte when the passed 227 // value is 0. This is required for DER encoding. 228 func canonicalizeInt(val *big.Int) []byte { 229 b := val.Bytes() 230 if len(b) == 0 { 231 b = []byte{0x00} 232 } 233 if b[0]&0x80 != 0 { 234 paddedBytes := make([]byte, len(b)+1) 235 copy(paddedBytes[1:], b) 236 b = paddedBytes 237 } 238 return b 239 } 240 241 // canonicalPadding checks whether a big-endian encoded integer could 242 // possibly be misinterpreted as a negative number (even though OpenSSL 243 // treats all numbers as unsigned), or if there is any unnecessary 244 // leading zero padding. 245 func canonicalPadding(b []byte) error { 246 switch { 247 case b[0]&0x80 == 0x80: 248 return errNegativeValue 249 case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80: 250 return errExcessivelyPaddedValue 251 default: 252 return nil 253 } 254 } 255 256 // hashToInt converts a hash value to an integer. There is some disagreement 257 // about how this is done. [NSA] suggests that this is done in the obvious 258 // manner, but [SECG] truncates the hash to the bit-length of the curve order 259 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 260 // OpenSSL right shifts excess bits from the number if the hash is too large 261 // and we mirror that too. 262 // This is borrowed from crypto/ecdsa. 263 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 264 orderBits := c.Params().N.BitLen() 265 orderBytes := (orderBits + 7) / 8 266 if len(hash) > orderBytes { 267 hash = hash[:orderBytes] 268 } 269 270 ret := new(big.Int).SetBytes(hash) 271 excess := len(hash)*8 - orderBits 272 if excess > 0 { 273 ret.Rsh(ret, uint(excess)) 274 } 275 return ret 276 } 277 278 // recoverKeyFromSignature recovers a public key from the signature "sig" on the 279 // given message hash "msg". Based on the algorithm found in section 4.1.6 of 280 // SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details 281 // in the inner loop in Step 1. The counter provided is actually the j parameter 282 // of the loop * 2 - on the first iteration of j we do the R case, else the -R 283 // case in step 1.6. This counter is used in the bitcoin compressed signature 284 // format and thus we match bitcoind's behaviour here. 285 func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte, 286 iter int, doChecks bool) (*PublicKey, error) { 287 // Parse and validate the R and S signature components. 288 // 289 // Fail if r and s are not in [1, N-1]. 290 if sig.R.Cmp(curve.Params().N) != -1 { 291 return nil, errors.New("signature R is >= curve order") 292 } 293 294 if sig.R.Sign() == 0 { 295 return nil, errors.New("signature R is 0") 296 } 297 298 if sig.S.Cmp(curve.Params().N) != -1 { 299 return nil, errors.New("signature S is >= curve order") 300 } 301 302 if sig.S.Sign() == 0 { 303 return nil, errors.New("signature S is 0") 304 } 305 306 // 1.1 x = (n * i) + r 307 Rx := new(big.Int).Mul(curve.Params().N, 308 new(big.Int).SetInt64(int64(iter/2))) 309 Rx.Add(Rx, sig.R) 310 if Rx.Cmp(curve.Params().P) != -1 { 311 return nil, errors.New("calculated Rx is larger than curve P") 312 } 313 314 // convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd 315 // iteration then 1.6 will be done with -R, so we calculate the other 316 // term when uncompressing the point. 317 Ry, err := decompressPoint(curve, Rx, iter%2 == 1) 318 if err != nil { 319 return nil, err 320 } 321 322 // 1.4 Check n*R is point at infinity 323 if doChecks { 324 nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes()) 325 if nRx.Sign() != 0 || nRy.Sign() != 0 { 326 return nil, errors.New("n*R does not equal the point at infinity") 327 } 328 } 329 330 // 1.5 calculate e from message using the same algorithm as ecdsa 331 // signature calculation. 332 e := hashToInt(msg, curve) 333 334 // Step 1.6.1: 335 // We calculate the two terms sR and eG separately multiplied by the 336 // inverse of r (from the signature). We then add them to calculate 337 // Q = r^-1(sR-eG) 338 invr := new(big.Int).ModInverse(sig.R, curve.Params().N) 339 340 // first term. 341 invrS := new(big.Int).Mul(invr, sig.S) 342 invrS.Mod(invrS, curve.Params().N) 343 sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes()) 344 345 // second term. 346 e.Neg(e) 347 e.Mod(e, curve.Params().N) 348 e.Mul(e, invr) 349 e.Mod(e, curve.Params().N) 350 minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes()) 351 352 // TODO: this would be faster if we did a mult and add in one 353 // step to prevent the jacobian conversion back and forth. 354 Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy) 355 356 return &PublicKey{ 357 Curve: curve, 358 X: Qx, 359 Y: Qy, 360 }, nil 361 } 362 363 // SignCompact produces a compact signature of the data in hash with the given 364 // private key on the given koblitz curve. The isCompressed parameter should 365 // be used to detail if the given signature should reference a compressed 366 // public key or not. If successful the bytes of the compact signature will be 367 // returned in the format: 368 // <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S> 369 // where the R and S parameters are padde up to the bitlengh of the curve. 370 func SignCompact(curve *KoblitzCurve, key *PrivateKey, 371 hash []byte, isCompressedKey bool) ([]byte, error) { 372 sig, err := key.Sign(hash) 373 if err != nil { 374 return nil, err 375 } 376 377 // bitcoind checks the bit length of R and S here. The ecdsa signature 378 // algorithm returns R and S mod N therefore they will be the bitsize of 379 // the curve, and thus correctly sized. 380 for i := 0; i < (curve.H+1)*2; i++ { 381 pk, err := recoverKeyFromSignature(curve, sig, hash, i, true) 382 if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 { 383 result := make([]byte, 1, 2*curve.byteSize+1) 384 result[0] = 27 + byte(i) 385 if isCompressedKey { 386 result[0] += 4 387 } 388 // Not sure this needs rounding but safer to do so. 389 curvelen := (curve.BitSize + 7) / 8 390 391 // Pad R and S to curvelen if needed. 392 bytelen := (sig.R.BitLen() + 7) / 8 393 if bytelen < curvelen { 394 result = append(result, 395 make([]byte, curvelen-bytelen)...) 396 } 397 result = append(result, sig.R.Bytes()...) 398 399 bytelen = (sig.S.BitLen() + 7) / 8 400 if bytelen < curvelen { 401 result = append(result, 402 make([]byte, curvelen-bytelen)...) 403 } 404 result = append(result, sig.S.Bytes()...) 405 406 return result, nil 407 } 408 } 409 410 return nil, errors.New("no valid solution for pubkey found") 411 } 412 413 // RecoverCompact verifies the compact signature "signature" of "hash" for the 414 // Koblitz curve in "curve". If the signature matches then the recovered public 415 // key will be returned as well as a boolean if the original key was compressed 416 // or not, else an error will be returned. 417 func RecoverCompact(curve *KoblitzCurve, signature, 418 hash []byte) (*PublicKey, bool, error) { 419 bitlen := (curve.BitSize + 7) / 8 420 if len(signature) != 1+bitlen*2 { 421 return nil, false, errors.New("invalid compact signature size") 422 } 423 424 iteration := int((signature[0] - 27) & ^byte(4)) 425 426 // format is <header byte><bitlen R><bitlen S> 427 sig := &Signature{ 428 R: new(big.Int).SetBytes(signature[1 : bitlen+1]), 429 S: new(big.Int).SetBytes(signature[bitlen+1:]), 430 } 431 // The iteration used here was encoded 432 key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false) 433 if err != nil { 434 return nil, false, err 435 } 436 437 return key, ((signature[0] - 27) & 4) == 4, nil 438 } 439 440 // signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62. 441 func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) { 442 443 privkey := privateKey.ToECDSA() 444 N := S256().N 445 halfOrder := S256().halfOrder 446 k := nonceRFC6979(privkey.D, hash) 447 inv := new(big.Int).ModInverse(k, N) 448 r, _ := privkey.Curve.ScalarBaseMult(k.Bytes()) 449 r.Mod(r, N) 450 451 if r.Sign() == 0 { 452 return nil, errors.New("calculated R is zero") 453 } 454 455 e := hashToInt(hash, privkey.Curve) 456 s := new(big.Int).Mul(privkey.D, r) 457 s.Add(s, e) 458 s.Mul(s, inv) 459 s.Mod(s, N) 460 461 if s.Cmp(halfOrder) == 1 { 462 s.Sub(N, s) 463 } 464 if s.Sign() == 0 { 465 return nil, errors.New("calculated S is zero") 466 } 467 return &Signature{R: r, S: s}, nil 468 } 469 470 // nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979. 471 // It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm. 472 func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int { 473 474 curve := S256() 475 q := curve.Params().N 476 x := privkey 477 alg := sha256.New 478 479 qlen := q.BitLen() 480 holen := alg().Size() 481 rolen := (qlen + 7) >> 3 482 bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...) 483 484 // Step B 485 v := bytes.Repeat(oneInitializer, holen) 486 487 // Step C (Go zeroes the all allocated memory) 488 k := make([]byte, holen) 489 490 // Step D 491 k = mac(alg, k, append(append(v, 0x00), bx...)) 492 493 // Step E 494 v = mac(alg, k, v) 495 496 // Step F 497 k = mac(alg, k, append(append(v, 0x01), bx...)) 498 499 // Step G 500 v = mac(alg, k, v) 501 502 // Step H 503 for { 504 // Step H1 505 var t []byte 506 507 // Step H2 508 for len(t)*8 < qlen { 509 v = mac(alg, k, v) 510 t = append(t, v...) 511 } 512 513 // Step H3 514 secret := hashToInt(t, curve) 515 if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 { 516 return secret 517 } 518 k = mac(alg, k, append(v, 0x00)) 519 v = mac(alg, k, v) 520 } 521 } 522 523 // mac returns an HMAC of the given key and message. 524 func mac(alg func() hash.Hash, k, m []byte) []byte { 525 h := hmac.New(alg, k) 526 h.Write(m) 527 return h.Sum(nil) 528 } 529 530 // https://tools.ietf.org/html/rfc6979#section-2.3.3 531 func int2octets(v *big.Int, rolen int) []byte { 532 out := v.Bytes() 533 534 // left pad with zeros if it's too short 535 if len(out) < rolen { 536 out2 := make([]byte, rolen) 537 copy(out2[rolen-len(out):], out) 538 return out2 539 } 540 541 // drop most significant bytes if it's too long 542 if len(out) > rolen { 543 out2 := make([]byte, rolen) 544 copy(out2, out[len(out)-rolen:]) 545 return out2 546 } 547 548 return out 549 } 550 551 // https://tools.ietf.org/html/rfc6979#section-2.3.4 552 func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte { 553 z1 := hashToInt(in, curve) 554 z2 := new(big.Int).Sub(z1, curve.Params().N) 555 if z2.Sign() < 0 { 556 return int2octets(z1, rolen) 557 } 558 return int2octets(z2, rolen) 559 }