github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of October 28, 2016",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   261  </p>
   262  <pre class="grammar">
   263  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   264  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   265  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   266  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   267  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   268       &amp;^          &amp;^=    =&gt;
   269  </pre>
   270  
   271  <h3 id="Integer_literals">Integer literals</h3>
   272  
   273  <p>
   274  An integer literal is a sequence of digits representing an
   275  <a href="#Constants">integer constant</a>.
   276  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   277  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   278  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   279  </p>
   280  <pre class="ebnf">
   281  int_lit     = decimal_lit | octal_lit | hex_lit .
   282  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   283  octal_lit   = "0" { octal_digit } .
   284  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   285  </pre>
   286  
   287  <pre>
   288  42
   289  0600
   290  0xBadFace
   291  170141183460469231731687303715884105727
   292  </pre>
   293  
   294  <h3 id="Floating-point_literals">Floating-point literals</h3>
   295  <p>
   296  A floating-point literal is a decimal representation of a
   297  <a href="#Constants">floating-point constant</a>.
   298  It has an integer part, a decimal point, a fractional part,
   299  and an exponent part.  The integer and fractional part comprise
   300  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   301  followed by an optionally signed decimal exponent.  One of the
   302  integer part or the fractional part may be elided; one of the decimal
   303  point or the exponent may be elided.
   304  </p>
   305  <pre class="ebnf">
   306  float_lit = decimals "." [ decimals ] [ exponent ] |
   307              decimals exponent |
   308              "." decimals [ exponent ] .
   309  decimals  = decimal_digit { decimal_digit } .
   310  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   311  </pre>
   312  
   313  <pre>
   314  0.
   315  72.40
   316  072.40  // == 72.40
   317  2.71828
   318  1.e+0
   319  6.67428e-11
   320  1E6
   321  .25
   322  .12345E+5
   323  </pre>
   324  
   325  <h3 id="Imaginary_literals">Imaginary literals</h3>
   326  <p>
   327  An imaginary literal is a decimal representation of the imaginary part of a
   328  <a href="#Constants">complex constant</a>.
   329  It consists of a
   330  <a href="#Floating-point_literals">floating-point literal</a>
   331  or decimal integer followed
   332  by the lower-case letter <code>i</code>.
   333  </p>
   334  <pre class="ebnf">
   335  imaginary_lit = (decimals | float_lit) "i" .
   336  </pre>
   337  
   338  <pre>
   339  0i
   340  011i  // == 11i
   341  0.i
   342  2.71828i
   343  1.e+0i
   344  6.67428e-11i
   345  1E6i
   346  .25i
   347  .12345E+5i
   348  </pre>
   349  
   350  
   351  <h3 id="Rune_literals">Rune literals</h3>
   352  
   353  <p>
   354  A rune literal represents a <a href="#Constants">rune constant</a>,
   355  an integer value identifying a Unicode code point.
   356  A rune literal is expressed as one or more characters enclosed in single quotes,
   357  as in <code>'x'</code> or <code>'\n'</code>.
   358  Within the quotes, any character may appear except newline and unescaped single
   359  quote. A single quoted character represents the Unicode value
   360  of the character itself,
   361  while multi-character sequences beginning with a backslash encode
   362  values in various formats.
   363  </p>
   364  <p>
   365  The simplest form represents the single character within the quotes;
   366  since Go source text is Unicode characters encoded in UTF-8, multiple
   367  UTF-8-encoded bytes may represent a single integer value.  For
   368  instance, the literal <code>'a'</code> holds a single byte representing
   369  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   370  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   371  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   372  </p>
   373  <p>
   374  Several backslash escapes allow arbitrary values to be encoded as
   375  ASCII text.  There are four ways to represent the integer value
   376  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   377  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   378  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   379  plain backslash <code>\</code> followed by exactly three octal digits.
   380  In each case the value of the literal is the value represented by
   381  the digits in the corresponding base.
   382  </p>
   383  <p>
   384  Although these representations all result in an integer, they have
   385  different valid ranges.  Octal escapes must represent a value between
   386  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   387  by construction. The escapes <code>\u</code> and <code>\U</code>
   388  represent Unicode code points so within them some values are illegal,
   389  in particular those above <code>0x10FFFF</code> and surrogate halves.
   390  </p>
   391  <p>
   392  After a backslash, certain single-character escapes represent special values:
   393  </p>
   394  <pre class="grammar">
   395  \a   U+0007 alert or bell
   396  \b   U+0008 backspace
   397  \f   U+000C form feed
   398  \n   U+000A line feed or newline
   399  \r   U+000D carriage return
   400  \t   U+0009 horizontal tab
   401  \v   U+000b vertical tab
   402  \\   U+005c backslash
   403  \'   U+0027 single quote  (valid escape only within rune literals)
   404  \"   U+0022 double quote  (valid escape only within string literals)
   405  </pre>
   406  <p>
   407  All other sequences starting with a backslash are illegal inside rune literals.
   408  </p>
   409  <pre class="ebnf">
   410  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   411  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   412  byte_value       = octal_byte_value | hex_byte_value .
   413  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   414  hex_byte_value   = `\` "x" hex_digit hex_digit .
   415  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   416  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   417                             hex_digit hex_digit hex_digit hex_digit .
   418  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   419  </pre>
   420  
   421  <pre>
   422  'a'
   423  'ä'
   424  '本'
   425  '\t'
   426  '\000'
   427  '\007'
   428  '\377'
   429  '\x07'
   430  '\xff'
   431  '\u12e4'
   432  '\U00101234'
   433  '\''         // rune literal containing single quote character
   434  'aa'         // illegal: too many characters
   435  '\xa'        // illegal: too few hexadecimal digits
   436  '\0'         // illegal: too few octal digits
   437  '\uDFFF'     // illegal: surrogate half
   438  '\U00110000' // illegal: invalid Unicode code point
   439  </pre>
   440  
   441  
   442  <h3 id="String_literals">String literals</h3>
   443  
   444  <p>
   445  A string literal represents a <a href="#Constants">string constant</a>
   446  obtained from concatenating a sequence of characters. There are two forms:
   447  raw string literals and interpreted string literals.
   448  </p>
   449  <p>
   450  Raw string literals are character sequences between back quotes, as in
   451  <code>`foo`</code>.  Within the quotes, any character may appear except
   452  back quote. The value of a raw string literal is the
   453  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   454  between the quotes;
   455  in particular, backslashes have no special meaning and the string may
   456  contain newlines.
   457  Carriage return characters ('\r') inside raw string literals
   458  are discarded from the raw string value.
   459  </p>
   460  <p>
   461  Interpreted string literals are character sequences between double
   462  quotes, as in <code>&quot;bar&quot;</code>.
   463  Within the quotes, any character may appear except newline and unescaped double quote.
   464  The text between the quotes forms the
   465  value of the literal, with backslash escapes interpreted as they
   466  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   467  <code>\"</code> is legal), with the same restrictions.
   468  The three-digit octal (<code>\</code><i>nnn</i>)
   469  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   470  <i>bytes</i> of the resulting string; all other escapes represent
   471  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   472  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   473  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   474  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   475  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   476  U+00FF.
   477  </p>
   478  
   479  <pre class="ebnf">
   480  string_lit             = raw_string_lit | interpreted_string_lit .
   481  raw_string_lit         = "`" { unicode_char | newline } "`" .
   482  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   483  </pre>
   484  
   485  <pre>
   486  `abc`                // same as "abc"
   487  `\n
   488  \n`                  // same as "\\n\n\\n"
   489  "\n"
   490  "\""                 // same as `"`
   491  "Hello, world!\n"
   492  "日本語"
   493  "\u65e5本\U00008a9e"
   494  "\xff\u00FF"
   495  "\uD800"             // illegal: surrogate half
   496  "\U00110000"         // illegal: invalid Unicode code point
   497  </pre>
   498  
   499  <p>
   500  These examples all represent the same string:
   501  </p>
   502  
   503  <pre>
   504  "日本語"                                 // UTF-8 input text
   505  `日本語`                                 // UTF-8 input text as a raw literal
   506  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   507  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   508  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   509  </pre>
   510  
   511  <p>
   512  If the source code represents a character as two code points, such as
   513  a combining form involving an accent and a letter, the result will be
   514  an error if placed in a rune literal (it is not a single code
   515  point), and will appear as two code points if placed in a string
   516  literal.
   517  </p>
   518  
   519  
   520  <h2 id="Constants">Constants</h2>
   521  
   522  <p>There are <i>boolean constants</i>,
   523  <i>rune constants</i>,
   524  <i>integer constants</i>,
   525  <i>floating-point constants</i>, <i>complex constants</i>,
   526  and <i>string constants</i>. Rune, integer, floating-point,
   527  and complex constants are
   528  collectively called <i>numeric constants</i>.
   529  </p>
   530  
   531  <p>
   532  A constant value is represented by a
   533  <a href="#Rune_literals">rune</a>,
   534  <a href="#Integer_literals">integer</a>,
   535  <a href="#Floating-point_literals">floating-point</a>,
   536  <a href="#Imaginary_literals">imaginary</a>,
   537  or
   538  <a href="#String_literals">string</a> literal,
   539  an identifier denoting a constant,
   540  a <a href="#Constant_expressions">constant expression</a>,
   541  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   542  the result value of some built-in functions such as
   543  <code>unsafe.Sizeof</code> applied to any value,
   544  <code>cap</code> or <code>len</code> applied to
   545  <a href="#Length_and_capacity">some expressions</a>,
   546  <code>real</code> and <code>imag</code> applied to a complex constant
   547  and <code>complex</code> applied to numeric constants.
   548  The boolean truth values are represented by the predeclared constants
   549  <code>true</code> and <code>false</code>. The predeclared identifier
   550  <a href="#Iota">iota</a> denotes an integer constant.
   551  </p>
   552  
   553  <p>
   554  In general, complex constants are a form of
   555  <a href="#Constant_expressions">constant expression</a>
   556  and are discussed in that section.
   557  </p>
   558  
   559  <p>
   560  Numeric constants represent exact values of arbitrary precision and do not overflow.
   561  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   562  and not-a-number values.
   563  </p>
   564  
   565  <p>
   566  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   567  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   568  and certain <a href="#Constant_expressions">constant expressions</a>
   569  containing only untyped constant operands are untyped.
   570  </p>
   571  
   572  <p>
   573  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   574  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   575  <a href="#Variable_declarations">variable declaration</a> or an
   576  <a href="#Assignments">assignment</a> or as an
   577  operand in an <a href="#Expressions">expression</a>.
   578  It is an error if the constant value
   579  cannot be represented as a value of the respective type.
   580  For instance, <code>3.0</code> can be given any integer or any
   581  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   582  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   583  not <code>int32</code> or <code>string</code>.
   584  </p>
   585  
   586  <p>
   587  An untyped constant has a <i>default type</i> which is the type to which the
   588  constant is implicitly converted in contexts where a typed value is required,
   589  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   590  such as <code>i := 0</code> where there is no explicit type.
   591  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   592  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   593  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   594  complex, or string constant.
   595  </p>
   596  
   597  <p>
   598  Implementation restriction: Although numeric constants have arbitrary
   599  precision in the language, a compiler may implement them using an
   600  internal representation with limited precision.  That said, every
   601  implementation must:
   602  </p>
   603  <ul>
   604  	<li>Represent integer constants with at least 256 bits.</li>
   605  
   606  	<li>Represent floating-point constants, including the parts of
   607  	    a complex constant, with a mantissa of at least 256 bits
   608  	    and a signed binary exponent of at least 16 bits.</li>
   609  
   610  	<li>Give an error if unable to represent an integer constant
   611  	    precisely.</li>
   612  
   613  	<li>Give an error if unable to represent a floating-point or
   614  	    complex constant due to overflow.</li>
   615  
   616  	<li>Round to the nearest representable constant if unable to
   617  	    represent a floating-point or complex constant due to limits
   618  	    on precision.</li>
   619  </ul>
   620  <p>
   621  These requirements apply both to literal constants and to the result
   622  of evaluating <a href="#Constant_expressions">constant
   623  expressions</a>.
   624  </p>
   625  
   626  <h2 id="Variables">Variables</h2>
   627  
   628  <p>
   629  A variable is a storage location for holding a <i>value</i>.
   630  The set of permissible values is determined by the
   631  variable's <i><a href="#Types">type</a></i>.
   632  </p>
   633  
   634  <p>
   635  A <a href="#Variable_declarations">variable declaration</a>
   636  or, for function parameters and results, the signature
   637  of a <a href="#Function_declarations">function declaration</a>
   638  or <a href="#Function_literals">function literal</a> reserves
   639  storage for a named variable.
   640  
   641  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   642  or taking the address of a <a href="#Composite_literals">composite literal</a>
   643  allocates storage for a variable at run time.
   644  Such an anonymous variable is referred to via a (possibly implicit)
   645  <a href="#Address_operators">pointer indirection</a>.
   646  </p>
   647  
   648  <p>
   649  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   650  and <a href="#Struct_types">struct</a> types have elements and fields that may
   651  be <a href="#Address_operators">addressed</a> individually. Each such element
   652  acts like a variable.
   653  </p>
   654  
   655  <p>
   656  The <i>static type</i> (or just <i>type</i>) of a variable is the
   657  type given in its declaration, the type provided in the
   658  <code>new</code> call or composite literal, or the type of
   659  an element of a structured variable.
   660  Variables of interface type also have a distinct <i>dynamic type</i>,
   661  which is the concrete type of the value assigned to the variable at run time
   662  (unless the value is the predeclared identifier <code>nil</code>,
   663  which has no type).
   664  The dynamic type may vary during execution but values stored in interface
   665  variables are always <a href="#Assignability">assignable</a>
   666  to the static type of the variable.
   667  </p>
   668  
   669  <pre>
   670  var x interface{}  // x is nil and has static type interface{}
   671  var v *T           // v has value nil, static type *T
   672  x = 42             // x has value 42 and dynamic type int
   673  x = v              // x has value (*T)(nil) and dynamic type *T
   674  </pre>
   675  
   676  <p>
   677  A variable's value is retrieved by referring to the variable in an
   678  <a href="#Expressions">expression</a>; it is the most recent value
   679  <a href="#Assignments">assigned</a> to the variable.
   680  If a variable has not yet been assigned a value, its value is the
   681  <a href="#The_zero_value">zero value</a> for its type.
   682  </p>
   683  
   684  
   685  <h2 id="Types">Types</h2>
   686  
   687  <p>
   688  A type determines the set of values and operations specific to values of that
   689  type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
   690  by a (possibly <a href="#Qualified_identifiers">qualified</a>)
   691  <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
   692  using a <i>type literal</i>, which composes a new type from existing types.
   693  </p>
   694  
   695  <pre class="ebnf">
   696  Type      = TypeName | TypeLit | "(" Type ")" .
   697  TypeName  = identifier | QualifiedIdent .
   698  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   699  	    SliceType | MapType | ChannelType .
   700  </pre>
   701  
   702  <p>
   703  Named instances of the boolean, numeric, and string types are
   704  <a href="#Predeclared_identifiers">predeclared</a>.
   705  <i>Composite types</i>&mdash;array, struct, pointer, function,
   706  interface, slice, map, and channel types&mdash;may be constructed using
   707  type literals.
   708  </p>
   709  
   710  <p>
   711  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   712  is one of the predeclared boolean, numeric, or string types, or a type literal,
   713  the corresponding underlying
   714  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   715  is the underlying type of the type to which <code>T</code> refers in its
   716  <a href="#Type_declarations">type declaration</a>.
   717  </p>
   718  
   719  <pre>
   720     type T1 string
   721     type T2 T1
   722     type T3 []T1
   723     type T4 T3
   724  </pre>
   725  
   726  <p>
   727  The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
   728  is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
   729  and <code>T4</code> is <code>[]T1</code>.
   730  </p>
   731  
   732  <h3 id="Method_sets">Method sets</h3>
   733  <p>
   734  A type may have a <i>method set</i> associated with it.
   735  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   736  The method set of any other type <code>T</code> consists of all
   737  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   738  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   739  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   740  (that is, it also contains the method set of <code>T</code>).
   741  Further rules apply to structs containing anonymous fields, as described
   742  in the section on <a href="#Struct_types">struct types</a>.
   743  Any other type has an empty method set.
   744  In a method set, each method must have a
   745  <a href="#Uniqueness_of_identifiers">unique</a>
   746  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   747  </p>
   748  
   749  <p>
   750  The method set of a type determines the interfaces that the
   751  type <a href="#Interface_types">implements</a>
   752  and the methods that can be <a href="#Calls">called</a>
   753  using a receiver of that type.
   754  </p>
   755  
   756  <h3 id="Boolean_types">Boolean types</h3>
   757  
   758  <p>
   759  A <i>boolean type</i> represents the set of Boolean truth values
   760  denoted by the predeclared constants <code>true</code>
   761  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   762  </p>
   763  
   764  <h3 id="Numeric_types">Numeric types</h3>
   765  
   766  <p>
   767  A <i>numeric type</i> represents sets of integer or floating-point values.
   768  The predeclared architecture-independent numeric types are:
   769  </p>
   770  
   771  <pre class="grammar">
   772  uint8       the set of all unsigned  8-bit integers (0 to 255)
   773  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   774  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   775  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   776  
   777  int8        the set of all signed  8-bit integers (-128 to 127)
   778  int16       the set of all signed 16-bit integers (-32768 to 32767)
   779  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   780  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   781  
   782  float32     the set of all IEEE-754 32-bit floating-point numbers
   783  float64     the set of all IEEE-754 64-bit floating-point numbers
   784  
   785  complex64   the set of all complex numbers with float32 real and imaginary parts
   786  complex128  the set of all complex numbers with float64 real and imaginary parts
   787  
   788  byte        alias for uint8
   789  rune        alias for int32
   790  </pre>
   791  
   792  <p>
   793  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   794  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   795  </p>
   796  
   797  <p>
   798  There is also a set of predeclared numeric types with implementation-specific sizes:
   799  </p>
   800  
   801  <pre class="grammar">
   802  uint     either 32 or 64 bits
   803  int      same size as uint
   804  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   805  </pre>
   806  
   807  <p>
   808  To avoid portability issues all numeric types are distinct except
   809  <code>byte</code>, which is an alias for <code>uint8</code>, and
   810  <code>rune</code>, which is an alias for <code>int32</code>.
   811  Conversions
   812  are required when different numeric types are mixed in an expression
   813  or assignment. For instance, <code>int32</code> and <code>int</code>
   814  are not the same type even though they may have the same size on a
   815  particular architecture.
   816  
   817  
   818  <h3 id="String_types">String types</h3>
   819  
   820  <p>
   821  A <i>string type</i> represents the set of string values.
   822  A string value is a (possibly empty) sequence of bytes.
   823  Strings are immutable: once created,
   824  it is impossible to change the contents of a string.
   825  The predeclared string type is <code>string</code>.
   826  </p>
   827  
   828  <p>
   829  The length of a string <code>s</code> (its size in bytes) can be discovered using
   830  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   831  The length is a compile-time constant if the string is a constant.
   832  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   833  0 through <code>len(s)-1</code>.
   834  It is illegal to take the address of such an element; if
   835  <code>s[i]</code> is the <code>i</code>'th byte of a
   836  string, <code>&amp;s[i]</code> is invalid.
   837  </p>
   838  
   839  
   840  <h3 id="Array_types">Array types</h3>
   841  
   842  <p>
   843  An array is a numbered sequence of elements of a single
   844  type, called the element type.
   845  The number of elements is called the length and is never
   846  negative.
   847  </p>
   848  
   849  <pre class="ebnf">
   850  ArrayType   = "[" ArrayLength "]" ElementType .
   851  ArrayLength = Expression .
   852  ElementType = Type .
   853  </pre>
   854  
   855  <p>
   856  The length is part of the array's type; it must evaluate to a
   857  non-negative <a href="#Constants">constant</a> representable by a value
   858  of type <code>int</code>.
   859  The length of array <code>a</code> can be discovered
   860  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   861  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   862  0 through <code>len(a)-1</code>.
   863  Array types are always one-dimensional but may be composed to form
   864  multi-dimensional types.
   865  </p>
   866  
   867  <pre>
   868  [32]byte
   869  [2*N] struct { x, y int32 }
   870  [1000]*float64
   871  [3][5]int
   872  [2][2][2]float64  // same as [2]([2]([2]float64))
   873  </pre>
   874  
   875  <h3 id="Slice_types">Slice types</h3>
   876  
   877  <p>
   878  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   879  provides access to a numbered sequence of elements from that array.
   880  A slice type denotes the set of all slices of arrays of its element type.
   881  The value of an uninitialized slice is <code>nil</code>.
   882  </p>
   883  
   884  <pre class="ebnf">
   885  SliceType = "[" "]" ElementType .
   886  </pre>
   887  
   888  <p>
   889  Like arrays, slices are indexable and have a length.  The length of a
   890  slice <code>s</code> can be discovered by the built-in function
   891  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   892  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   893  0 through <code>len(s)-1</code>.  The slice index of a
   894  given element may be less than the index of the same element in the
   895  underlying array.
   896  </p>
   897  <p>
   898  A slice, once initialized, is always associated with an underlying
   899  array that holds its elements.  A slice therefore shares storage
   900  with its array and with other slices of the same array; by contrast,
   901  distinct arrays always represent distinct storage.
   902  </p>
   903  <p>
   904  The array underlying a slice may extend past the end of the slice.
   905  The <i>capacity</i> is a measure of that extent: it is the sum of
   906  the length of the slice and the length of the array beyond the slice;
   907  a slice of length up to that capacity can be created by
   908  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   909  The capacity of a slice <code>a</code> can be discovered using the
   910  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   911  </p>
   912  
   913  <p>
   914  A new, initialized slice value for a given element type <code>T</code> is
   915  made using the built-in function
   916  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   917  which takes a slice type
   918  and parameters specifying the length and optionally the capacity.
   919  A slice created with <code>make</code> always allocates a new, hidden array
   920  to which the returned slice value refers. That is, executing
   921  </p>
   922  
   923  <pre>
   924  make([]T, length, capacity)
   925  </pre>
   926  
   927  <p>
   928  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   929  it, so these two expressions are equivalent:
   930  </p>
   931  
   932  <pre>
   933  make([]int, 50, 100)
   934  new([100]int)[0:50]
   935  </pre>
   936  
   937  <p>
   938  Like arrays, slices are always one-dimensional but may be composed to construct
   939  higher-dimensional objects.
   940  With arrays of arrays, the inner arrays are, by construction, always the same length;
   941  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   942  Moreover, the inner slices must be initialized individually.
   943  </p>
   944  
   945  <h3 id="Struct_types">Struct types</h3>
   946  
   947  <p>
   948  A struct is a sequence of named elements, called fields, each of which has a
   949  name and a type. Field names may be specified explicitly (IdentifierList) or
   950  implicitly (AnonymousField).
   951  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   952  be <a href="#Uniqueness_of_identifiers">unique</a>.
   953  </p>
   954  
   955  <pre class="ebnf">
   956  StructType     = "struct" "{" { FieldDecl ";" } "}" .
   957  FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
   958  AnonymousField = [ "*" ] TypeName .
   959  Tag            = string_lit .
   960  </pre>
   961  
   962  <pre>
   963  // An empty struct.
   964  struct {}
   965  
   966  // A struct with 6 fields.
   967  struct {
   968  	x, y int
   969  	u float32
   970  	_ float32  // padding
   971  	A *[]int
   972  	F func()
   973  }
   974  </pre>
   975  
   976  <p>
   977  A field declared with a type but no explicit field name is an <i>anonymous field</i>,
   978  also called an <i>embedded</i> field or an embedding of the type in the struct.
   979  An embedded type must be specified as
   980  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   981  and <code>T</code> itself may not be
   982  a pointer type. The unqualified type name acts as the field name.
   983  </p>
   984  
   985  <pre>
   986  // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
   987  struct {
   988  	T1        // field name is T1
   989  	*T2       // field name is T2
   990  	P.T3      // field name is T3
   991  	*P.T4     // field name is T4
   992  	x, y int  // field names are x and y
   993  }
   994  </pre>
   995  
   996  <p>
   997  The following declaration is illegal because field names must be unique
   998  in a struct type:
   999  </p>
  1000  
  1001  <pre>
  1002  struct {
  1003  	T     // conflicts with anonymous field *T and *P.T
  1004  	*T    // conflicts with anonymous field T and *P.T
  1005  	*P.T  // conflicts with anonymous field T and *T
  1006  }
  1007  </pre>
  1008  
  1009  <p>
  1010  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1011  anonymous field in a struct <code>x</code> is called <i>promoted</i> if
  1012  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1013  that field or method <code>f</code>.
  1014  </p>
  1015  
  1016  <p>
  1017  Promoted fields act like ordinary fields
  1018  of a struct except that they cannot be used as field names in
  1019  <a href="#Composite_literals">composite literals</a> of the struct.
  1020  </p>
  1021  
  1022  <p>
  1023  Given a struct type <code>S</code> and a type named <code>T</code>,
  1024  promoted methods are included in the method set of the struct as follows:
  1025  </p>
  1026  <ul>
  1027  	<li>
  1028  	If <code>S</code> contains an anonymous field <code>T</code>,
  1029  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1030  	and <code>*S</code> both include promoted methods with receiver
  1031  	<code>T</code>. The method set of <code>*S</code> also
  1032  	includes promoted methods with receiver <code>*T</code>.
  1033  	</li>
  1034  
  1035  	<li>
  1036  	If <code>S</code> contains an anonymous field <code>*T</code>,
  1037  	the method sets of <code>S</code> and <code>*S</code> both
  1038  	include promoted methods with receiver <code>T</code> or
  1039  	<code>*T</code>.
  1040  	</li>
  1041  </ul>
  1042  
  1043  <p>
  1044  A field declaration may be followed by an optional string literal <i>tag</i>,
  1045  which becomes an attribute for all the fields in the corresponding
  1046  field declaration. An empty tag string is equivalent to an absent tag.
  1047  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1048  and take part in <a href="#Type_identity">type identity</a> for structs
  1049  but are otherwise ignored.
  1050  </p>
  1051  
  1052  <pre>
  1053  struct {
  1054  	x, y float64 ""  // an empty tag string is like an absent tag
  1055  	name string  "any string is permitted as a tag"
  1056  	_    [4]byte "ceci n'est pas un champ de structure"
  1057  }
  1058  
  1059  // A struct corresponding to a TimeStamp protocol buffer.
  1060  // The tag strings define the protocol buffer field numbers;
  1061  // they follow the convention outlined by the reflect package.
  1062  struct {
  1063  	microsec  uint64 `protobuf:"1"`
  1064  	serverIP6 uint64 `protobuf:"2"`
  1065  }
  1066  </pre>
  1067  
  1068  <h3 id="Pointer_types">Pointer types</h3>
  1069  
  1070  <p>
  1071  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1072  type, called the <i>base type</i> of the pointer.
  1073  The value of an uninitialized pointer is <code>nil</code>.
  1074  </p>
  1075  
  1076  <pre class="ebnf">
  1077  PointerType = "*" BaseType .
  1078  BaseType    = Type .
  1079  </pre>
  1080  
  1081  <pre>
  1082  *Point
  1083  *[4]int
  1084  </pre>
  1085  
  1086  <h3 id="Function_types">Function types</h3>
  1087  
  1088  <p>
  1089  A function type denotes the set of all functions with the same parameter
  1090  and result types. The value of an uninitialized variable of function type
  1091  is <code>nil</code>.
  1092  </p>
  1093  
  1094  <pre class="ebnf">
  1095  FunctionType   = "func" Signature .
  1096  Signature      = Parameters [ Result ] .
  1097  Result         = Parameters | Type .
  1098  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1099  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1100  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1101  </pre>
  1102  
  1103  <p>
  1104  Within a list of parameters or results, the names (IdentifierList)
  1105  must either all be present or all be absent. If present, each name
  1106  stands for one item (parameter or result) of the specified type and
  1107  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1108  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1109  If absent, each type stands for one item of that type.
  1110  Parameter and result
  1111  lists are always parenthesized except that if there is exactly
  1112  one unnamed result it may be written as an unparenthesized type.
  1113  </p>
  1114  
  1115  <p>
  1116  The final incoming parameter in a function signature may have
  1117  a type prefixed with <code>...</code>.
  1118  A function with such a parameter is called <i>variadic</i> and
  1119  may be invoked with zero or more arguments for that parameter.
  1120  </p>
  1121  
  1122  <pre>
  1123  func()
  1124  func(x int) int
  1125  func(a, _ int, z float32) bool
  1126  func(a, b int, z float32) (bool)
  1127  func(prefix string, values ...int)
  1128  func(a, b int, z float64, opt ...interface{}) (success bool)
  1129  func(int, int, float64) (float64, *[]int)
  1130  func(n int) func(p *T)
  1131  </pre>
  1132  
  1133  
  1134  <h3 id="Interface_types">Interface types</h3>
  1135  
  1136  <p>
  1137  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1138  A variable of interface type can store a value of any type with a method set
  1139  that is any superset of the interface. Such a type is said to
  1140  <i>implement the interface</i>.
  1141  The value of an uninitialized variable of interface type is <code>nil</code>.
  1142  </p>
  1143  
  1144  <pre class="ebnf">
  1145  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1146  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1147  MethodName         = identifier .
  1148  InterfaceTypeName  = TypeName .
  1149  </pre>
  1150  
  1151  <p>
  1152  As with all method sets, in an interface type, each method must have a
  1153  <a href="#Uniqueness_of_identifiers">unique</a>
  1154  non-<a href="#Blank_identifier">blank</a> name.
  1155  </p>
  1156  
  1157  <pre>
  1158  // A simple File interface
  1159  interface {
  1160  	Read(b Buffer) bool
  1161  	Write(b Buffer) bool
  1162  	Close()
  1163  }
  1164  </pre>
  1165  
  1166  <p>
  1167  More than one type may implement an interface.
  1168  For instance, if two types <code>S1</code> and <code>S2</code>
  1169  have the method set
  1170  </p>
  1171  
  1172  <pre>
  1173  func (p T) Read(b Buffer) bool { return … }
  1174  func (p T) Write(b Buffer) bool { return … }
  1175  func (p T) Close() { … }
  1176  </pre>
  1177  
  1178  <p>
  1179  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1180  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1181  <code>S2</code>, regardless of what other methods
  1182  <code>S1</code> and <code>S2</code> may have or share.
  1183  </p>
  1184  
  1185  <p>
  1186  A type implements any interface comprising any subset of its methods
  1187  and may therefore implement several distinct interfaces. For
  1188  instance, all types implement the <i>empty interface</i>:
  1189  </p>
  1190  
  1191  <pre>
  1192  interface{}
  1193  </pre>
  1194  
  1195  <p>
  1196  Similarly, consider this interface specification,
  1197  which appears within a <a href="#Type_declarations">type declaration</a>
  1198  to define an interface called <code>Locker</code>:
  1199  </p>
  1200  
  1201  <pre>
  1202  type Locker interface {
  1203  	Lock()
  1204  	Unlock()
  1205  }
  1206  </pre>
  1207  
  1208  <p>
  1209  If <code>S1</code> and <code>S2</code> also implement
  1210  </p>
  1211  
  1212  <pre>
  1213  func (p T) Lock() { … }
  1214  func (p T) Unlock() { … }
  1215  </pre>
  1216  
  1217  <p>
  1218  they implement the <code>Locker</code> interface as well
  1219  as the <code>File</code> interface.
  1220  </p>
  1221  
  1222  <p>
  1223  An interface <code>T</code> may use a (possibly qualified) interface type
  1224  name <code>E</code> in place of a method specification. This is called
  1225  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1226  all (exported and non-exported) methods of <code>E</code> to the interface
  1227  <code>T</code>.
  1228  </p>
  1229  
  1230  <pre>
  1231  type ReadWriter interface {
  1232  	Read(b Buffer) bool
  1233  	Write(b Buffer) bool
  1234  }
  1235  
  1236  type File interface {
  1237  	ReadWriter  // same as adding the methods of ReadWriter
  1238  	Locker      // same as adding the methods of Locker
  1239  	Close()
  1240  }
  1241  
  1242  type LockedFile interface {
  1243  	Locker
  1244  	File        // illegal: Lock, Unlock not unique
  1245  	Lock()      // illegal: Lock not unique
  1246  }
  1247  </pre>
  1248  
  1249  <p>
  1250  An interface type <code>T</code> may not embed itself
  1251  or any interface type that embeds <code>T</code>, recursively.
  1252  </p>
  1253  
  1254  <pre>
  1255  // illegal: Bad cannot embed itself
  1256  type Bad interface {
  1257  	Bad
  1258  }
  1259  
  1260  // illegal: Bad1 cannot embed itself using Bad2
  1261  type Bad1 interface {
  1262  	Bad2
  1263  }
  1264  type Bad2 interface {
  1265  	Bad1
  1266  }
  1267  </pre>
  1268  
  1269  <h3 id="Map_types">Map types</h3>
  1270  
  1271  <p>
  1272  A map is an unordered group of elements of one type, called the
  1273  element type, indexed by a set of unique <i>keys</i> of another type,
  1274  called the key type.
  1275  The value of an uninitialized map is <code>nil</code>.
  1276  </p>
  1277  
  1278  <pre class="ebnf">
  1279  MapType     = "map" "[" KeyType "]" ElementType .
  1280  KeyType     = Type .
  1281  </pre>
  1282  
  1283  <p>
  1284  The <a href="#Comparison_operators">comparison operators</a>
  1285  <code>==</code> and <code>!=</code> must be fully defined
  1286  for operands of the key type; thus the key type must not be a function, map, or
  1287  slice.
  1288  If the key type is an interface type, these
  1289  comparison operators must be defined for the dynamic key values;
  1290  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1291  
  1292  </p>
  1293  
  1294  <pre>
  1295  map[string]int
  1296  map[*T]struct{ x, y float64 }
  1297  map[string]interface{}
  1298  </pre>
  1299  
  1300  <p>
  1301  The number of map elements is called its length.
  1302  For a map <code>m</code>, it can be discovered using the
  1303  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1304  and may change during execution. Elements may be added during execution
  1305  using <a href="#Assignments">assignments</a> and retrieved with
  1306  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1307  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1308  </p>
  1309  <p>
  1310  A new, empty map value is made using the built-in
  1311  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1312  which takes the map type and an optional capacity hint as arguments:
  1313  </p>
  1314  
  1315  <pre>
  1316  make(map[string]int)
  1317  make(map[string]int, 100)
  1318  </pre>
  1319  
  1320  <p>
  1321  The initial capacity does not bound its size:
  1322  maps grow to accommodate the number of items
  1323  stored in them, with the exception of <code>nil</code> maps.
  1324  A <code>nil</code> map is equivalent to an empty map except that no elements
  1325  may be added.
  1326  
  1327  <h3 id="Channel_types">Channel types</h3>
  1328  
  1329  <p>
  1330  A channel provides a mechanism for
  1331  <a href="#Go_statements">concurrently executing functions</a>
  1332  to communicate by
  1333  <a href="#Send_statements">sending</a> and
  1334  <a href="#Receive_operator">receiving</a>
  1335  values of a specified element type.
  1336  The value of an uninitialized channel is <code>nil</code>.
  1337  </p>
  1338  
  1339  <pre class="ebnf">
  1340  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1341  </pre>
  1342  
  1343  <p>
  1344  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1345  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1346  <i>bidirectional</i>.
  1347  A channel may be constrained only to send or only to receive by
  1348  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1349  </p>
  1350  
  1351  <pre>
  1352  chan T          // can be used to send and receive values of type T
  1353  chan&lt;- float64  // can only be used to send float64s
  1354  &lt;-chan int      // can only be used to receive ints
  1355  </pre>
  1356  
  1357  <p>
  1358  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1359  possible:
  1360  </p>
  1361  
  1362  <pre>
  1363  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1364  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1365  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1366  chan (&lt;-chan int)
  1367  </pre>
  1368  
  1369  <p>
  1370  A new, initialized channel
  1371  value can be made using the built-in function
  1372  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1373  which takes the channel type and an optional <i>capacity</i> as arguments:
  1374  </p>
  1375  
  1376  <pre>
  1377  make(chan int, 100)
  1378  </pre>
  1379  
  1380  <p>
  1381  The capacity, in number of elements, sets the size of the buffer in the channel.
  1382  If the capacity is zero or absent, the channel is unbuffered and communication
  1383  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1384  is buffered and communication succeeds without blocking if the buffer
  1385  is not full (sends) or not empty (receives).
  1386  A <code>nil</code> channel is never ready for communication.
  1387  </p>
  1388  
  1389  <p>
  1390  A channel may be closed with the built-in function
  1391  <a href="#Close"><code>close</code></a>.
  1392  The multi-valued assignment form of the
  1393  <a href="#Receive_operator">receive operator</a>
  1394  reports whether a received value was sent before
  1395  the channel was closed.
  1396  </p>
  1397  
  1398  <p>
  1399  A single channel may be used in
  1400  <a href="#Send_statements">send statements</a>,
  1401  <a href="#Receive_operator">receive operations</a>,
  1402  and calls to the built-in functions
  1403  <a href="#Length_and_capacity"><code>cap</code></a> and
  1404  <a href="#Length_and_capacity"><code>len</code></a>
  1405  by any number of goroutines without further synchronization.
  1406  Channels act as first-in-first-out queues.
  1407  For example, if one goroutine sends values on a channel
  1408  and a second goroutine receives them, the values are
  1409  received in the order sent.
  1410  </p>
  1411  
  1412  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1413  
  1414  <h3 id="Type_identity">Type identity</h3>
  1415  
  1416  <p>
  1417  Two types are either <i>identical</i> or <i>different</i>.
  1418  </p>
  1419  
  1420  <p>
  1421  Two <a href="#Types">named types</a> are identical if their type names originate in the same
  1422  <a href="#Type_declarations">TypeSpec</a>.
  1423  A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
  1424  if the corresponding type literals are identical, that is, if they have the same
  1425  literal structure and corresponding components have identical types. In detail:
  1426  </p>
  1427  
  1428  <ul>
  1429  	<li>Two array types are identical if they have identical element types and
  1430  	    the same array length.</li>
  1431  
  1432  	<li>Two slice types are identical if they have identical element types.</li>
  1433  
  1434  	<li>Two struct types are identical if they have the same sequence of fields,
  1435  	    and if corresponding fields have the same names, and identical types,
  1436  	    and identical tags.
  1437  	    Two anonymous fields are considered to have the same name. Lower-case field
  1438  	    names from different packages are always different.</li>
  1439  
  1440  	<li>Two pointer types are identical if they have identical base types.</li>
  1441  
  1442  	<li>Two function types are identical if they have the same number of parameters
  1443  	    and result values, corresponding parameter and result types are
  1444  	    identical, and either both functions are variadic or neither is.
  1445  	    Parameter and result names are not required to match.</li>
  1446  
  1447  	<li>Two interface types are identical if they have the same set of methods
  1448  	    with the same names and identical function types. Lower-case method names from
  1449  	    different packages are always different. The order of the methods is irrelevant.</li>
  1450  
  1451  	<li>Two map types are identical if they have identical key and value types.</li>
  1452  
  1453  	<li>Two channel types are identical if they have identical value types and
  1454  	    the same direction.</li>
  1455  </ul>
  1456  
  1457  <p>
  1458  Given the declarations
  1459  </p>
  1460  
  1461  <pre>
  1462  type (
  1463  	T0 []string
  1464  	T1 []string
  1465  	T2 struct{ a, b int }
  1466  	T3 struct{ a, c int }
  1467  	T4 func(int, float64) *T0
  1468  	T5 func(x int, y float64) *[]string
  1469  )
  1470  </pre>
  1471  
  1472  <p>
  1473  these types are identical:
  1474  </p>
  1475  
  1476  <pre>
  1477  T0 and T0
  1478  []int and []int
  1479  struct{ a, b *T5 } and struct{ a, b *T5 }
  1480  func(x int, y float64) *[]string and func(int, float64) (result *[]string)
  1481  </pre>
  1482  
  1483  <p>
  1484  <code>T0</code> and <code>T1</code> are different because they are named types
  1485  with distinct declarations; <code>func(int, float64) *T0</code> and
  1486  <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
  1487  is different from <code>[]string</code>.
  1488  </p>
  1489  
  1490  
  1491  <h3 id="Assignability">Assignability</h3>
  1492  
  1493  <p>
  1494  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1495  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1496  </p>
  1497  
  1498  <ul>
  1499  <li>
  1500  <code>x</code>'s type is identical to <code>T</code>.
  1501  </li>
  1502  <li>
  1503  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1504  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1505  or <code>T</code> is not a <a href="#Types">named type</a>.
  1506  </li>
  1507  <li>
  1508  <code>T</code> is an interface type and
  1509  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1510  </li>
  1511  <li>
  1512  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1513  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1514  and at least one of <code>V</code> or <code>T</code> is not a named type.
  1515  </li>
  1516  <li>
  1517  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1518  is a pointer, function, slice, map, channel, or interface type.
  1519  </li>
  1520  <li>
  1521  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1522  by a value of type <code>T</code>.
  1523  </li>
  1524  </ul>
  1525  
  1526  
  1527  <h2 id="Blocks">Blocks</h2>
  1528  
  1529  <p>
  1530  A <i>block</i> is a possibly empty sequence of declarations and statements
  1531  within matching brace brackets.
  1532  </p>
  1533  
  1534  <pre class="ebnf">
  1535  Block = "{" StatementList "}" .
  1536  StatementList = { Statement ";" } .
  1537  </pre>
  1538  
  1539  <p>
  1540  In addition to explicit blocks in the source code, there are implicit blocks:
  1541  </p>
  1542  
  1543  <ol>
  1544  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1545  
  1546  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1547  	    Go source text for that package.</li>
  1548  
  1549  	<li>Each file has a <i>file block</i> containing all Go source text
  1550  	    in that file.</li>
  1551  
  1552  	<li>Each <a href="#If_statements">"if"</a>,
  1553  	    <a href="#For_statements">"for"</a>, and
  1554  	    <a href="#Switch_statements">"switch"</a>
  1555  	    statement is considered to be in its own implicit block.</li>
  1556  
  1557  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1558  	    or <a href="#Select_statements">"select"</a> statement
  1559  	    acts as an implicit block.</li>
  1560  </ol>
  1561  
  1562  <p>
  1563  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1564  </p>
  1565  
  1566  
  1567  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1568  
  1569  <p>
  1570  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1571  <a href="#Constant_declarations">constant</a>,
  1572  <a href="#Type_declarations">type</a>,
  1573  <a href="#Variable_declarations">variable</a>,
  1574  <a href="#Function_declarations">function</a>,
  1575  <a href="#Labeled_statements">label</a>, or
  1576  <a href="#Import_declarations">package</a>.
  1577  Every identifier in a program must be declared.
  1578  No identifier may be declared twice in the same block, and
  1579  no identifier may be declared in both the file and package block.
  1580  </p>
  1581  
  1582  <p>
  1583  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1584  in a declaration, but it does not introduce a binding and thus is not declared.
  1585  In the package block, the identifier <code>init</code> may only be used for
  1586  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1587  and like the blank identifier it does not introduce a new binding.
  1588  </p>
  1589  
  1590  <pre class="ebnf">
  1591  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1592  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1593  </pre>
  1594  
  1595  <p>
  1596  The <i>scope</i> of a declared identifier is the extent of source text in which
  1597  the identifier denotes the specified constant, type, variable, function, label, or package.
  1598  </p>
  1599  
  1600  <p>
  1601  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1602  </p>
  1603  
  1604  <ol>
  1605  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1606  
  1607  	<li>The scope of an identifier denoting a constant, type, variable,
  1608  	    or function (but not method) declared at top level (outside any
  1609  	    function) is the package block.</li>
  1610  
  1611  	<li>The scope of the package name of an imported package is the file block
  1612  	    of the file containing the import declaration.</li>
  1613  
  1614  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1615  	    or result variable is the function body.</li>
  1616  
  1617  	<li>The scope of a constant or variable identifier declared
  1618  	    inside a function begins at the end of the ConstSpec or VarSpec
  1619  	    (ShortVarDecl for short variable declarations)
  1620  	    and ends at the end of the innermost containing block.</li>
  1621  
  1622  	<li>The scope of a type identifier declared inside a function
  1623  	    begins at the identifier in the TypeSpec
  1624  	    and ends at the end of the innermost containing block.</li>
  1625  </ol>
  1626  
  1627  <p>
  1628  An identifier declared in a block may be redeclared in an inner block.
  1629  While the identifier of the inner declaration is in scope, it denotes
  1630  the entity declared by the inner declaration.
  1631  </p>
  1632  
  1633  <p>
  1634  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1635  does not appear in any scope. Its purpose is to identify the files belonging
  1636  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1637  declarations.
  1638  </p>
  1639  
  1640  
  1641  <h3 id="Label_scopes">Label scopes</h3>
  1642  
  1643  <p>
  1644  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1645  used in the <a href="#Break_statements">"break"</a>,
  1646  <a href="#Continue_statements">"continue"</a>, and
  1647  <a href="#Goto_statements">"goto"</a> statements.
  1648  It is illegal to define a label that is never used.
  1649  In contrast to other identifiers, labels are not block scoped and do
  1650  not conflict with identifiers that are not labels. The scope of a label
  1651  is the body of the function in which it is declared and excludes
  1652  the body of any nested function.
  1653  </p>
  1654  
  1655  
  1656  <h3 id="Blank_identifier">Blank identifier</h3>
  1657  
  1658  <p>
  1659  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1660  It serves as an anonymous placeholder instead of a regular (non-blank)
  1661  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1662  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1663  </p>
  1664  
  1665  
  1666  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1667  
  1668  <p>
  1669  The following identifiers are implicitly declared in the
  1670  <a href="#Blocks">universe block</a>:
  1671  </p>
  1672  <pre class="grammar">
  1673  Types:
  1674  	bool byte complex64 complex128 error float32 float64
  1675  	int int8 int16 int32 int64 rune string
  1676  	uint uint8 uint16 uint32 uint64 uintptr
  1677  
  1678  Constants:
  1679  	true false iota
  1680  
  1681  Zero value:
  1682  	nil
  1683  
  1684  Functions:
  1685  	append cap close complex copy delete imag len
  1686  	make new panic print println real recover
  1687  </pre>
  1688  
  1689  
  1690  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1691  
  1692  <p>
  1693  An identifier may be <i>exported</i> to permit access to it from another package.
  1694  An identifier is exported if both:
  1695  </p>
  1696  <ol>
  1697  	<li>the first character of the identifier's name is a Unicode upper case
  1698  	letter (Unicode class "Lu"); and</li>
  1699  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1700  	or it is a <a href="#Struct_types">field name</a> or
  1701  	<a href="#MethodName">method name</a>.</li>
  1702  </ol>
  1703  <p>
  1704  All other identifiers are not exported.
  1705  </p>
  1706  
  1707  
  1708  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1709  
  1710  <p>
  1711  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1712  <i>different</i> from every other in the set.
  1713  Two identifiers are different if they are spelled differently, or if they
  1714  appear in different <a href="#Packages">packages</a> and are not
  1715  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1716  </p>
  1717  
  1718  <h3 id="Constant_declarations">Constant declarations</h3>
  1719  
  1720  <p>
  1721  A constant declaration binds a list of identifiers (the names of
  1722  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1723  The number of identifiers must be equal
  1724  to the number of expressions, and the <i>n</i>th identifier on
  1725  the left is bound to the value of the <i>n</i>th expression on the
  1726  right.
  1727  </p>
  1728  
  1729  <p>
  1730  For constant <i>aliases</i>, see the section on <a href="#Alias_declarations">alias declarations</a>.
  1731  </p>
  1732  
  1733  <pre class="ebnf">
  1734  ConstDecl      = "const" ( ConstSpec | AliasSpec | "(" { ( ConstSpec | AliasSpec ) ";" } ")" ) .
  1735  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1736  
  1737  IdentifierList = identifier { "," identifier } .
  1738  ExpressionList = Expression { "," Expression } .
  1739  </pre>
  1740  
  1741  <p>
  1742  If the type is present, all constants take the type specified, and
  1743  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1744  If the type is omitted, the constants take the
  1745  individual types of the corresponding expressions.
  1746  If the expression values are untyped <a href="#Constants">constants</a>,
  1747  the declared constants remain untyped and the constant identifiers
  1748  denote the constant values. For instance, if the expression is a
  1749  floating-point literal, the constant identifier denotes a floating-point
  1750  constant, even if the literal's fractional part is zero.
  1751  </p>
  1752  
  1753  <pre>
  1754  const Pi float64 = 3.14159265358979323846
  1755  const zero = 0.0         // untyped floating-point constant
  1756  const (
  1757  	size int64 = 1024
  1758  	eof        = -1  // untyped integer constant
  1759  )
  1760  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1761  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1762  </pre>
  1763  
  1764  <p>
  1765  Within a parenthesized <code>const</code> declaration list the
  1766  expression list may be omitted from any but the first declaration.
  1767  Such an empty list is equivalent to the textual substitution of the
  1768  first preceding non-empty expression list and its type if any.
  1769  Omitting the list of expressions is therefore equivalent to
  1770  repeating the previous list.  The number of identifiers must be equal
  1771  to the number of expressions in the previous list.
  1772  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1773  this mechanism permits light-weight declaration of sequential values:
  1774  </p>
  1775  
  1776  <pre>
  1777  const (
  1778  	Sunday = iota
  1779  	Monday
  1780  	Tuesday
  1781  	Wednesday
  1782  	Thursday
  1783  	Friday
  1784  	Partyday
  1785  	numberOfDays  // this constant is not exported
  1786  )
  1787  </pre>
  1788  
  1789  
  1790  <h3 id="Iota">Iota</h3>
  1791  
  1792  <p>
  1793  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1794  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1795  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1796  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1797  It can be used to construct a set of related constants:
  1798  </p>
  1799  
  1800  <pre>
  1801  const ( // iota is reset to 0
  1802  	c0 = iota  // c0 == 0
  1803  	c1 = iota  // c1 == 1
  1804  	c2 = iota  // c2 == 2
  1805  )
  1806  
  1807  const ( // iota is reset to 0
  1808  	a = 1 &lt;&lt; iota  // a == 1
  1809  	b = 1 &lt;&lt; iota  // b == 2
  1810  	c = 3          // c == 3  (iota is not used but still incremented)
  1811  	d = 1 &lt;&lt; iota  // d == 8
  1812  )
  1813  
  1814  const ( // iota is reset to 0
  1815  	u         = iota * 42  // u == 0     (untyped integer constant)
  1816  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1817  	w         = iota * 42  // w == 84    (untyped integer constant)
  1818  )
  1819  
  1820  const x = iota  // x == 0  (iota has been reset)
  1821  const y = iota  // y == 0  (iota has been reset)
  1822  </pre>
  1823  
  1824  <p>
  1825  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1826  it is only incremented after each ConstSpec:
  1827  </p>
  1828  
  1829  <pre>
  1830  const (
  1831  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1832  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1833  	_, _                                  // skips iota == 2
  1834  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1835  )
  1836  </pre>
  1837  
  1838  <p>
  1839  This last example exploits the implicit repetition of the
  1840  last non-empty expression list.
  1841  </p>
  1842  
  1843  
  1844  <h3 id="Type_declarations">Type declarations</h3>
  1845  
  1846  <p>
  1847  A type declaration binds an identifier, the <i>type name</i>, to a new type
  1848  that has the same <a href="#Types">underlying type</a> as an existing type,
  1849  and operations defined for the existing type are also defined for the new type.
  1850  The new type is <a href="#Type_identity">different</a> from the existing type.
  1851  </p>
  1852  
  1853  <p>
  1854  For type <i>aliases</i>, see the section on <a href="#Alias_declarations">alias declarations</a>.
  1855  </p>
  1856  
  1857  <pre class="ebnf">
  1858  TypeDecl     = "type" ( TypeSpec | AliasSpec | "(" { ( TypeSpec | AliasSpec ) ";" } ")" ) .
  1859  TypeSpec     = identifier Type .
  1860  </pre>
  1861  
  1862  <pre>
  1863  type IntArray [16]int
  1864  
  1865  type (
  1866  	Point struct{ x, y float64 }
  1867  	Polar Point
  1868  )
  1869  
  1870  type TreeNode struct {
  1871  	left, right *TreeNode
  1872  	value *Comparable
  1873  }
  1874  
  1875  type Block interface {
  1876  	BlockSize() int
  1877  	Encrypt(src, dst []byte)
  1878  	Decrypt(src, dst []byte)
  1879  }
  1880  </pre>
  1881  
  1882  <p>
  1883  The declared type does not inherit any <a href="#Method_declarations">methods</a>
  1884  bound to the existing type, but the <a href="#Method_sets">method set</a>
  1885  of an interface type or of elements of a composite type remains unchanged:
  1886  </p>
  1887  
  1888  <pre>
  1889  // A Mutex is a data type with two methods, Lock and Unlock.
  1890  type Mutex struct         { /* Mutex fields */ }
  1891  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1892  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1893  
  1894  // NewMutex has the same composition as Mutex but its method set is empty.
  1895  type NewMutex Mutex
  1896  
  1897  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1898  // but the method set of PtrMutex is empty.
  1899  type PtrMutex *Mutex
  1900  
  1901  // The method set of *PrintableMutex contains the methods
  1902  // Lock and Unlock bound to its anonymous field Mutex.
  1903  type PrintableMutex struct {
  1904  	Mutex
  1905  }
  1906  
  1907  // MyBlock is an interface type that has the same method set as Block.
  1908  type MyBlock Block
  1909  </pre>
  1910  
  1911  <p>
  1912  A type declaration may be used to define a different boolean, numeric, or string
  1913  type and attach methods to it:
  1914  </p>
  1915  
  1916  <pre>
  1917  type TimeZone int
  1918  
  1919  const (
  1920  	EST TimeZone = -(5 + iota)
  1921  	CST
  1922  	MST
  1923  	PST
  1924  )
  1925  
  1926  func (tz TimeZone) String() string {
  1927  	return fmt.Sprintf("GMT%+dh", tz)
  1928  }
  1929  </pre>
  1930  
  1931  
  1932  <h3 id="Variable_declarations">Variable declarations</h3>
  1933  
  1934  <p>
  1935  A variable declaration creates one or more variables, binds corresponding
  1936  identifiers to them, and gives each a type and an initial value.
  1937  </p>
  1938  
  1939  <p>
  1940  For variable <i>aliases</i>, see the section on <a href="#Alias_declarations">alias declarations</a>.
  1941  </p>
  1942  
  1943  <pre class="ebnf">
  1944  VarDecl     = "var" ( VarSpec | AliasSpec | "(" { ( VarSpec | AliasSpec ) ";" } ")" ) .
  1945  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1946  </pre>
  1947  
  1948  <pre>
  1949  var i int
  1950  var U, V, W float64
  1951  var k = 0
  1952  var x, y float32 = -1, -2
  1953  var (
  1954  	i       int
  1955  	u, v, s = 2.0, 3.0, "bar"
  1956  )
  1957  var re, im = complexSqrt(-1)
  1958  var _, found = entries[name]  // map lookup; only interested in "found"
  1959  </pre>
  1960  
  1961  <p>
  1962  If a list of expressions is given, the variables are initialized
  1963  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  1964  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  1965  </p>
  1966  
  1967  <p>
  1968  If a type is present, each variable is given that type.
  1969  Otherwise, each variable is given the type of the corresponding
  1970  initialization value in the assignment.
  1971  If that value is an untyped constant, it is first
  1972  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  1973  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  1974  The predeclared value <code>nil</code> cannot be used to initialize a variable
  1975  with no explicit type.
  1976  </p>
  1977  
  1978  <pre>
  1979  var d = math.Sin(0.5)  // d is float64
  1980  var i = 42             // i is int
  1981  var t, ok = x.(T)      // t is T, ok is bool
  1982  var n = nil            // illegal
  1983  </pre>
  1984  
  1985  <p>
  1986  Implementation restriction: A compiler may make it illegal to declare a variable
  1987  inside a <a href="#Function_declarations">function body</a> if the variable is
  1988  never used.
  1989  </p>
  1990  
  1991  
  1992  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  1993  
  1994  <p>
  1995  A <i>short variable declaration</i> uses the syntax:
  1996  </p>
  1997  
  1998  <pre class="ebnf">
  1999  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2000  </pre>
  2001  
  2002  <p>
  2003  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2004  with initializer expressions but no types:
  2005  </p>
  2006  
  2007  <pre class="grammar">
  2008  "var" IdentifierList = ExpressionList .
  2009  </pre>
  2010  
  2011  <pre>
  2012  i, j := 0, 10
  2013  f := func() int { return 7 }
  2014  ch := make(chan int)
  2015  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2016  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2017  </pre>
  2018  
  2019  <p>
  2020  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2021  variables provided they were originally declared earlier in the same block
  2022  (or the parameter lists if the block is the function body) with the same type,
  2023  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2024  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2025  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2026  </p>
  2027  
  2028  <pre>
  2029  field1, offset := nextField(str, 0)
  2030  field2, offset := nextField(str, offset)  // redeclares offset
  2031  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2032  </pre>
  2033  
  2034  <p>
  2035  Short variable declarations may appear only inside functions.
  2036  In some contexts such as the initializers for
  2037  <a href="#If_statements">"if"</a>,
  2038  <a href="#For_statements">"for"</a>, or
  2039  <a href="#Switch_statements">"switch"</a> statements,
  2040  they can be used to declare local temporary variables.
  2041  </p>
  2042  
  2043  <h3 id="Function_declarations">Function declarations</h3>
  2044  
  2045  <p>
  2046  A function declaration binds an identifier, the <i>function name</i>,
  2047  to a function.
  2048  </p>
  2049  
  2050  <p>
  2051  For function <i>aliases</i>, see the section on <a href="#Alias_declarations">alias declarations</a>.
  2052  </p>
  2053  
  2054  <pre class="ebnf">
  2055  FunctionDecl = "func" ( FunctionName ( Function | Signature ) ) | AliasSpec .
  2056  FunctionName = identifier .
  2057  Function     = Signature FunctionBody .
  2058  FunctionBody = Block .
  2059  </pre>
  2060  
  2061  <p>
  2062  If the function's <a href="#Function_types">signature</a> declares
  2063  result parameters, the function body's statement list must end in
  2064  a <a href="#Terminating_statements">terminating statement</a>.
  2065  </p>
  2066  
  2067  <pre>
  2068  func IndexRune(s string, r rune) int {
  2069  	for i, c := range s {
  2070  		if c == r {
  2071  			return i
  2072  		}
  2073  	}
  2074  	// invalid: missing return statement
  2075  }
  2076  </pre>
  2077  
  2078  <p>
  2079  A function declaration may omit the body. Such a declaration provides the
  2080  signature for a function implemented outside Go, such as an assembly routine.
  2081  </p>
  2082  
  2083  <pre>
  2084  func min(x int, y int) int {
  2085  	if x &lt; y {
  2086  		return x
  2087  	}
  2088  	return y
  2089  }
  2090  
  2091  func flushICache(begin, end uintptr)  // implemented externally
  2092  </pre>
  2093  
  2094  <h3 id="Method_declarations">Method declarations</h3>
  2095  
  2096  <p>
  2097  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2098  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2099  and associates the method with the receiver's <i>base type</i>.
  2100  </p>
  2101  
  2102  <pre class="ebnf">
  2103  MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
  2104  Receiver     = Parameters .
  2105  </pre>
  2106  
  2107  <p>
  2108  The receiver is specified via an extra parameter section preceding the method
  2109  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2110  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2111  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2112  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2113  it must be declared in the same package as the method.
  2114  The method is said to be <i>bound</i> to the base type and the method name
  2115  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2116  or <code>*T</code>.
  2117  </p>
  2118  
  2119  <p>
  2120  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2121  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2122  If the receiver's value is not referenced inside the body of the method,
  2123  its identifier may be omitted in the declaration. The same applies in
  2124  general to parameters of functions and methods.
  2125  </p>
  2126  
  2127  <p>
  2128  For a base type, the non-blank names of methods bound to it must be unique.
  2129  If the base type is a <a href="#Struct_types">struct type</a>,
  2130  the non-blank method and field names must be distinct.
  2131  </p>
  2132  
  2133  <p>
  2134  Given type <code>Point</code>, the declarations
  2135  </p>
  2136  
  2137  <pre>
  2138  func (p *Point) Length() float64 {
  2139  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2140  }
  2141  
  2142  func (p *Point) Scale(factor float64) {
  2143  	p.x *= factor
  2144  	p.y *= factor
  2145  }
  2146  </pre>
  2147  
  2148  <p>
  2149  bind the methods <code>Length</code> and <code>Scale</code>,
  2150  with receiver type <code>*Point</code>,
  2151  to the base type <code>Point</code>.
  2152  </p>
  2153  
  2154  <p>
  2155  The type of a method is the type of a function with the receiver as first
  2156  argument.  For instance, the method <code>Scale</code> has type
  2157  </p>
  2158  
  2159  <pre>
  2160  func(p *Point, factor float64)
  2161  </pre>
  2162  
  2163  <p>
  2164  However, a function declared this way is not a method.
  2165  </p>
  2166  
  2167  
  2168  <h3 id="Alias_declarations">Alias declarations</h3>
  2169  
  2170  <p>
  2171  An alias declaration binds an identifier, the <i>alias</i>, to a
  2172  <a href="#Constant_declarations">constant</a>,
  2173  <a href="#Type_declarations">type</a>,
  2174  <a href="#Variable_declarations">variable</a>, or
  2175  <a href="#Function_declarations">function</a>
  2176  denoted by a <a href="#Qualified_identifiers">qualified identifier</a> and
  2177  declared in a different package.
  2178  </p>
  2179  
  2180  <pre class="ebnf">
  2181  AliasSpec = identifier "=&gt;" QualifiedIdent .
  2182  </pre>
  2183  
  2184  <p>
  2185  The effect of referring to a constant, type, variable, or function by an alias
  2186  is indistinguishable from referring to it by its original name.
  2187  For example, the type denoted by a type alias and the aliased type are
  2188  <a href="#Type_identity">identical</a>.
  2189  </p>
  2190  
  2191  <p>
  2192  An alias declaration may appear only as a form of constant, type, variable,
  2193  or function declaration at the package level, and the aliased entity must be
  2194  a constant, type, variable, or function respectively. Alias declarations inside
  2195  functions are not permitted.
  2196  </p>
  2197  
  2198  <pre>
  2199  const (
  2200  	G  =  6.67408e-11      // regular and alias declarations may be grouped
  2201  	Pi =&gt; math.Pi          // same effect as: Pi = math.Pi
  2202  )
  2203  
  2204  type Struct =&gt; types.Struct    // re-export of types.Struct
  2205  
  2206  func sin =&gt; math.Sin           // non-exported shortcut for frequently used function
  2207  </pre>
  2208  
  2209  <p>
  2210  An alias declaration may not refer to package <a href="#Package_unsafe">unsafe</a>.
  2211  </p>
  2212  
  2213  
  2214  <h2 id="Expressions">Expressions</h2>
  2215  
  2216  <p>
  2217  An expression specifies the computation of a value by applying
  2218  operators and functions to operands.
  2219  </p>
  2220  
  2221  <h3 id="Operands">Operands</h3>
  2222  
  2223  <p>
  2224  Operands denote the elementary values in an expression. An operand may be a
  2225  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2226  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2227  <a href="#Constant_declarations">constant</a>,
  2228  <a href="#Variable_declarations">variable</a>, or
  2229  <a href="#Function_declarations">function</a>,
  2230  a <a href="#Method_expressions">method expression</a> yielding a function,
  2231  or a parenthesized expression.
  2232  </p>
  2233  
  2234  <p>
  2235  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2236  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2237  </p>
  2238  
  2239  <pre class="ebnf">
  2240  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2241  Literal     = BasicLit | CompositeLit | FunctionLit .
  2242  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2243  OperandName = identifier | QualifiedIdent.
  2244  </pre>
  2245  
  2246  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2247  
  2248  <p>
  2249  A qualified identifier is an identifier qualified with a package name prefix.
  2250  Both the package name and the identifier must not be
  2251  <a href="#Blank_identifier">blank</a>.
  2252  </p>
  2253  
  2254  <pre class="ebnf">
  2255  QualifiedIdent = PackageName "." identifier .
  2256  </pre>
  2257  
  2258  <p>
  2259  A qualified identifier accesses an identifier in a different package, which
  2260  must be <a href="#Import_declarations">imported</a>.
  2261  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2262  declared in the <a href="#Blocks">package block</a> of that package.
  2263  </p>
  2264  
  2265  <pre>
  2266  math.Sin	// denotes the Sin function in package math
  2267  </pre>
  2268  
  2269  <h3 id="Composite_literals">Composite literals</h3>
  2270  
  2271  <p>
  2272  Composite literals construct values for structs, arrays, slices, and maps
  2273  and create a new value each time they are evaluated.
  2274  They consist of the type of the literal followed by a brace-bound list of elements.
  2275  Each element may optionally be preceded by a corresponding key.
  2276  </p>
  2277  
  2278  <pre class="ebnf">
  2279  CompositeLit  = LiteralType LiteralValue .
  2280  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2281                  SliceType | MapType | TypeName .
  2282  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2283  ElementList   = KeyedElement { "," KeyedElement } .
  2284  KeyedElement  = [ Key ":" ] Element .
  2285  Key           = FieldName | Expression | LiteralValue .
  2286  FieldName     = identifier .
  2287  Element       = Expression | LiteralValue .
  2288  </pre>
  2289  
  2290  <p>
  2291  The LiteralType's underlying type must be a struct, array, slice, or map type
  2292  (the grammar enforces this constraint except when the type is given
  2293  as a TypeName).
  2294  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2295  to the respective field, element, and key types of the literal type;
  2296  there is no additional conversion.
  2297  The key is interpreted as a field name for struct literals,
  2298  an index for array and slice literals, and a key for map literals.
  2299  For map literals, all elements must have a key. It is an error
  2300  to specify multiple elements with the same field name or
  2301  constant key value.
  2302  </p>
  2303  
  2304  <p>
  2305  For struct literals the following rules apply:
  2306  </p>
  2307  <ul>
  2308  	<li>A key must be a field name declared in the struct type.
  2309  	</li>
  2310  	<li>An element list that does not contain any keys must
  2311  	    list an element for each struct field in the
  2312  	    order in which the fields are declared.
  2313  	</li>
  2314  	<li>If any element has a key, every element must have a key.
  2315  	</li>
  2316  	<li>An element list that contains keys does not need to
  2317  	    have an element for each struct field. Omitted fields
  2318  	    get the zero value for that field.
  2319  	</li>
  2320  	<li>A literal may omit the element list; such a literal evaluates
  2321  	    to the zero value for its type.
  2322  	</li>
  2323  	<li>It is an error to specify an element for a non-exported
  2324  	    field of a struct belonging to a different package.
  2325  	</li>
  2326  </ul>
  2327  
  2328  <p>
  2329  Given the declarations
  2330  </p>
  2331  <pre>
  2332  type Point3D struct { x, y, z float64 }
  2333  type Line struct { p, q Point3D }
  2334  </pre>
  2335  
  2336  <p>
  2337  one may write
  2338  </p>
  2339  
  2340  <pre>
  2341  origin := Point3D{}                            // zero value for Point3D
  2342  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2343  </pre>
  2344  
  2345  <p>
  2346  For array and slice literals the following rules apply:
  2347  </p>
  2348  <ul>
  2349  	<li>Each element has an associated integer index marking
  2350  	    its position in the array.
  2351  	</li>
  2352  	<li>An element with a key uses the key as its index. The
  2353  	    key must be a non-negative constant representable by
  2354  	    a value of type <code>int</code>; and if it is typed
  2355  	    it must be of integer type.
  2356  	</li>
  2357  	<li>An element without a key uses the previous element's index plus one.
  2358  	    If the first element has no key, its index is zero.
  2359  	</li>
  2360  </ul>
  2361  
  2362  <p>
  2363  <a href="#Address_operators">Taking the address</a> of a composite literal
  2364  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2365  with the literal's value.
  2366  </p>
  2367  <pre>
  2368  var pointer *Point3D = &amp;Point3D{y: 1000}
  2369  </pre>
  2370  
  2371  <p>
  2372  The length of an array literal is the length specified in the literal type.
  2373  If fewer elements than the length are provided in the literal, the missing
  2374  elements are set to the zero value for the array element type.
  2375  It is an error to provide elements with index values outside the index range
  2376  of the array. The notation <code>...</code> specifies an array length equal
  2377  to the maximum element index plus one.
  2378  </p>
  2379  
  2380  <pre>
  2381  buffer := [10]string{}             // len(buffer) == 10
  2382  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2383  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2384  </pre>
  2385  
  2386  <p>
  2387  A slice literal describes the entire underlying array literal.
  2388  Thus the length and capacity of a slice literal are the maximum
  2389  element index plus one. A slice literal has the form
  2390  </p>
  2391  
  2392  <pre>
  2393  []T{x1, x2, … xn}
  2394  </pre>
  2395  
  2396  <p>
  2397  and is shorthand for a slice operation applied to an array:
  2398  </p>
  2399  
  2400  <pre>
  2401  tmp := [n]T{x1, x2, … xn}
  2402  tmp[0 : n]
  2403  </pre>
  2404  
  2405  <p>
  2406  Within a composite literal of array, slice, or map type <code>T</code>,
  2407  elements or map keys that are themselves composite literals may elide the respective
  2408  literal type if it is identical to the element or key type of <code>T</code>.
  2409  Similarly, elements or keys that are addresses of composite literals may elide
  2410  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2411  </p>
  2412  
  2413  <pre>
  2414  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2415  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2416  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2417  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2418  
  2419  [...]*Point{{1.5, -3.5}, {0, 0}}    // same as [...]*Point{&amp;Point{1.5, -3.5}, &amp;Point{0, 0}}
  2420  
  2421  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2422  </pre>
  2423  
  2424  <p>
  2425  A parsing ambiguity arises when a composite literal using the
  2426  TypeName form of the LiteralType appears as an operand between the
  2427  <a href="#Keywords">keyword</a> and the opening brace of the block
  2428  of an "if", "for", or "switch" statement, and the composite literal
  2429  is not enclosed in parentheses, square brackets, or curly braces.
  2430  In this rare case, the opening brace of the literal is erroneously parsed
  2431  as the one introducing the block of statements. To resolve the ambiguity,
  2432  the composite literal must appear within parentheses.
  2433  </p>
  2434  
  2435  <pre>
  2436  if x == (T{a,b,c}[i]) { … }
  2437  if (x == T{a,b,c}[i]) { … }
  2438  </pre>
  2439  
  2440  <p>
  2441  Examples of valid array, slice, and map literals:
  2442  </p>
  2443  
  2444  <pre>
  2445  // list of prime numbers
  2446  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2447  
  2448  // vowels[ch] is true if ch is a vowel
  2449  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2450  
  2451  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2452  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2453  
  2454  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2455  noteFrequency := map[string]float32{
  2456  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2457  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2458  }
  2459  </pre>
  2460  
  2461  
  2462  <h3 id="Function_literals">Function literals</h3>
  2463  
  2464  <p>
  2465  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2466  </p>
  2467  
  2468  <pre class="ebnf">
  2469  FunctionLit = "func" Function .
  2470  </pre>
  2471  
  2472  <pre>
  2473  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2474  </pre>
  2475  
  2476  <p>
  2477  A function literal can be assigned to a variable or invoked directly.
  2478  </p>
  2479  
  2480  <pre>
  2481  f := func(x, y int) int { return x + y }
  2482  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2483  </pre>
  2484  
  2485  <p>
  2486  Function literals are <i>closures</i>: they may refer to variables
  2487  defined in a surrounding function. Those variables are then shared between
  2488  the surrounding function and the function literal, and they survive as long
  2489  as they are accessible.
  2490  </p>
  2491  
  2492  
  2493  <h3 id="Primary_expressions">Primary expressions</h3>
  2494  
  2495  <p>
  2496  Primary expressions are the operands for unary and binary expressions.
  2497  </p>
  2498  
  2499  <pre class="ebnf">
  2500  PrimaryExpr =
  2501  	Operand |
  2502  	Conversion |
  2503  	PrimaryExpr Selector |
  2504  	PrimaryExpr Index |
  2505  	PrimaryExpr Slice |
  2506  	PrimaryExpr TypeAssertion |
  2507  	PrimaryExpr Arguments .
  2508  
  2509  Selector       = "." identifier .
  2510  Index          = "[" Expression "]" .
  2511  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2512                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2513  TypeAssertion  = "." "(" Type ")" .
  2514  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2515  </pre>
  2516  
  2517  
  2518  <pre>
  2519  x
  2520  2
  2521  (s + ".txt")
  2522  f(3.1415, true)
  2523  Point{1, 2}
  2524  m["foo"]
  2525  s[i : j + 1]
  2526  obj.color
  2527  f.p[i].x()
  2528  </pre>
  2529  
  2530  
  2531  <h3 id="Selectors">Selectors</h3>
  2532  
  2533  <p>
  2534  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2535  that is not a <a href="#Package_clause">package name</a>, the
  2536  <i>selector expression</i>
  2537  </p>
  2538  
  2539  <pre>
  2540  x.f
  2541  </pre>
  2542  
  2543  <p>
  2544  denotes the field or method <code>f</code> of the value <code>x</code>
  2545  (or sometimes <code>*x</code>; see below).
  2546  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2547  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2548  The type of the selector expression is the type of <code>f</code>.
  2549  If <code>x</code> is a package name, see the section on
  2550  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2551  </p>
  2552  
  2553  <p>
  2554  A selector <code>f</code> may denote a field or method <code>f</code> of
  2555  a type <code>T</code>, or it may refer
  2556  to a field or method <code>f</code> of a nested
  2557  <a href="#Struct_types">anonymous field</a> of <code>T</code>.
  2558  The number of anonymous fields traversed
  2559  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2560  The depth of a field or method <code>f</code>
  2561  declared in <code>T</code> is zero.
  2562  The depth of a field or method <code>f</code> declared in
  2563  an anonymous field <code>A</code> in <code>T</code> is the
  2564  depth of <code>f</code> in <code>A</code> plus one.
  2565  </p>
  2566  
  2567  <p>
  2568  The following rules apply to selectors:
  2569  </p>
  2570  
  2571  <ol>
  2572  <li>
  2573  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2574  where <code>T</code> is not a pointer or interface type,
  2575  <code>x.f</code> denotes the field or method at the shallowest depth
  2576  in <code>T</code> where there
  2577  is such an <code>f</code>.
  2578  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2579  with shallowest depth, the selector expression is illegal.
  2580  </li>
  2581  
  2582  <li>
  2583  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2584  is an interface type, <code>x.f</code> denotes the actual method with name
  2585  <code>f</code> of the dynamic value of <code>x</code>.
  2586  If there is no method with name <code>f</code> in the
  2587  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2588  expression is illegal.
  2589  </li>
  2590  
  2591  <li>
  2592  As an exception, if the type of <code>x</code> is a named pointer type
  2593  and <code>(*x).f</code> is a valid selector expression denoting a field
  2594  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2595  </li>
  2596  
  2597  <li>
  2598  In all other cases, <code>x.f</code> is illegal.
  2599  </li>
  2600  
  2601  <li>
  2602  If <code>x</code> is of pointer type and has the value
  2603  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2604  assigning to or evaluating <code>x.f</code>
  2605  causes a <a href="#Run_time_panics">run-time panic</a>.
  2606  </li>
  2607  
  2608  <li>
  2609  If <code>x</code> is of interface type and has the value
  2610  <code>nil</code>, <a href="#Calls">calling</a> or
  2611  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2612  causes a <a href="#Run_time_panics">run-time panic</a>.
  2613  </li>
  2614  </ol>
  2615  
  2616  <p>
  2617  For example, given the declarations:
  2618  </p>
  2619  
  2620  <pre>
  2621  type T0 struct {
  2622  	x int
  2623  }
  2624  
  2625  func (*T0) M0()
  2626  
  2627  type T1 struct {
  2628  	y int
  2629  }
  2630  
  2631  func (T1) M1()
  2632  
  2633  type T2 struct {
  2634  	z int
  2635  	T1
  2636  	*T0
  2637  }
  2638  
  2639  func (*T2) M2()
  2640  
  2641  type Q *T2
  2642  
  2643  var t T2     // with t.T0 != nil
  2644  var p *T2    // with p != nil and (*p).T0 != nil
  2645  var q Q = p
  2646  </pre>
  2647  
  2648  <p>
  2649  one may write:
  2650  </p>
  2651  
  2652  <pre>
  2653  t.z          // t.z
  2654  t.y          // t.T1.y
  2655  t.x          // (*t.T0).x
  2656  
  2657  p.z          // (*p).z
  2658  p.y          // (*p).T1.y
  2659  p.x          // (*(*p).T0).x
  2660  
  2661  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2662  
  2663  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2664  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2665  p.M2()       // p.M2()              M2 expects *T2 receiver
  2666  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2667  </pre>
  2668  
  2669  <p>
  2670  but the following is invalid:
  2671  </p>
  2672  
  2673  <pre>
  2674  q.M0()       // (*q).M0 is valid but not a field selector
  2675  </pre>
  2676  
  2677  
  2678  <h3 id="Method_expressions">Method expressions</h3>
  2679  
  2680  <p>
  2681  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2682  <code>T.M</code> is a function that is callable as a regular function
  2683  with the same arguments as <code>M</code> prefixed by an additional
  2684  argument that is the receiver of the method.
  2685  </p>
  2686  
  2687  <pre class="ebnf">
  2688  MethodExpr    = ReceiverType "." MethodName .
  2689  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2690  </pre>
  2691  
  2692  <p>
  2693  Consider a struct type <code>T</code> with two methods,
  2694  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2695  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2696  </p>
  2697  
  2698  <pre>
  2699  type T struct {
  2700  	a int
  2701  }
  2702  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2703  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2704  
  2705  var t T
  2706  </pre>
  2707  
  2708  <p>
  2709  The expression
  2710  </p>
  2711  
  2712  <pre>
  2713  T.Mv
  2714  </pre>
  2715  
  2716  <p>
  2717  yields a function equivalent to <code>Mv</code> but
  2718  with an explicit receiver as its first argument; it has signature
  2719  </p>
  2720  
  2721  <pre>
  2722  func(tv T, a int) int
  2723  </pre>
  2724  
  2725  <p>
  2726  That function may be called normally with an explicit receiver, so
  2727  these five invocations are equivalent:
  2728  </p>
  2729  
  2730  <pre>
  2731  t.Mv(7)
  2732  T.Mv(t, 7)
  2733  (T).Mv(t, 7)
  2734  f1 := T.Mv; f1(t, 7)
  2735  f2 := (T).Mv; f2(t, 7)
  2736  </pre>
  2737  
  2738  <p>
  2739  Similarly, the expression
  2740  </p>
  2741  
  2742  <pre>
  2743  (*T).Mp
  2744  </pre>
  2745  
  2746  <p>
  2747  yields a function value representing <code>Mp</code> with signature
  2748  </p>
  2749  
  2750  <pre>
  2751  func(tp *T, f float32) float32
  2752  </pre>
  2753  
  2754  <p>
  2755  For a method with a value receiver, one can derive a function
  2756  with an explicit pointer receiver, so
  2757  </p>
  2758  
  2759  <pre>
  2760  (*T).Mv
  2761  </pre>
  2762  
  2763  <p>
  2764  yields a function value representing <code>Mv</code> with signature
  2765  </p>
  2766  
  2767  <pre>
  2768  func(tv *T, a int) int
  2769  </pre>
  2770  
  2771  <p>
  2772  Such a function indirects through the receiver to create a value
  2773  to pass as the receiver to the underlying method;
  2774  the method does not overwrite the value whose address is passed in
  2775  the function call.
  2776  </p>
  2777  
  2778  <p>
  2779  The final case, a value-receiver function for a pointer-receiver method,
  2780  is illegal because pointer-receiver methods are not in the method set
  2781  of the value type.
  2782  </p>
  2783  
  2784  <p>
  2785  Function values derived from methods are called with function call syntax;
  2786  the receiver is provided as the first argument to the call.
  2787  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2788  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2789  To construct a function that binds the receiver, use a
  2790  <a href="#Function_literals">function literal</a> or
  2791  <a href="#Method_values">method value</a>.
  2792  </p>
  2793  
  2794  <p>
  2795  It is legal to derive a function value from a method of an interface type.
  2796  The resulting function takes an explicit receiver of that interface type.
  2797  </p>
  2798  
  2799  <h3 id="Method_values">Method values</h3>
  2800  
  2801  <p>
  2802  If the expression <code>x</code> has static type <code>T</code> and
  2803  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2804  <code>x.M</code> is called a <i>method value</i>.
  2805  The method value <code>x.M</code> is a function value that is callable
  2806  with the same arguments as a method call of <code>x.M</code>.
  2807  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2808  method value; the saved copy is then used as the receiver in any calls,
  2809  which may be executed later.
  2810  </p>
  2811  
  2812  <p>
  2813  The type <code>T</code> may be an interface or non-interface type.
  2814  </p>
  2815  
  2816  <p>
  2817  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2818  consider a struct type <code>T</code> with two methods,
  2819  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2820  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2821  </p>
  2822  
  2823  <pre>
  2824  type T struct {
  2825  	a int
  2826  }
  2827  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2828  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2829  
  2830  var t T
  2831  var pt *T
  2832  func makeT() T
  2833  </pre>
  2834  
  2835  <p>
  2836  The expression
  2837  </p>
  2838  
  2839  <pre>
  2840  t.Mv
  2841  </pre>
  2842  
  2843  <p>
  2844  yields a function value of type
  2845  </p>
  2846  
  2847  <pre>
  2848  func(int) int
  2849  </pre>
  2850  
  2851  <p>
  2852  These two invocations are equivalent:
  2853  </p>
  2854  
  2855  <pre>
  2856  t.Mv(7)
  2857  f := t.Mv; f(7)
  2858  </pre>
  2859  
  2860  <p>
  2861  Similarly, the expression
  2862  </p>
  2863  
  2864  <pre>
  2865  pt.Mp
  2866  </pre>
  2867  
  2868  <p>
  2869  yields a function value of type
  2870  </p>
  2871  
  2872  <pre>
  2873  func(float32) float32
  2874  </pre>
  2875  
  2876  <p>
  2877  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2878  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2879  </p>
  2880  
  2881  <p>
  2882  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2883  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2884  </p>
  2885  
  2886  <pre>
  2887  f := t.Mv; f(7)   // like t.Mv(7)
  2888  f := pt.Mp; f(7)  // like pt.Mp(7)
  2889  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2890  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2891  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2892  </pre>
  2893  
  2894  <p>
  2895  Although the examples above use non-interface types, it is also legal to create a method value
  2896  from a value of interface type.
  2897  </p>
  2898  
  2899  <pre>
  2900  var i interface { M(int) } = myVal
  2901  f := i.M; f(7)  // like i.M(7)
  2902  </pre>
  2903  
  2904  
  2905  <h3 id="Index_expressions">Index expressions</h3>
  2906  
  2907  <p>
  2908  A primary expression of the form
  2909  </p>
  2910  
  2911  <pre>
  2912  a[x]
  2913  </pre>
  2914  
  2915  <p>
  2916  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2917  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2918  The following rules apply:
  2919  </p>
  2920  
  2921  <p>
  2922  If <code>a</code> is not a map:
  2923  </p>
  2924  <ul>
  2925  	<li>the index <code>x</code> must be of integer type or untyped;
  2926  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2927  	    otherwise it is <i>out of range</i></li>
  2928  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2929  	    and representable by a value of type <code>int</code>
  2930  </ul>
  2931  
  2932  <p>
  2933  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2934  </p>
  2935  <ul>
  2936  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2937  	<li>if <code>x</code> is out of range at run time,
  2938  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2939  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2940  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2941  </ul>
  2942  
  2943  <p>
  2944  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2945  </p>
  2946  <ul>
  2947  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2948  </ul>
  2949  
  2950  <p>
  2951  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2952  </p>
  2953  <ul>
  2954  	<li>if <code>x</code> is out of range at run time,
  2955  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2956  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2957  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2958  </ul>
  2959  
  2960  <p>
  2961  For <code>a</code> of <a href="#String_types">string type</a>:
  2962  </p>
  2963  <ul>
  2964  	<li>a <a href="#Constants">constant</a> index must be in range
  2965  	    if the string <code>a</code> is also constant</li>
  2966  	<li>if <code>x</code> is out of range at run time,
  2967  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2968  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2969  	    <code>a[x]</code> is <code>byte</code></li>
  2970  	<li><code>a[x]</code> may not be assigned to</li>
  2971  </ul>
  2972  
  2973  <p>
  2974  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2975  </p>
  2976  <ul>
  2977  	<li><code>x</code>'s type must be
  2978  	    <a href="#Assignability">assignable</a>
  2979  	    to the key type of <code>M</code></li>
  2980  	<li>if the map contains an entry with key <code>x</code>,
  2981  	    <code>a[x]</code> is the map value with key <code>x</code>
  2982  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2983  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2984  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2985  	    for the value type of <code>M</code></li>
  2986  </ul>
  2987  
  2988  <p>
  2989  Otherwise <code>a[x]</code> is illegal.
  2990  </p>
  2991  
  2992  <p>
  2993  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2994  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2995  </p>
  2996  
  2997  <pre>
  2998  v, ok = a[x]
  2999  v, ok := a[x]
  3000  var v, ok = a[x]
  3001  var v, ok T = a[x]
  3002  </pre>
  3003  
  3004  <p>
  3005  yields an additional untyped boolean value. The value of <code>ok</code> is
  3006  <code>true</code> if the key <code>x</code> is present in the map, and
  3007  <code>false</code> otherwise.
  3008  </p>
  3009  
  3010  <p>
  3011  Assigning to an element of a <code>nil</code> map causes a
  3012  <a href="#Run_time_panics">run-time panic</a>.
  3013  </p>
  3014  
  3015  
  3016  <h3 id="Slice_expressions">Slice expressions</h3>
  3017  
  3018  <p>
  3019  Slice expressions construct a substring or slice from a string, array, pointer
  3020  to array, or slice. There are two variants: a simple form that specifies a low
  3021  and high bound, and a full form that also specifies a bound on the capacity.
  3022  </p>
  3023  
  3024  <h4>Simple slice expressions</h4>
  3025  
  3026  <p>
  3027  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3028  </p>
  3029  
  3030  <pre>
  3031  a[low : high]
  3032  </pre>
  3033  
  3034  <p>
  3035  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3036  <code>high</code> select which elements of operand <code>a</code> appear
  3037  in the result. The result has indices starting at 0 and length equal to
  3038  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3039  After slicing the array <code>a</code>
  3040  </p>
  3041  
  3042  <pre>
  3043  a := [5]int{1, 2, 3, 4, 5}
  3044  s := a[1:4]
  3045  </pre>
  3046  
  3047  <p>
  3048  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3049  </p>
  3050  
  3051  <pre>
  3052  s[0] == 2
  3053  s[1] == 3
  3054  s[2] == 4
  3055  </pre>
  3056  
  3057  <p>
  3058  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3059  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3060  sliced operand:
  3061  </p>
  3062  
  3063  <pre>
  3064  a[2:]  // same as a[2 : len(a)]
  3065  a[:3]  // same as a[0 : 3]
  3066  a[:]   // same as a[0 : len(a)]
  3067  </pre>
  3068  
  3069  <p>
  3070  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3071  <code>(*a)[low : high]</code>.
  3072  </p>
  3073  
  3074  <p>
  3075  For arrays or strings, the indices are <i>in range</i> if
  3076  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3077  otherwise they are <i>out of range</i>.
  3078  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3079  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3080  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3081  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3082  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3083  </p>
  3084  
  3085  <p>
  3086  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3087  the result of the slice operation is a non-constant value of the same type as the operand.
  3088  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3089  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3090  and the result of the slice operation is a slice with the same element type as the array.
  3091  </p>
  3092  
  3093  <p>
  3094  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3095  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3096  operand.
  3097  </p>
  3098  
  3099  <h4>Full slice expressions</h4>
  3100  
  3101  <p>
  3102  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3103  </p>
  3104  
  3105  <pre>
  3106  a[low : high : max]
  3107  </pre>
  3108  
  3109  <p>
  3110  constructs a slice of the same type, and with the same length and elements as the simple slice
  3111  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3112  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3113  After slicing the array <code>a</code>
  3114  </p>
  3115  
  3116  <pre>
  3117  a := [5]int{1, 2, 3, 4, 5}
  3118  t := a[1:3:5]
  3119  </pre>
  3120  
  3121  <p>
  3122  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3123  </p>
  3124  
  3125  <pre>
  3126  t[0] == 2
  3127  t[1] == 3
  3128  </pre>
  3129  
  3130  <p>
  3131  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3132  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3133  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3134  </p>
  3135  
  3136  <p>
  3137  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3138  otherwise they are <i>out of range</i>.
  3139  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3140  <code>int</code>; for arrays, constant indices must also be in range.
  3141  If multiple indices are constant, the constants that are present must be in range relative to each
  3142  other.
  3143  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3144  </p>
  3145  
  3146  <h3 id="Type_assertions">Type assertions</h3>
  3147  
  3148  <p>
  3149  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3150  and a type <code>T</code>, the primary expression
  3151  </p>
  3152  
  3153  <pre>
  3154  x.(T)
  3155  </pre>
  3156  
  3157  <p>
  3158  asserts that <code>x</code> is not <code>nil</code>
  3159  and that the value stored in <code>x</code> is of type <code>T</code>.
  3160  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3161  </p>
  3162  <p>
  3163  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3164  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3165  to the type <code>T</code>.
  3166  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3167  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3168  to store a value of type <code>T</code>.
  3169  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3170  of <code>x</code> implements the interface <code>T</code>.
  3171  </p>
  3172  <p>
  3173  If the type assertion holds, the value of the expression is the value
  3174  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3175  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3176  In other words, even though the dynamic type of <code>x</code>
  3177  is known only at run time, the type of <code>x.(T)</code> is
  3178  known to be <code>T</code> in a correct program.
  3179  </p>
  3180  
  3181  <pre>
  3182  var x interface{} = 7          // x has dynamic type int and value 7
  3183  i := x.(int)                   // i has type int and value 7
  3184  
  3185  type I interface { m() }
  3186  
  3187  func f(y I) {
  3188  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3189  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3190  	…
  3191  }
  3192  </pre>
  3193  
  3194  <p>
  3195  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3196  </p>
  3197  
  3198  <pre>
  3199  v, ok = x.(T)
  3200  v, ok := x.(T)
  3201  var v, ok = x.(T)
  3202  var v, ok T1 = x.(T)
  3203  </pre>
  3204  
  3205  <p>
  3206  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3207  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3208  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3209  No run-time panic occurs in this case.
  3210  </p>
  3211  
  3212  
  3213  <h3 id="Calls">Calls</h3>
  3214  
  3215  <p>
  3216  Given an expression <code>f</code> of function type
  3217  <code>F</code>,
  3218  </p>
  3219  
  3220  <pre>
  3221  f(a1, a2, … an)
  3222  </pre>
  3223  
  3224  <p>
  3225  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3226  Except for one special case, arguments must be single-valued expressions
  3227  <a href="#Assignability">assignable</a> to the parameter types of
  3228  <code>F</code> and are evaluated before the function is called.
  3229  The type of the expression is the result type
  3230  of <code>F</code>.
  3231  A method invocation is similar but the method itself
  3232  is specified as a selector upon a value of the receiver type for
  3233  the method.
  3234  </p>
  3235  
  3236  <pre>
  3237  math.Atan2(x, y)  // function call
  3238  var pt *Point
  3239  pt.Scale(3.5)     // method call with receiver pt
  3240  </pre>
  3241  
  3242  <p>
  3243  In a function call, the function value and arguments are evaluated in
  3244  <a href="#Order_of_evaluation">the usual order</a>.
  3245  After they are evaluated, the parameters of the call are passed by value to the function
  3246  and the called function begins execution.
  3247  The return parameters of the function are passed by value
  3248  back to the calling function when the function returns.
  3249  </p>
  3250  
  3251  <p>
  3252  Calling a <code>nil</code> function value
  3253  causes a <a href="#Run_time_panics">run-time panic</a>.
  3254  </p>
  3255  
  3256  <p>
  3257  As a special case, if the return values of a function or method
  3258  <code>g</code> are equal in number and individually
  3259  assignable to the parameters of another function or method
  3260  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3261  will invoke <code>f</code> after binding the return values of
  3262  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3263  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3264  and <code>g</code> must have at least one return value.
  3265  If <code>f</code> has a final <code>...</code> parameter, it is
  3266  assigned the return values of <code>g</code> that remain after
  3267  assignment of regular parameters.
  3268  </p>
  3269  
  3270  <pre>
  3271  func Split(s string, pos int) (string, string) {
  3272  	return s[0:pos], s[pos:]
  3273  }
  3274  
  3275  func Join(s, t string) string {
  3276  	return s + t
  3277  }
  3278  
  3279  if Join(Split(value, len(value)/2)) != value {
  3280  	log.Panic("test fails")
  3281  }
  3282  </pre>
  3283  
  3284  <p>
  3285  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3286  of (the type of) <code>x</code> contains <code>m</code> and the
  3287  argument list can be assigned to the parameter list of <code>m</code>.
  3288  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3289  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3290  for <code>(&amp;x).m()</code>:
  3291  </p>
  3292  
  3293  <pre>
  3294  var p Point
  3295  p.Scale(3.5)
  3296  </pre>
  3297  
  3298  <p>
  3299  There is no distinct method type and there are no method literals.
  3300  </p>
  3301  
  3302  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3303  
  3304  <p>
  3305  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3306  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3307  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3308  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3309  the value passed to <code>p</code> is <code>nil</code>.
  3310  Otherwise, the value passed is a new slice
  3311  of type <code>[]T</code> with a new underlying array whose successive elements
  3312  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3313  to <code>T</code>. The length and capacity of the slice is therefore
  3314  the number of arguments bound to <code>p</code> and may differ for each
  3315  call site.
  3316  </p>
  3317  
  3318  <p>
  3319  Given the function and calls
  3320  </p>
  3321  <pre>
  3322  func Greeting(prefix string, who ...string)
  3323  Greeting("nobody")
  3324  Greeting("hello:", "Joe", "Anna", "Eileen")
  3325  </pre>
  3326  
  3327  <p>
  3328  within <code>Greeting</code>, <code>who</code> will have the value
  3329  <code>nil</code> in the first call, and
  3330  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3331  </p>
  3332  
  3333  <p>
  3334  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3335  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3336  is followed by <code>...</code>. In this case no new slice is created.
  3337  </p>
  3338  
  3339  <p>
  3340  Given the slice <code>s</code> and call
  3341  </p>
  3342  
  3343  <pre>
  3344  s := []string{"James", "Jasmine"}
  3345  Greeting("goodbye:", s...)
  3346  </pre>
  3347  
  3348  <p>
  3349  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3350  with the same underlying array.
  3351  </p>
  3352  
  3353  
  3354  <h3 id="Operators">Operators</h3>
  3355  
  3356  <p>
  3357  Operators combine operands into expressions.
  3358  </p>
  3359  
  3360  <pre class="ebnf">
  3361  Expression = UnaryExpr | Expression binary_op Expression .
  3362  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3363  
  3364  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3365  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3366  add_op     = "+" | "-" | "|" | "^" .
  3367  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3368  
  3369  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3370  </pre>
  3371  
  3372  <p>
  3373  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3374  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3375  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3376  For operations involving constants only, see the section on
  3377  <a href="#Constant_expressions">constant expressions</a>.
  3378  </p>
  3379  
  3380  <p>
  3381  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3382  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3383  to the type of the other operand.
  3384  </p>
  3385  
  3386  <p>
  3387  The right operand in a shift expression must have unsigned integer type
  3388  or be an untyped constant that can be converted to unsigned integer type.
  3389  If the left operand of a non-constant shift expression is an untyped constant,
  3390  it is first converted to the type it would assume if the shift expression were
  3391  replaced by its left operand alone.
  3392  </p>
  3393  
  3394  <pre>
  3395  var s uint = 33
  3396  var i = 1&lt;&lt;s           // 1 has type int
  3397  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3398  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3399  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3400  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3401  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3402  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3403  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3404  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3405  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3406  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3407  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3408  </pre>
  3409  
  3410  
  3411  <h4 id="Operator_precedence">Operator precedence</h4>
  3412  <p>
  3413  Unary operators have the highest precedence.
  3414  As the  <code>++</code> and <code>--</code> operators form
  3415  statements, not expressions, they fall
  3416  outside the operator hierarchy.
  3417  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3418  <p>
  3419  There are five precedence levels for binary operators.
  3420  Multiplication operators bind strongest, followed by addition
  3421  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3422  and finally <code>||</code> (logical OR):
  3423  </p>
  3424  
  3425  <pre class="grammar">
  3426  Precedence    Operator
  3427      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3428      4             +  -  |  ^
  3429      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3430      2             &amp;&amp;
  3431      1             ||
  3432  </pre>
  3433  
  3434  <p>
  3435  Binary operators of the same precedence associate from left to right.
  3436  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3437  </p>
  3438  
  3439  <pre>
  3440  +x
  3441  23 + 3*x[i]
  3442  x &lt;= f()
  3443  ^a &gt;&gt; b
  3444  f() || g()
  3445  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3446  </pre>
  3447  
  3448  
  3449  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3450  <p>
  3451  Arithmetic operators apply to numeric values and yield a result of the same
  3452  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3453  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3454  floating-point, and complex types; <code>+</code> also applies to strings.
  3455  The bitwise logical and shift operators apply to integers only.
  3456  </p>
  3457  
  3458  <pre class="grammar">
  3459  +    sum                    integers, floats, complex values, strings
  3460  -    difference             integers, floats, complex values
  3461  *    product                integers, floats, complex values
  3462  /    quotient               integers, floats, complex values
  3463  %    remainder              integers
  3464  
  3465  &amp;    bitwise AND            integers
  3466  |    bitwise OR             integers
  3467  ^    bitwise XOR            integers
  3468  &amp;^   bit clear (AND NOT)    integers
  3469  
  3470  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3471  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3472  </pre>
  3473  
  3474  
  3475  <h4 id="Integer_operators">Integer operators</h4>
  3476  
  3477  <p>
  3478  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3479  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3480  relationships:
  3481  </p>
  3482  
  3483  <pre>
  3484  x = q*y + r  and  |r| &lt; |y|
  3485  </pre>
  3486  
  3487  <p>
  3488  with <code>x / y</code> truncated towards zero
  3489  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3490  </p>
  3491  
  3492  <pre>
  3493   x     y     x / y     x % y
  3494   5     3       1         2
  3495  -5     3      -1        -2
  3496   5    -3      -1         2
  3497  -5    -3       1        -2
  3498  </pre>
  3499  
  3500  <p>
  3501  As an exception to this rule, if the dividend <code>x</code> is the most
  3502  negative value for the int type of <code>x</code>, the quotient
  3503  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3504  </p>
  3505  
  3506  <pre>
  3507  			 x, q
  3508  int8                     -128
  3509  int16                  -32768
  3510  int32             -2147483648
  3511  int64    -9223372036854775808
  3512  </pre>
  3513  
  3514  <p>
  3515  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3516  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3517  If the dividend is non-negative and the divisor is a constant power of 2,
  3518  the division may be replaced by a right shift, and computing the remainder may
  3519  be replaced by a bitwise AND operation:
  3520  </p>
  3521  
  3522  <pre>
  3523   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3524   11      2         3         2          3
  3525  -11     -2        -3        -3          1
  3526  </pre>
  3527  
  3528  <p>
  3529  The shift operators shift the left operand by the shift count specified by the
  3530  right operand. They implement arithmetic shifts if the left operand is a signed
  3531  integer and logical shifts if it is an unsigned integer.
  3532  There is no upper limit on the shift count. Shifts behave
  3533  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3534  count of <code>n</code>.
  3535  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3536  and <code>x &gt;&gt; 1</code> is the same as
  3537  <code>x/2</code> but truncated towards negative infinity.
  3538  </p>
  3539  
  3540  <p>
  3541  For integer operands, the unary operators
  3542  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3543  follows:
  3544  </p>
  3545  
  3546  <pre class="grammar">
  3547  +x                          is 0 + x
  3548  -x    negation              is 0 - x
  3549  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3550                                        and  m = -1 for signed x
  3551  </pre>
  3552  
  3553  
  3554  <h4 id="Integer_overflow">Integer overflow</h4>
  3555  
  3556  <p>
  3557  For unsigned integer values, the operations <code>+</code>,
  3558  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3559  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3560  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3561  Loosely speaking, these unsigned integer operations
  3562  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3563  </p>
  3564  <p>
  3565  For signed integers, the operations <code>+</code>,
  3566  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3567  overflow and the resulting value exists and is deterministically defined
  3568  by the signed integer representation, the operation, and its operands.
  3569  No exception is raised as a result of overflow. A
  3570  compiler may not optimize code under the assumption that overflow does
  3571  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3572  </p>
  3573  
  3574  
  3575  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3576  
  3577  <p>
  3578  For floating-point and complex numbers,
  3579  <code>+x</code> is the same as <code>x</code>,
  3580  while <code>-x</code> is the negation of <code>x</code>.
  3581  The result of a floating-point or complex division by zero is not specified beyond the
  3582  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3583  occurs is implementation-specific.
  3584  </p>
  3585  
  3586  
  3587  <h4 id="String_concatenation">String concatenation</h4>
  3588  
  3589  <p>
  3590  Strings can be concatenated using the <code>+</code> operator
  3591  or the <code>+=</code> assignment operator:
  3592  </p>
  3593  
  3594  <pre>
  3595  s := "hi" + string(c)
  3596  s += " and good bye"
  3597  </pre>
  3598  
  3599  <p>
  3600  String addition creates a new string by concatenating the operands.
  3601  </p>
  3602  
  3603  
  3604  <h3 id="Comparison_operators">Comparison operators</h3>
  3605  
  3606  <p>
  3607  Comparison operators compare two operands and yield an untyped boolean value.
  3608  </p>
  3609  
  3610  <pre class="grammar">
  3611  ==    equal
  3612  !=    not equal
  3613  &lt;     less
  3614  &lt;=    less or equal
  3615  &gt;     greater
  3616  &gt;=    greater or equal
  3617  </pre>
  3618  
  3619  <p>
  3620  In any comparison, the first operand
  3621  must be <a href="#Assignability">assignable</a>
  3622  to the type of the second operand, or vice versa.
  3623  </p>
  3624  <p>
  3625  The equality operators <code>==</code> and <code>!=</code> apply
  3626  to operands that are <i>comparable</i>.
  3627  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3628  apply to operands that are <i>ordered</i>.
  3629  These terms and the result of the comparisons are defined as follows:
  3630  </p>
  3631  
  3632  <ul>
  3633  	<li>
  3634  	Boolean values are comparable.
  3635  	Two boolean values are equal if they are either both
  3636  	<code>true</code> or both <code>false</code>.
  3637  	</li>
  3638  
  3639  	<li>
  3640  	Integer values are comparable and ordered, in the usual way.
  3641  	</li>
  3642  
  3643  	<li>
  3644  	Floating point values are comparable and ordered,
  3645  	as defined by the IEEE-754 standard.
  3646  	</li>
  3647  
  3648  	<li>
  3649  	Complex values are comparable.
  3650  	Two complex values <code>u</code> and <code>v</code> are
  3651  	equal if both <code>real(u) == real(v)</code> and
  3652  	<code>imag(u) == imag(v)</code>.
  3653  	</li>
  3654  
  3655  	<li>
  3656  	String values are comparable and ordered, lexically byte-wise.
  3657  	</li>
  3658  
  3659  	<li>
  3660  	Pointer values are comparable.
  3661  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3662  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3663  	</li>
  3664  
  3665  	<li>
  3666  	Channel values are comparable.
  3667  	Two channel values are equal if they were created by the same call to
  3668  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3669  	or if both have value <code>nil</code>.
  3670  	</li>
  3671  
  3672  	<li>
  3673  	Interface values are comparable.
  3674  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3675  	and equal dynamic values or if both have value <code>nil</code>.
  3676  	</li>
  3677  
  3678  	<li>
  3679  	A value <code>x</code> of non-interface type <code>X</code> and
  3680  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3681  	of type <code>X</code> are comparable and
  3682  	<code>X</code> implements <code>T</code>.
  3683  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3684  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3685  	</li>
  3686  
  3687  	<li>
  3688  	Struct values are comparable if all their fields are comparable.
  3689  	Two struct values are equal if their corresponding
  3690  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3691  	</li>
  3692  
  3693  	<li>
  3694  	Array values are comparable if values of the array element type are comparable.
  3695  	Two array values are equal if their corresponding elements are equal.
  3696  	</li>
  3697  </ul>
  3698  
  3699  <p>
  3700  A comparison of two interface values with identical dynamic types
  3701  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3702  of that type are not comparable.  This behavior applies not only to direct interface
  3703  value comparisons but also when comparing arrays of interface values
  3704  or structs with interface-valued fields.
  3705  </p>
  3706  
  3707  <p>
  3708  Slice, map, and function values are not comparable.
  3709  However, as a special case, a slice, map, or function value may
  3710  be compared to the predeclared identifier <code>nil</code>.
  3711  Comparison of pointer, channel, and interface values to <code>nil</code>
  3712  is also allowed and follows from the general rules above.
  3713  </p>
  3714  
  3715  <pre>
  3716  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3717  
  3718  type MyBool bool
  3719  var x, y int
  3720  var (
  3721  	// The result of a comparison is an untyped boolean.
  3722  	// The usual assignment rules apply.
  3723  	b3        = x == y // b3 has type bool
  3724  	b4 bool   = x == y // b4 has type bool
  3725  	b5 MyBool = x == y // b5 has type MyBool
  3726  )
  3727  </pre>
  3728  
  3729  <h3 id="Logical_operators">Logical operators</h3>
  3730  
  3731  <p>
  3732  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3733  and yield a result of the same type as the operands.
  3734  The right operand is evaluated conditionally.
  3735  </p>
  3736  
  3737  <pre class="grammar">
  3738  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3739  ||    conditional OR     p || q  is  "if p then true else q"
  3740  !     NOT                !p      is  "not p"
  3741  </pre>
  3742  
  3743  
  3744  <h3 id="Address_operators">Address operators</h3>
  3745  
  3746  <p>
  3747  For an operand <code>x</code> of type <code>T</code>, the address operation
  3748  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3749  The operand must be <i>addressable</i>,
  3750  that is, either a variable, pointer indirection, or slice indexing
  3751  operation; or a field selector of an addressable struct operand;
  3752  or an array indexing operation of an addressable array.
  3753  As an exception to the addressability requirement, <code>x</code> may also be a
  3754  (possibly parenthesized)
  3755  <a href="#Composite_literals">composite literal</a>.
  3756  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3757  then the evaluation of <code>&amp;x</code> does too.
  3758  </p>
  3759  
  3760  <p>
  3761  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3762  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3763  to by <code>x</code>.
  3764  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3765  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3766  </p>
  3767  
  3768  <pre>
  3769  &amp;x
  3770  &amp;a[f(2)]
  3771  &amp;Point{2, 3}
  3772  *p
  3773  *pf(x)
  3774  
  3775  var x *int = nil
  3776  *x   // causes a run-time panic
  3777  &amp;*x  // causes a run-time panic
  3778  </pre>
  3779  
  3780  
  3781  <h3 id="Receive_operator">Receive operator</h3>
  3782  
  3783  <p>
  3784  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3785  the value of the receive operation <code>&lt;-ch</code> is the value received
  3786  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3787  and the type of the receive operation is the element type of the channel.
  3788  The expression blocks until a value is available.
  3789  Receiving from a <code>nil</code> channel blocks forever.
  3790  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3791  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3792  after any previously sent values have been received.
  3793  </p>
  3794  
  3795  <pre>
  3796  v1 := &lt;-ch
  3797  v2 = &lt;-ch
  3798  f(&lt;-ch)
  3799  &lt;-strobe  // wait until clock pulse and discard received value
  3800  </pre>
  3801  
  3802  <p>
  3803  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3804  </p>
  3805  
  3806  <pre>
  3807  x, ok = &lt;-ch
  3808  x, ok := &lt;-ch
  3809  var x, ok = &lt;-ch
  3810  var x, ok T = &lt;-ch
  3811  </pre>
  3812  
  3813  <p>
  3814  yields an additional untyped boolean result reporting whether the
  3815  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3816  if the value received was delivered by a successful send operation to the
  3817  channel, or <code>false</code> if it is a zero value generated because the
  3818  channel is closed and empty.
  3819  </p>
  3820  
  3821  
  3822  <h3 id="Conversions">Conversions</h3>
  3823  
  3824  <p>
  3825  Conversions are expressions of the form <code>T(x)</code>
  3826  where <code>T</code> is a type and <code>x</code> is an expression
  3827  that can be converted to type <code>T</code>.
  3828  </p>
  3829  
  3830  <pre class="ebnf">
  3831  Conversion = Type "(" Expression [ "," ] ")" .
  3832  </pre>
  3833  
  3834  <p>
  3835  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3836  or if the type starts with the keyword <code>func</code>
  3837  and has no result list, it must be parenthesized when
  3838  necessary to avoid ambiguity:
  3839  </p>
  3840  
  3841  <pre>
  3842  *Point(p)        // same as *(Point(p))
  3843  (*Point)(p)      // p is converted to *Point
  3844  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3845  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3846  func()(x)        // function signature func() x
  3847  (func())(x)      // x is converted to func()
  3848  (func() int)(x)  // x is converted to func() int
  3849  func() int(x)    // x is converted to func() int (unambiguous)
  3850  </pre>
  3851  
  3852  <p>
  3853  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3854  type <code>T</code> in any of these cases:
  3855  </p>
  3856  
  3857  <ul>
  3858  	<li>
  3859  	<code>x</code> is representable by a value of type <code>T</code>.
  3860  	</li>
  3861  	<li>
  3862  	<code>x</code> is a floating-point constant,
  3863  	<code>T</code> is a floating-point type,
  3864  	and <code>x</code> is representable by a value
  3865  	of type <code>T</code> after rounding using
  3866  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3867  	further rounded to an unsigned <code>0.0</code>.
  3868  	The constant <code>T(x)</code> is the rounded value.
  3869  	</li>
  3870  	<li>
  3871  	<code>x</code> is an integer constant and <code>T</code> is a
  3872  	<a href="#String_types">string type</a>.
  3873  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3874  	as for non-constant <code>x</code> applies in this case.
  3875  	</li>
  3876  </ul>
  3877  
  3878  <p>
  3879  Converting a constant yields a typed constant as result.
  3880  </p>
  3881  
  3882  <pre>
  3883  uint(iota)               // iota value of type uint
  3884  float32(2.718281828)     // 2.718281828 of type float32
  3885  complex128(1)            // 1.0 + 0.0i of type complex128
  3886  float32(0.49999999)      // 0.5 of type float32
  3887  float64(-1e-1000)        // 0.0 of type float64
  3888  string('x')              // "x" of type string
  3889  string(0x266c)           // "♬" of type string
  3890  MyString("foo" + "bar")  // "foobar" of type MyString
  3891  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3892  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3893  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3894  string(65.0)             // illegal: 65.0 is not an integer constant
  3895  </pre>
  3896  
  3897  <p>
  3898  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3899  in any of these cases:
  3900  </p>
  3901  
  3902  <ul>
  3903  	<li>
  3904  	<code>x</code> is <a href="#Assignability">assignable</a>
  3905  	to <code>T</code>.
  3906  	</li>
  3907  	<li>
  3908  	ignoring struct tags (see below),
  3909  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3910  	<a href="#Types">underlying types</a>.
  3911  	</li>
  3912  	<li>
  3913  	ignoring struct tags (see below),
  3914  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3915  	and their pointer base types have identical underlying types.
  3916  	</li>
  3917  	<li>
  3918  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3919  	point types.
  3920  	</li>
  3921  	<li>
  3922  	<code>x</code>'s type and <code>T</code> are both complex types.
  3923  	</li>
  3924  	<li>
  3925  	<code>x</code> is an integer or a slice of bytes or runes
  3926  	and <code>T</code> is a string type.
  3927  	</li>
  3928  	<li>
  3929  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3930  	</li>
  3931  </ul>
  3932  
  3933  <p>
  3934  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3935  for identity for the purpose of conversion:
  3936  </p>
  3937  
  3938  <pre>
  3939  type Person struct {
  3940  	Name    string
  3941  	Address *struct {
  3942  		Street string
  3943  		City   string
  3944  	}
  3945  }
  3946  
  3947  var data *struct {
  3948  	Name    string `json:"name"`
  3949  	Address *struct {
  3950  		Street string `json:"street"`
  3951  		City   string `json:"city"`
  3952  	} `json:"address"`
  3953  }
  3954  
  3955  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3956  </pre>
  3957  
  3958  <p>
  3959  Specific rules apply to (non-constant) conversions between numeric types or
  3960  to and from a string type.
  3961  These conversions may change the representation of <code>x</code>
  3962  and incur a run-time cost.
  3963  All other conversions only change the type but not the representation
  3964  of <code>x</code>.
  3965  </p>
  3966  
  3967  <p>
  3968  There is no linguistic mechanism to convert between pointers and integers.
  3969  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3970  implements this functionality under
  3971  restricted circumstances.
  3972  </p>
  3973  
  3974  <h4>Conversions between numeric types</h4>
  3975  
  3976  <p>
  3977  For the conversion of non-constant numeric values, the following rules apply:
  3978  </p>
  3979  
  3980  <ol>
  3981  <li>
  3982  When converting between integer types, if the value is a signed integer, it is
  3983  sign extended to implicit infinite precision; otherwise it is zero extended.
  3984  It is then truncated to fit in the result type's size.
  3985  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3986  The conversion always yields a valid value; there is no indication of overflow.
  3987  </li>
  3988  <li>
  3989  When converting a floating-point number to an integer, the fraction is discarded
  3990  (truncation towards zero).
  3991  </li>
  3992  <li>
  3993  When converting an integer or floating-point number to a floating-point type,
  3994  or a complex number to another complex type, the result value is rounded
  3995  to the precision specified by the destination type.
  3996  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3997  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3998  but float32(x) represents the result of rounding <code>x</code>'s value to
  3999  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  4000  of precision, but <code>float32(x + 0.1)</code> does not.
  4001  </li>
  4002  </ol>
  4003  
  4004  <p>
  4005  In all non-constant conversions involving floating-point or complex values,
  4006  if the result type cannot represent the value the conversion
  4007  succeeds but the result value is implementation-dependent.
  4008  </p>
  4009  
  4010  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4011  
  4012  <ol>
  4013  <li>
  4014  Converting a signed or unsigned integer value to a string type yields a
  4015  string containing the UTF-8 representation of the integer. Values outside
  4016  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4017  
  4018  <pre>
  4019  string('a')       // "a"
  4020  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4021  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4022  type MyString string
  4023  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4024  </pre>
  4025  </li>
  4026  
  4027  <li>
  4028  Converting a slice of bytes to a string type yields
  4029  a string whose successive bytes are the elements of the slice.
  4030  
  4031  <pre>
  4032  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4033  string([]byte{})                                     // ""
  4034  string([]byte(nil))                                  // ""
  4035  
  4036  type MyBytes []byte
  4037  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4038  </pre>
  4039  </li>
  4040  
  4041  <li>
  4042  Converting a slice of runes to a string type yields
  4043  a string that is the concatenation of the individual rune values
  4044  converted to strings.
  4045  
  4046  <pre>
  4047  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4048  string([]rune{})                         // ""
  4049  string([]rune(nil))                      // ""
  4050  
  4051  type MyRunes []rune
  4052  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4053  </pre>
  4054  </li>
  4055  
  4056  <li>
  4057  Converting a value of a string type to a slice of bytes type
  4058  yields a slice whose successive elements are the bytes of the string.
  4059  
  4060  <pre>
  4061  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4062  []byte("")        // []byte{}
  4063  
  4064  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4065  </pre>
  4066  </li>
  4067  
  4068  <li>
  4069  Converting a value of a string type to a slice of runes type
  4070  yields a slice containing the individual Unicode code points of the string.
  4071  
  4072  <pre>
  4073  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4074  []rune("")                 // []rune{}
  4075  
  4076  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4077  </pre>
  4078  </li>
  4079  </ol>
  4080  
  4081  
  4082  <h3 id="Constant_expressions">Constant expressions</h3>
  4083  
  4084  <p>
  4085  Constant expressions may contain only <a href="#Constants">constant</a>
  4086  operands and are evaluated at compile time.
  4087  </p>
  4088  
  4089  <p>
  4090  Untyped boolean, numeric, and string constants may be used as operands
  4091  wherever it is legal to use an operand of boolean, numeric, or string type,
  4092  respectively.
  4093  Except for shift operations, if the operands of a binary operation are
  4094  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4095  the kind that appears later in this list: integer, rune, floating-point, complex.
  4096  For example, an untyped integer constant divided by an
  4097  untyped complex constant yields an untyped complex constant.
  4098  </p>
  4099  
  4100  <p>
  4101  A constant <a href="#Comparison_operators">comparison</a> always yields
  4102  an untyped boolean constant.  If the left operand of a constant
  4103  <a href="#Operators">shift expression</a> is an untyped constant, the
  4104  result is an integer constant; otherwise it is a constant of the same
  4105  type as the left operand, which must be of
  4106  <a href="#Numeric_types">integer type</a>.
  4107  Applying all other operators to untyped constants results in an untyped
  4108  constant of the same kind (that is, a boolean, integer, floating-point,
  4109  complex, or string constant).
  4110  </p>
  4111  
  4112  <pre>
  4113  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4114  const b = 15 / 4           // b == 3     (untyped integer constant)
  4115  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4116  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4117  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4118  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4119  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4120  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4121  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4122  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4123  const j = true             // j == true  (untyped boolean constant)
  4124  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4125  const l = "hi"             // l == "hi"  (untyped string constant)
  4126  const m = string(k)        // m == "x"   (type string)
  4127  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4128  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4129  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4130  </pre>
  4131  
  4132  <p>
  4133  Applying the built-in function <code>complex</code> to untyped
  4134  integer, rune, or floating-point constants yields
  4135  an untyped complex constant.
  4136  </p>
  4137  
  4138  <pre>
  4139  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4140  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4141  </pre>
  4142  
  4143  <p>
  4144  Constant expressions are always evaluated exactly; intermediate values and the
  4145  constants themselves may require precision significantly larger than supported
  4146  by any predeclared type in the language. The following are legal declarations:
  4147  </p>
  4148  
  4149  <pre>
  4150  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4151  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4152  </pre>
  4153  
  4154  <p>
  4155  The divisor of a constant division or remainder operation must not be zero:
  4156  </p>
  4157  
  4158  <pre>
  4159  3.14 / 0.0   // illegal: division by zero
  4160  </pre>
  4161  
  4162  <p>
  4163  The values of <i>typed</i> constants must always be accurately representable as values
  4164  of the constant type. The following constant expressions are illegal:
  4165  </p>
  4166  
  4167  <pre>
  4168  uint(-1)     // -1 cannot be represented as a uint
  4169  int(3.14)    // 3.14 cannot be represented as an int
  4170  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4171  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4172  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4173  </pre>
  4174  
  4175  <p>
  4176  The mask used by the unary bitwise complement operator <code>^</code> matches
  4177  the rule for non-constants: the mask is all 1s for unsigned constants
  4178  and -1 for signed and untyped constants.
  4179  </p>
  4180  
  4181  <pre>
  4182  ^1         // untyped integer constant, equal to -2
  4183  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4184  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4185  int8(^1)   // same as int8(-2)
  4186  ^int8(1)   // same as -1 ^ int8(1) = -2
  4187  </pre>
  4188  
  4189  <p>
  4190  Implementation restriction: A compiler may use rounding while
  4191  computing untyped floating-point or complex constant expressions; see
  4192  the implementation restriction in the section
  4193  on <a href="#Constants">constants</a>.  This rounding may cause a
  4194  floating-point constant expression to be invalid in an integer
  4195  context, even if it would be integral when calculated using infinite
  4196  precision, and vice versa.
  4197  </p>
  4198  
  4199  
  4200  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4201  
  4202  <p>
  4203  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4204  determine the evaluation order of individual initialization expressions in
  4205  <a href="#Variable_declarations">variable declarations</a>.
  4206  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4207  expression, assignment, or
  4208  <a href="#Return_statements">return statement</a>,
  4209  all function calls, method calls, and
  4210  communication operations are evaluated in lexical left-to-right
  4211  order.
  4212  </p>
  4213  
  4214  <p>
  4215  For example, in the (function-local) assignment
  4216  </p>
  4217  <pre>
  4218  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4219  </pre>
  4220  <p>
  4221  the function calls and communication happen in the order
  4222  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4223  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4224  However, the order of those events compared to the evaluation
  4225  and indexing of <code>x</code> and the evaluation
  4226  of <code>y</code> is not specified.
  4227  </p>
  4228  
  4229  <pre>
  4230  a := 1
  4231  f := func() int { a++; return a }
  4232  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4233  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4234  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4235  </pre>
  4236  
  4237  <p>
  4238  At package level, initialization dependencies override the left-to-right rule
  4239  for individual initialization expressions, but not for operands within each
  4240  expression:
  4241  </p>
  4242  
  4243  <pre>
  4244  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4245  
  4246  func f() int        { return c }
  4247  func g() int        { return a }
  4248  func sqr(x int) int { return x*x }
  4249  
  4250  // functions u and v are independent of all other variables and functions
  4251  </pre>
  4252  
  4253  <p>
  4254  The function calls happen in the order
  4255  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4256  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4257  </p>
  4258  
  4259  <p>
  4260  Floating-point operations within a single expression are evaluated according to
  4261  the associativity of the operators.  Explicit parentheses affect the evaluation
  4262  by overriding the default associativity.
  4263  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4264  is performed before adding <code>x</code>.
  4265  </p>
  4266  
  4267  <h2 id="Statements">Statements</h2>
  4268  
  4269  <p>
  4270  Statements control execution.
  4271  </p>
  4272  
  4273  <pre class="ebnf">
  4274  Statement =
  4275  	Declaration | LabeledStmt | SimpleStmt |
  4276  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4277  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4278  	DeferStmt .
  4279  
  4280  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4281  </pre>
  4282  
  4283  <h3 id="Terminating_statements">Terminating statements</h3>
  4284  
  4285  <p>
  4286  A terminating statement is one of the following:
  4287  </p>
  4288  
  4289  <ol>
  4290  <li>
  4291  	A <a href="#Return_statements">"return"</a> or
  4292      	<a href="#Goto_statements">"goto"</a> statement.
  4293  	<!-- ul below only for regular layout -->
  4294  	<ul> </ul>
  4295  </li>
  4296  
  4297  <li>
  4298  	A call to the built-in function
  4299  	<a href="#Handling_panics"><code>panic</code></a>.
  4300  	<!-- ul below only for regular layout -->
  4301  	<ul> </ul>
  4302  </li>
  4303  
  4304  <li>
  4305  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4306  	<!-- ul below only for regular layout -->
  4307  	<ul> </ul>
  4308  </li>
  4309  
  4310  <li>
  4311  	An <a href="#If_statements">"if" statement</a> in which:
  4312  	<ul>
  4313  	<li>the "else" branch is present, and</li>
  4314  	<li>both branches are terminating statements.</li>
  4315  	</ul>
  4316  </li>
  4317  
  4318  <li>
  4319  	A <a href="#For_statements">"for" statement</a> in which:
  4320  	<ul>
  4321  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4322  	<li>the loop condition is absent.</li>
  4323  	</ul>
  4324  </li>
  4325  
  4326  <li>
  4327  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4328  	<ul>
  4329  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4330  	<li>there is a default case, and</li>
  4331  	<li>the statement lists in each case, including the default, end in a terminating
  4332  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4333  	    statement</a>.</li>
  4334  	</ul>
  4335  </li>
  4336  
  4337  <li>
  4338  	A <a href="#Select_statements">"select" statement</a> in which:
  4339  	<ul>
  4340  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4341  	<li>the statement lists in each case, including the default if present,
  4342  	    end in a terminating statement.</li>
  4343  	</ul>
  4344  </li>
  4345  
  4346  <li>
  4347  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4348  	a terminating statement.
  4349  </li>
  4350  </ol>
  4351  
  4352  <p>
  4353  All other statements are not terminating.
  4354  </p>
  4355  
  4356  <p>
  4357  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4358  is not empty and its final non-empty statement is terminating.
  4359  </p>
  4360  
  4361  
  4362  <h3 id="Empty_statements">Empty statements</h3>
  4363  
  4364  <p>
  4365  The empty statement does nothing.
  4366  </p>
  4367  
  4368  <pre class="ebnf">
  4369  EmptyStmt = .
  4370  </pre>
  4371  
  4372  
  4373  <h3 id="Labeled_statements">Labeled statements</h3>
  4374  
  4375  <p>
  4376  A labeled statement may be the target of a <code>goto</code>,
  4377  <code>break</code> or <code>continue</code> statement.
  4378  </p>
  4379  
  4380  <pre class="ebnf">
  4381  LabeledStmt = Label ":" Statement .
  4382  Label       = identifier .
  4383  </pre>
  4384  
  4385  <pre>
  4386  Error: log.Panic("error encountered")
  4387  </pre>
  4388  
  4389  
  4390  <h3 id="Expression_statements">Expression statements</h3>
  4391  
  4392  <p>
  4393  With the exception of specific built-in functions,
  4394  function and method <a href="#Calls">calls</a> and
  4395  <a href="#Receive_operator">receive operations</a>
  4396  can appear in statement context. Such statements may be parenthesized.
  4397  </p>
  4398  
  4399  <pre class="ebnf">
  4400  ExpressionStmt = Expression .
  4401  </pre>
  4402  
  4403  <p>
  4404  The following built-in functions are not permitted in statement context:
  4405  </p>
  4406  
  4407  <pre>
  4408  append cap complex imag len make new real
  4409  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4410  </pre>
  4411  
  4412  <pre>
  4413  h(x+y)
  4414  f.Close()
  4415  &lt;-ch
  4416  (&lt;-ch)
  4417  len("foo")  // illegal if len is the built-in function
  4418  </pre>
  4419  
  4420  
  4421  <h3 id="Send_statements">Send statements</h3>
  4422  
  4423  <p>
  4424  A send statement sends a value on a channel.
  4425  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4426  the channel direction must permit send operations,
  4427  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4428  to the channel's element type.
  4429  </p>
  4430  
  4431  <pre class="ebnf">
  4432  SendStmt = Channel "&lt;-" Expression .
  4433  Channel  = Expression .
  4434  </pre>
  4435  
  4436  <p>
  4437  Both the channel and the value expression are evaluated before communication
  4438  begins. Communication blocks until the send can proceed.
  4439  A send on an unbuffered channel can proceed if a receiver is ready.
  4440  A send on a buffered channel can proceed if there is room in the buffer.
  4441  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4442  A send on a <code>nil</code> channel blocks forever.
  4443  </p>
  4444  
  4445  <pre>
  4446  ch &lt;- 3  // send value 3 to channel ch
  4447  </pre>
  4448  
  4449  
  4450  <h3 id="IncDec_statements">IncDec statements</h3>
  4451  
  4452  <p>
  4453  The "++" and "--" statements increment or decrement their operands
  4454  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4455  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4456  or a map index expression.
  4457  </p>
  4458  
  4459  <pre class="ebnf">
  4460  IncDecStmt = Expression ( "++" | "--" ) .
  4461  </pre>
  4462  
  4463  <p>
  4464  The following <a href="#Assignments">assignment statements</a> are semantically
  4465  equivalent:
  4466  </p>
  4467  
  4468  <pre class="grammar">
  4469  IncDec statement    Assignment
  4470  x++                 x += 1
  4471  x--                 x -= 1
  4472  </pre>
  4473  
  4474  
  4475  <h3 id="Assignments">Assignments</h3>
  4476  
  4477  <pre class="ebnf">
  4478  Assignment = ExpressionList assign_op ExpressionList .
  4479  
  4480  assign_op = [ add_op | mul_op ] "=" .
  4481  </pre>
  4482  
  4483  <p>
  4484  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4485  a map index expression, or (for <code>=</code> assignments only) the
  4486  <a href="#Blank_identifier">blank identifier</a>.
  4487  Operands may be parenthesized.
  4488  </p>
  4489  
  4490  <pre>
  4491  x = 1
  4492  *p = f()
  4493  a[i] = 23
  4494  (k) = &lt;-ch  // same as: k = &lt;-ch
  4495  </pre>
  4496  
  4497  <p>
  4498  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4499  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4500  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4501  <code>(y)</code> but evaluates <code>x</code>
  4502  only once.  The <i>op</i><code>=</code> construct is a single token.
  4503  In assignment operations, both the left- and right-hand expression lists
  4504  must contain exactly one single-valued expression, and the left-hand
  4505  expression must not be the blank identifier.
  4506  </p>
  4507  
  4508  <pre>
  4509  a[i] &lt;&lt;= 2
  4510  i &amp;^= 1&lt;&lt;n
  4511  </pre>
  4512  
  4513  <p>
  4514  A tuple assignment assigns the individual elements of a multi-valued
  4515  operation to a list of variables.  There are two forms.  In the
  4516  first, the right hand operand is a single multi-valued expression
  4517  such as a function call, a <a href="#Channel_types">channel</a> or
  4518  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4519  The number of operands on the left
  4520  hand side must match the number of values.  For instance, if
  4521  <code>f</code> is a function returning two values,
  4522  </p>
  4523  
  4524  <pre>
  4525  x, y = f()
  4526  </pre>
  4527  
  4528  <p>
  4529  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4530  In the second form, the number of operands on the left must equal the number
  4531  of expressions on the right, each of which must be single-valued, and the
  4532  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4533  operand on the left:
  4534  </p>
  4535  
  4536  <pre>
  4537  one, two, three = '一', '二', '三'
  4538  </pre>
  4539  
  4540  <p>
  4541  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4542  ignore right-hand side values in an assignment:
  4543  </p>
  4544  
  4545  <pre>
  4546  _ = x       // evaluate x but ignore it
  4547  x, _ = f()  // evaluate f() but ignore second result value
  4548  </pre>
  4549  
  4550  <p>
  4551  The assignment proceeds in two phases.
  4552  First, the operands of <a href="#Index_expressions">index expressions</a>
  4553  and <a href="#Address_operators">pointer indirections</a>
  4554  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4555  on the left and the expressions on the right are all
  4556  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4557  Second, the assignments are carried out in left-to-right order.
  4558  </p>
  4559  
  4560  <pre>
  4561  a, b = b, a  // exchange a and b
  4562  
  4563  x := []int{1, 2, 3}
  4564  i := 0
  4565  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4566  
  4567  i = 0
  4568  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4569  
  4570  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4571  
  4572  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4573  
  4574  type Point struct { x, y int }
  4575  var p *Point
  4576  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4577  
  4578  i = 2
  4579  x = []int{3, 5, 7}
  4580  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4581  	break
  4582  }
  4583  // after this loop, i == 0 and x == []int{3, 5, 3}
  4584  </pre>
  4585  
  4586  <p>
  4587  In assignments, each value must be <a href="#Assignability">assignable</a>
  4588  to the type of the operand to which it is assigned, with the following special cases:
  4589  </p>
  4590  
  4591  <ol>
  4592  <li>
  4593  	Any typed value may be assigned to the blank identifier.
  4594  </li>
  4595  
  4596  <li>
  4597  	If an untyped constant
  4598  	is assigned to a variable of interface type or the blank identifier,
  4599  	the constant is first <a href="#Conversions">converted</a> to its
  4600  	 <a href="#Constants">default type</a>.
  4601  </li>
  4602  
  4603  <li>
  4604  	If an untyped boolean value is assigned to a variable of interface type or
  4605  	the blank identifier, it is first converted to type <code>bool</code>.
  4606  </li>
  4607  </ol>
  4608  
  4609  <h3 id="If_statements">If statements</h3>
  4610  
  4611  <p>
  4612  "If" statements specify the conditional execution of two branches
  4613  according to the value of a boolean expression.  If the expression
  4614  evaluates to true, the "if" branch is executed, otherwise, if
  4615  present, the "else" branch is executed.
  4616  </p>
  4617  
  4618  <pre class="ebnf">
  4619  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4620  </pre>
  4621  
  4622  <pre>
  4623  if x &gt; max {
  4624  	x = max
  4625  }
  4626  </pre>
  4627  
  4628  <p>
  4629  The expression may be preceded by a simple statement, which
  4630  executes before the expression is evaluated.
  4631  </p>
  4632  
  4633  <pre>
  4634  if x := f(); x &lt; y {
  4635  	return x
  4636  } else if x &gt; z {
  4637  	return z
  4638  } else {
  4639  	return y
  4640  }
  4641  </pre>
  4642  
  4643  
  4644  <h3 id="Switch_statements">Switch statements</h3>
  4645  
  4646  <p>
  4647  "Switch" statements provide multi-way execution.
  4648  An expression or type specifier is compared to the "cases"
  4649  inside the "switch" to determine which branch
  4650  to execute.
  4651  </p>
  4652  
  4653  <pre class="ebnf">
  4654  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4655  </pre>
  4656  
  4657  <p>
  4658  There are two forms: expression switches and type switches.
  4659  In an expression switch, the cases contain expressions that are compared
  4660  against the value of the switch expression.
  4661  In a type switch, the cases contain types that are compared against the
  4662  type of a specially annotated switch expression.
  4663  The switch expression is evaluated exactly once in a switch statement.
  4664  </p>
  4665  
  4666  <h4 id="Expression_switches">Expression switches</h4>
  4667  
  4668  <p>
  4669  In an expression switch,
  4670  the switch expression is evaluated and
  4671  the case expressions, which need not be constants,
  4672  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4673  switch expression
  4674  triggers execution of the statements of the associated case;
  4675  the other cases are skipped.
  4676  If no case matches and there is a "default" case,
  4677  its statements are executed.
  4678  There can be at most one default case and it may appear anywhere in the
  4679  "switch" statement.
  4680  A missing switch expression is equivalent to the boolean value
  4681  <code>true</code>.
  4682  </p>
  4683  
  4684  <pre class="ebnf">
  4685  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4686  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4687  ExprSwitchCase = "case" ExpressionList | "default" .
  4688  </pre>
  4689  
  4690  <p>
  4691  If the switch expression evaluates to an untyped constant, it is first
  4692  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4693  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4694  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4695  </p>
  4696  
  4697  <p>
  4698  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4699  to the type of the switch expression.
  4700  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4701  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4702  </p>
  4703  
  4704  <p>
  4705  In other words, the switch expression is treated as if it were used to declare and
  4706  initialize a temporary variable <code>t</code> without explicit type; it is that
  4707  value of <code>t</code> against which each case expression <code>x</code> is tested
  4708  for equality.
  4709  </p>
  4710  
  4711  <p>
  4712  In a case or default clause, the last non-empty statement
  4713  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4714  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4715  indicate that control should flow from the end of this clause to
  4716  the first statement of the next clause.
  4717  Otherwise control flows to the end of the "switch" statement.
  4718  A "fallthrough" statement may appear as the last statement of all
  4719  but the last clause of an expression switch.
  4720  </p>
  4721  
  4722  <p>
  4723  The switch expression may be preceded by a simple statement, which
  4724  executes before the expression is evaluated.
  4725  </p>
  4726  
  4727  <pre>
  4728  switch tag {
  4729  default: s3()
  4730  case 0, 1, 2, 3: s1()
  4731  case 4, 5, 6, 7: s2()
  4732  }
  4733  
  4734  switch x := f(); {  // missing switch expression means "true"
  4735  case x &lt; 0: return -x
  4736  default: return x
  4737  }
  4738  
  4739  switch {
  4740  case x &lt; y: f1()
  4741  case x &lt; z: f2()
  4742  case x == 4: f3()
  4743  }
  4744  </pre>
  4745  
  4746  <p>
  4747  Implementation restriction: A compiler may disallow multiple case
  4748  expressions evaluating to the same constant.
  4749  For instance, the current compilers disallow duplicate integer,
  4750  floating point, or string constants in case expressions.
  4751  </p>
  4752  
  4753  <h4 id="Type_switches">Type switches</h4>
  4754  
  4755  <p>
  4756  A type switch compares types rather than values. It is otherwise similar
  4757  to an expression switch. It is marked by a special switch expression that
  4758  has the form of a <a href="#Type_assertions">type assertion</a>
  4759  using the reserved word <code>type</code> rather than an actual type:
  4760  </p>
  4761  
  4762  <pre>
  4763  switch x.(type) {
  4764  // cases
  4765  }
  4766  </pre>
  4767  
  4768  <p>
  4769  Cases then match actual types <code>T</code> against the dynamic type of the
  4770  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4771  <a href="#Interface_types">interface type</a>, and each non-interface type
  4772  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4773  The types listed in the cases of a type switch must all be
  4774  <a href="#Type_identity">different</a>.
  4775  </p>
  4776  
  4777  <pre class="ebnf">
  4778  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4779  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4780  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4781  TypeSwitchCase  = "case" TypeList | "default" .
  4782  TypeList        = Type { "," Type } .
  4783  </pre>
  4784  
  4785  <p>
  4786  The TypeSwitchGuard may include a
  4787  <a href="#Short_variable_declarations">short variable declaration</a>.
  4788  When that form is used, the variable is declared at the end of the
  4789  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4790  In clauses with a case listing exactly one type, the variable
  4791  has that type; otherwise, the variable has the type of the expression
  4792  in the TypeSwitchGuard.
  4793  </p>
  4794  
  4795  <p>
  4796  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4797  that case is used when the expression in the TypeSwitchGuard
  4798  is a <code>nil</code> interface value.
  4799  There may be at most one <code>nil</code> case.
  4800  </p>
  4801  
  4802  <p>
  4803  Given an expression <code>x</code> of type <code>interface{}</code>,
  4804  the following type switch:
  4805  </p>
  4806  
  4807  <pre>
  4808  switch i := x.(type) {
  4809  case nil:
  4810  	printString("x is nil")                // type of i is type of x (interface{})
  4811  case int:
  4812  	printInt(i)                            // type of i is int
  4813  case float64:
  4814  	printFloat64(i)                        // type of i is float64
  4815  case func(int) float64:
  4816  	printFunction(i)                       // type of i is func(int) float64
  4817  case bool, string:
  4818  	printString("type is bool or string")  // type of i is type of x (interface{})
  4819  default:
  4820  	printString("don't know the type")     // type of i is type of x (interface{})
  4821  }
  4822  </pre>
  4823  
  4824  <p>
  4825  could be rewritten:
  4826  </p>
  4827  
  4828  <pre>
  4829  v := x  // x is evaluated exactly once
  4830  if v == nil {
  4831  	i := v                                 // type of i is type of x (interface{})
  4832  	printString("x is nil")
  4833  } else if i, isInt := v.(int); isInt {
  4834  	printInt(i)                            // type of i is int
  4835  } else if i, isFloat64 := v.(float64); isFloat64 {
  4836  	printFloat64(i)                        // type of i is float64
  4837  } else if i, isFunc := v.(func(int) float64); isFunc {
  4838  	printFunction(i)                       // type of i is func(int) float64
  4839  } else {
  4840  	_, isBool := v.(bool)
  4841  	_, isString := v.(string)
  4842  	if isBool || isString {
  4843  		i := v                         // type of i is type of x (interface{})
  4844  		printString("type is bool or string")
  4845  	} else {
  4846  		i := v                         // type of i is type of x (interface{})
  4847  		printString("don't know the type")
  4848  	}
  4849  }
  4850  </pre>
  4851  
  4852  <p>
  4853  The type switch guard may be preceded by a simple statement, which
  4854  executes before the guard is evaluated.
  4855  </p>
  4856  
  4857  <p>
  4858  The "fallthrough" statement is not permitted in a type switch.
  4859  </p>
  4860  
  4861  <h3 id="For_statements">For statements</h3>
  4862  
  4863  <p>
  4864  A "for" statement specifies repeated execution of a block. The iteration is
  4865  controlled by a condition, a "for" clause, or a "range" clause.
  4866  </p>
  4867  
  4868  <pre class="ebnf">
  4869  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4870  Condition = Expression .
  4871  </pre>
  4872  
  4873  <p>
  4874  In its simplest form, a "for" statement specifies the repeated execution of
  4875  a block as long as a boolean condition evaluates to true.
  4876  The condition is evaluated before each iteration.
  4877  If the condition is absent, it is equivalent to the boolean value
  4878  <code>true</code>.
  4879  </p>
  4880  
  4881  <pre>
  4882  for a &lt; b {
  4883  	a *= 2
  4884  }
  4885  </pre>
  4886  
  4887  <p>
  4888  A "for" statement with a ForClause is also controlled by its condition, but
  4889  additionally it may specify an <i>init</i>
  4890  and a <i>post</i> statement, such as an assignment,
  4891  an increment or decrement statement. The init statement may be a
  4892  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4893  Variables declared by the init statement are re-used in each iteration.
  4894  </p>
  4895  
  4896  <pre class="ebnf">
  4897  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4898  InitStmt = SimpleStmt .
  4899  PostStmt = SimpleStmt .
  4900  </pre>
  4901  
  4902  <pre>
  4903  for i := 0; i &lt; 10; i++ {
  4904  	f(i)
  4905  }
  4906  </pre>
  4907  
  4908  <p>
  4909  If non-empty, the init statement is executed once before evaluating the
  4910  condition for the first iteration;
  4911  the post statement is executed after each execution of the block (and
  4912  only if the block was executed).
  4913  Any element of the ForClause may be empty but the
  4914  <a href="#Semicolons">semicolons</a> are
  4915  required unless there is only a condition.
  4916  If the condition is absent, it is equivalent to the boolean value
  4917  <code>true</code>.
  4918  </p>
  4919  
  4920  <pre>
  4921  for cond { S() }    is the same as    for ; cond ; { S() }
  4922  for      { S() }    is the same as    for true     { S() }
  4923  </pre>
  4924  
  4925  <p>
  4926  A "for" statement with a "range" clause
  4927  iterates through all entries of an array, slice, string or map,
  4928  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4929  to corresponding <i>iteration variables</i> if present and then executes the block.
  4930  </p>
  4931  
  4932  <pre class="ebnf">
  4933  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4934  </pre>
  4935  
  4936  <p>
  4937  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4938  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4939  <a href="#Receive_operator">receive operations</a>.
  4940  As with an assignment, if present the operands on the left must be
  4941  <a href="#Address_operators">addressable</a> or map index expressions; they
  4942  denote the iteration variables. If the range expression is a channel, at most
  4943  one iteration variable is permitted, otherwise there may be up to two.
  4944  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4945  the range clause is equivalent to the same clause without that identifier.
  4946  </p>
  4947  
  4948  <p>
  4949  The range expression is evaluated once before beginning the loop,
  4950  with one exception: if the range expression is an array or a pointer to an array
  4951  and at most one iteration variable is present, only the range expression's
  4952  length is evaluated; if that length is constant,
  4953  <a href="#Length_and_capacity">by definition</a>
  4954  the range expression itself will not be evaluated.
  4955  </p>
  4956  
  4957  <p>
  4958  Function calls on the left are evaluated once per iteration.
  4959  For each iteration, iteration values are produced as follows
  4960  if the respective iteration variables are present:
  4961  </p>
  4962  
  4963  <pre class="grammar">
  4964  Range expression                          1st value          2nd value
  4965  
  4966  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4967  string          s  string type            index    i  int    see below  rune
  4968  map             m  map[K]V                key      k  K      m[k]       V
  4969  channel         c  chan E, &lt;-chan E       element  e  E
  4970  </pre>
  4971  
  4972  <ol>
  4973  <li>
  4974  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4975  values are produced in increasing order, starting at element index 0.
  4976  If at most one iteration variable is present, the range loop produces
  4977  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4978  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4979  </li>
  4980  
  4981  <li>
  4982  For a string value, the "range" clause iterates over the Unicode code points
  4983  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4984  index of the first byte of successive UTF-8-encoded code points in the string,
  4985  and the second value, of type <code>rune</code>, will be the value of
  4986  the corresponding code point.  If the iteration encounters an invalid
  4987  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4988  the Unicode replacement character, and the next iteration will advance
  4989  a single byte in the string.
  4990  </li>
  4991  
  4992  <li>
  4993  The iteration order over maps is not specified
  4994  and is not guaranteed to be the same from one iteration to the next.
  4995  If map entries that have not yet been reached are removed during iteration,
  4996  the corresponding iteration values will not be produced. If map entries are
  4997  created during iteration, that entry may be produced during the iteration or
  4998  may be skipped. The choice may vary for each entry created and from one
  4999  iteration to the next.
  5000  If the map is <code>nil</code>, the number of iterations is 0.
  5001  </li>
  5002  
  5003  <li>
  5004  For channels, the iteration values produced are the successive values sent on
  5005  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5006  is <code>nil</code>, the range expression blocks forever.
  5007  </li>
  5008  </ol>
  5009  
  5010  <p>
  5011  The iteration values are assigned to the respective
  5012  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5013  </p>
  5014  
  5015  <p>
  5016  The iteration variables may be declared by the "range" clause using a form of
  5017  <a href="#Short_variable_declarations">short variable declaration</a>
  5018  (<code>:=</code>).
  5019  In this case their types are set to the types of the respective iteration values
  5020  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5021  statement; they are re-used in each iteration.
  5022  If the iteration variables are declared outside the "for" statement,
  5023  after execution their values will be those of the last iteration.
  5024  </p>
  5025  
  5026  <pre>
  5027  var testdata *struct {
  5028  	a *[7]int
  5029  }
  5030  for i, _ := range testdata.a {
  5031  	// testdata.a is never evaluated; len(testdata.a) is constant
  5032  	// i ranges from 0 to 6
  5033  	f(i)
  5034  }
  5035  
  5036  var a [10]string
  5037  for i, s := range a {
  5038  	// type of i is int
  5039  	// type of s is string
  5040  	// s == a[i]
  5041  	g(i, s)
  5042  }
  5043  
  5044  var key string
  5045  var val interface {}  // value type of m is assignable to val
  5046  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5047  for key, val = range m {
  5048  	h(key, val)
  5049  }
  5050  // key == last map key encountered in iteration
  5051  // val == map[key]
  5052  
  5053  var ch chan Work = producer()
  5054  for w := range ch {
  5055  	doWork(w)
  5056  }
  5057  
  5058  // empty a channel
  5059  for range ch {}
  5060  </pre>
  5061  
  5062  
  5063  <h3 id="Go_statements">Go statements</h3>
  5064  
  5065  <p>
  5066  A "go" statement starts the execution of a function call
  5067  as an independent concurrent thread of control, or <i>goroutine</i>,
  5068  within the same address space.
  5069  </p>
  5070  
  5071  <pre class="ebnf">
  5072  GoStmt = "go" Expression .
  5073  </pre>
  5074  
  5075  <p>
  5076  The expression must be a function or method call; it cannot be parenthesized.
  5077  Calls of built-in functions are restricted as for
  5078  <a href="#Expression_statements">expression statements</a>.
  5079  </p>
  5080  
  5081  <p>
  5082  The function value and parameters are
  5083  <a href="#Calls">evaluated as usual</a>
  5084  in the calling goroutine, but
  5085  unlike with a regular call, program execution does not wait
  5086  for the invoked function to complete.
  5087  Instead, the function begins executing independently
  5088  in a new goroutine.
  5089  When the function terminates, its goroutine also terminates.
  5090  If the function has any return values, they are discarded when the
  5091  function completes.
  5092  </p>
  5093  
  5094  <pre>
  5095  go Server()
  5096  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  5097  </pre>
  5098  
  5099  
  5100  <h3 id="Select_statements">Select statements</h3>
  5101  
  5102  <p>
  5103  A "select" statement chooses which of a set of possible
  5104  <a href="#Send_statements">send</a> or
  5105  <a href="#Receive_operator">receive</a>
  5106  operations will proceed.
  5107  It looks similar to a
  5108  <a href="#Switch_statements">"switch"</a> statement but with the
  5109  cases all referring to communication operations.
  5110  </p>
  5111  
  5112  <pre class="ebnf">
  5113  SelectStmt = "select" "{" { CommClause } "}" .
  5114  CommClause = CommCase ":" StatementList .
  5115  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5116  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5117  RecvExpr   = Expression .
  5118  </pre>
  5119  
  5120  <p>
  5121  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5122  two variables, which may be declared using a
  5123  <a href="#Short_variable_declarations">short variable declaration</a>.
  5124  The RecvExpr must be a (possibly parenthesized) receive operation.
  5125  There can be at most one default case and it may appear anywhere
  5126  in the list of cases.
  5127  </p>
  5128  
  5129  <p>
  5130  Execution of a "select" statement proceeds in several steps:
  5131  </p>
  5132  
  5133  <ol>
  5134  <li>
  5135  For all the cases in the statement, the channel operands of receive operations
  5136  and the channel and right-hand-side expressions of send statements are
  5137  evaluated exactly once, in source order, upon entering the "select" statement.
  5138  The result is a set of channels to receive from or send to,
  5139  and the corresponding values to send.
  5140  Any side effects in that evaluation will occur irrespective of which (if any)
  5141  communication operation is selected to proceed.
  5142  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5143  or assignment are not yet evaluated.
  5144  </li>
  5145  
  5146  <li>
  5147  If one or more of the communications can proceed,
  5148  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5149  Otherwise, if there is a default case, that case is chosen.
  5150  If there is no default case, the "select" statement blocks until
  5151  at least one of the communications can proceed.
  5152  </li>
  5153  
  5154  <li>
  5155  Unless the selected case is the default case, the respective communication
  5156  operation is executed.
  5157  </li>
  5158  
  5159  <li>
  5160  If the selected case is a RecvStmt with a short variable declaration or
  5161  an assignment, the left-hand side expressions are evaluated and the
  5162  received value (or values) are assigned.
  5163  </li>
  5164  
  5165  <li>
  5166  The statement list of the selected case is executed.
  5167  </li>
  5168  </ol>
  5169  
  5170  <p>
  5171  Since communication on <code>nil</code> channels can never proceed,
  5172  a select with only <code>nil</code> channels and no default case blocks forever.
  5173  </p>
  5174  
  5175  <pre>
  5176  var a []int
  5177  var c, c1, c2, c3, c4 chan int
  5178  var i1, i2 int
  5179  select {
  5180  case i1 = &lt;-c1:
  5181  	print("received ", i1, " from c1\n")
  5182  case c2 &lt;- i2:
  5183  	print("sent ", i2, " to c2\n")
  5184  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5185  	if ok {
  5186  		print("received ", i3, " from c3\n")
  5187  	} else {
  5188  		print("c3 is closed\n")
  5189  	}
  5190  case a[f()] = &lt;-c4:
  5191  	// same as:
  5192  	// case t := &lt;-c4
  5193  	//	a[f()] = t
  5194  default:
  5195  	print("no communication\n")
  5196  }
  5197  
  5198  for {  // send random sequence of bits to c
  5199  	select {
  5200  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5201  	case c &lt;- 1:
  5202  	}
  5203  }
  5204  
  5205  select {}  // block forever
  5206  </pre>
  5207  
  5208  
  5209  <h3 id="Return_statements">Return statements</h3>
  5210  
  5211  <p>
  5212  A "return" statement in a function <code>F</code> terminates the execution
  5213  of <code>F</code>, and optionally provides one or more result values.
  5214  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5215  are executed before <code>F</code> returns to its caller.
  5216  </p>
  5217  
  5218  <pre class="ebnf">
  5219  ReturnStmt = "return" [ ExpressionList ] .
  5220  </pre>
  5221  
  5222  <p>
  5223  In a function without a result type, a "return" statement must not
  5224  specify any result values.
  5225  </p>
  5226  <pre>
  5227  func noResult() {
  5228  	return
  5229  }
  5230  </pre>
  5231  
  5232  <p>
  5233  There are three ways to return values from a function with a result
  5234  type:
  5235  </p>
  5236  
  5237  <ol>
  5238  	<li>The return value or values may be explicitly listed
  5239  		in the "return" statement. Each expression must be single-valued
  5240  		and <a href="#Assignability">assignable</a>
  5241  		to the corresponding element of the function's result type.
  5242  <pre>
  5243  func simpleF() int {
  5244  	return 2
  5245  }
  5246  
  5247  func complexF1() (re float64, im float64) {
  5248  	return -7.0, -4.0
  5249  }
  5250  </pre>
  5251  	</li>
  5252  	<li>The expression list in the "return" statement may be a single
  5253  		call to a multi-valued function. The effect is as if each value
  5254  		returned from that function were assigned to a temporary
  5255  		variable with the type of the respective value, followed by a
  5256  		"return" statement listing these variables, at which point the
  5257  		rules of the previous case apply.
  5258  <pre>
  5259  func complexF2() (re float64, im float64) {
  5260  	return complexF1()
  5261  }
  5262  </pre>
  5263  	</li>
  5264  	<li>The expression list may be empty if the function's result
  5265  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5266  		The result parameters act as ordinary local variables
  5267  		and the function may assign values to them as necessary.
  5268  		The "return" statement returns the values of these variables.
  5269  <pre>
  5270  func complexF3() (re float64, im float64) {
  5271  	re = 7.0
  5272  	im = 4.0
  5273  	return
  5274  }
  5275  
  5276  func (devnull) Write(p []byte) (n int, _ error) {
  5277  	n = len(p)
  5278  	return
  5279  }
  5280  </pre>
  5281  	</li>
  5282  </ol>
  5283  
  5284  <p>
  5285  Regardless of how they are declared, all the result values are initialized to
  5286  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5287  function. A "return" statement that specifies results sets the result parameters before
  5288  any deferred functions are executed.
  5289  </p>
  5290  
  5291  <p>
  5292  Implementation restriction: A compiler may disallow an empty expression list
  5293  in a "return" statement if a different entity (constant, type, or variable)
  5294  with the same name as a result parameter is in
  5295  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5296  </p>
  5297  
  5298  <pre>
  5299  func f(n int) (res int, err error) {
  5300  	if _, err := f(n-1); err != nil {
  5301  		return  // invalid return statement: err is shadowed
  5302  	}
  5303  	return
  5304  }
  5305  </pre>
  5306  
  5307  <h3 id="Break_statements">Break statements</h3>
  5308  
  5309  <p>
  5310  A "break" statement terminates execution of the innermost
  5311  <a href="#For_statements">"for"</a>,
  5312  <a href="#Switch_statements">"switch"</a>, or
  5313  <a href="#Select_statements">"select"</a> statement
  5314  within the same function.
  5315  </p>
  5316  
  5317  <pre class="ebnf">
  5318  BreakStmt = "break" [ Label ] .
  5319  </pre>
  5320  
  5321  <p>
  5322  If there is a label, it must be that of an enclosing
  5323  "for", "switch", or "select" statement,
  5324  and that is the one whose execution terminates.
  5325  </p>
  5326  
  5327  <pre>
  5328  OuterLoop:
  5329  	for i = 0; i &lt; n; i++ {
  5330  		for j = 0; j &lt; m; j++ {
  5331  			switch a[i][j] {
  5332  			case nil:
  5333  				state = Error
  5334  				break OuterLoop
  5335  			case item:
  5336  				state = Found
  5337  				break OuterLoop
  5338  			}
  5339  		}
  5340  	}
  5341  </pre>
  5342  
  5343  <h3 id="Continue_statements">Continue statements</h3>
  5344  
  5345  <p>
  5346  A "continue" statement begins the next iteration of the
  5347  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5348  The "for" loop must be within the same function.
  5349  </p>
  5350  
  5351  <pre class="ebnf">
  5352  ContinueStmt = "continue" [ Label ] .
  5353  </pre>
  5354  
  5355  <p>
  5356  If there is a label, it must be that of an enclosing
  5357  "for" statement, and that is the one whose execution
  5358  advances.
  5359  </p>
  5360  
  5361  <pre>
  5362  RowLoop:
  5363  	for y, row := range rows {
  5364  		for x, data := range row {
  5365  			if data == endOfRow {
  5366  				continue RowLoop
  5367  			}
  5368  			row[x] = data + bias(x, y)
  5369  		}
  5370  	}
  5371  </pre>
  5372  
  5373  <h3 id="Goto_statements">Goto statements</h3>
  5374  
  5375  <p>
  5376  A "goto" statement transfers control to the statement with the corresponding label
  5377  within the same function.
  5378  </p>
  5379  
  5380  <pre class="ebnf">
  5381  GotoStmt = "goto" Label .
  5382  </pre>
  5383  
  5384  <pre>
  5385  goto Error
  5386  </pre>
  5387  
  5388  <p>
  5389  Executing the "goto" statement must not cause any variables to come into
  5390  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5391  For instance, this example:
  5392  </p>
  5393  
  5394  <pre>
  5395  	goto L  // BAD
  5396  	v := 3
  5397  L:
  5398  </pre>
  5399  
  5400  <p>
  5401  is erroneous because the jump to label <code>L</code> skips
  5402  the creation of <code>v</code>.
  5403  </p>
  5404  
  5405  <p>
  5406  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5407  For instance, this example:
  5408  </p>
  5409  
  5410  <pre>
  5411  if n%2 == 1 {
  5412  	goto L1
  5413  }
  5414  for n &gt; 0 {
  5415  	f()
  5416  	n--
  5417  L1:
  5418  	f()
  5419  	n--
  5420  }
  5421  </pre>
  5422  
  5423  <p>
  5424  is erroneous because the label <code>L1</code> is inside
  5425  the "for" statement's block but the <code>goto</code> is not.
  5426  </p>
  5427  
  5428  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5429  
  5430  <p>
  5431  A "fallthrough" statement transfers control to the first statement of the
  5432  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5433  It may be used only as the final non-empty statement in such a clause.
  5434  </p>
  5435  
  5436  <pre class="ebnf">
  5437  FallthroughStmt = "fallthrough" .
  5438  </pre>
  5439  
  5440  
  5441  <h3 id="Defer_statements">Defer statements</h3>
  5442  
  5443  <p>
  5444  A "defer" statement invokes a function whose execution is deferred
  5445  to the moment the surrounding function returns, either because the
  5446  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5447  reached the end of its <a href="#Function_declarations">function body</a>,
  5448  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5449  </p>
  5450  
  5451  <pre class="ebnf">
  5452  DeferStmt = "defer" Expression .
  5453  </pre>
  5454  
  5455  <p>
  5456  The expression must be a function or method call; it cannot be parenthesized.
  5457  Calls of built-in functions are restricted as for
  5458  <a href="#Expression_statements">expression statements</a>.
  5459  </p>
  5460  
  5461  <p>
  5462  Each time a "defer" statement
  5463  executes, the function value and parameters to the call are
  5464  <a href="#Calls">evaluated as usual</a>
  5465  and saved anew but the actual function is not invoked.
  5466  Instead, deferred functions are invoked immediately before
  5467  the surrounding function returns, in the reverse order
  5468  they were deferred.
  5469  If a deferred function value evaluates
  5470  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5471  when the function is invoked, not when the "defer" statement is executed.
  5472  </p>
  5473  
  5474  <p>
  5475  For instance, if the deferred function is
  5476  a <a href="#Function_literals">function literal</a> and the surrounding
  5477  function has <a href="#Function_types">named result parameters</a> that
  5478  are in scope within the literal, the deferred function may access and modify
  5479  the result parameters before they are returned.
  5480  If the deferred function has any return values, they are discarded when
  5481  the function completes.
  5482  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5483  </p>
  5484  
  5485  <pre>
  5486  lock(l)
  5487  defer unlock(l)  // unlocking happens before surrounding function returns
  5488  
  5489  // prints 3 2 1 0 before surrounding function returns
  5490  for i := 0; i &lt;= 3; i++ {
  5491  	defer fmt.Print(i)
  5492  }
  5493  
  5494  // f returns 1
  5495  func f() (result int) {
  5496  	defer func() {
  5497  		result++
  5498  	}()
  5499  	return 0
  5500  }
  5501  </pre>
  5502  
  5503  <h2 id="Built-in_functions">Built-in functions</h2>
  5504  
  5505  <p>
  5506  Built-in functions are
  5507  <a href="#Predeclared_identifiers">predeclared</a>.
  5508  They are called like any other function but some of them
  5509  accept a type instead of an expression as the first argument.
  5510  </p>
  5511  
  5512  <p>
  5513  The built-in functions do not have standard Go types,
  5514  so they can only appear in <a href="#Calls">call expressions</a>;
  5515  they cannot be used as function values.
  5516  </p>
  5517  
  5518  <h3 id="Close">Close</h3>
  5519  
  5520  <p>
  5521  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5522  records that no more values will be sent on the channel.
  5523  It is an error if <code>c</code> is a receive-only channel.
  5524  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5525  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5526  After calling <code>close</code>, and after any previously
  5527  sent values have been received, receive operations will return
  5528  the zero value for the channel's type without blocking.
  5529  The multi-valued <a href="#Receive_operator">receive operation</a>
  5530  returns a received value along with an indication of whether the channel is closed.
  5531  </p>
  5532  
  5533  
  5534  <h3 id="Length_and_capacity">Length and capacity</h3>
  5535  
  5536  <p>
  5537  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5538  of various types and return a result of type <code>int</code>.
  5539  The implementation guarantees that the result always fits into an <code>int</code>.
  5540  </p>
  5541  
  5542  <pre class="grammar">
  5543  Call      Argument type    Result
  5544  
  5545  len(s)    string type      string length in bytes
  5546            [n]T, *[n]T      array length (== n)
  5547            []T              slice length
  5548            map[K]T          map length (number of defined keys)
  5549            chan T           number of elements queued in channel buffer
  5550  
  5551  cap(s)    [n]T, *[n]T      array length (== n)
  5552            []T              slice capacity
  5553            chan T           channel buffer capacity
  5554  </pre>
  5555  
  5556  <p>
  5557  The capacity of a slice is the number of elements for which there is
  5558  space allocated in the underlying array.
  5559  At any time the following relationship holds:
  5560  </p>
  5561  
  5562  <pre>
  5563  0 &lt;= len(s) &lt;= cap(s)
  5564  </pre>
  5565  
  5566  <p>
  5567  The length of a <code>nil</code> slice, map or channel is 0.
  5568  The capacity of a <code>nil</code> slice or channel is 0.
  5569  </p>
  5570  
  5571  <p>
  5572  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5573  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5574  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5575  or pointer to an array and the expression <code>s</code> does not contain
  5576  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5577  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5578  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5579  constant and <code>s</code> is evaluated.
  5580  </p>
  5581  
  5582  <pre>
  5583  const (
  5584  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5585  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5586  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5587  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5588  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5589  )
  5590  var z complex128
  5591  </pre>
  5592  
  5593  <h3 id="Allocation">Allocation</h3>
  5594  
  5595  <p>
  5596  The built-in function <code>new</code> takes a type <code>T</code>,
  5597  allocates storage for a <a href="#Variables">variable</a> of that type
  5598  at run time, and returns a value of type <code>*T</code>
  5599  <a href="#Pointer_types">pointing</a> to it.
  5600  The variable is initialized as described in the section on
  5601  <a href="#The_zero_value">initial values</a>.
  5602  </p>
  5603  
  5604  <pre class="grammar">
  5605  new(T)
  5606  </pre>
  5607  
  5608  <p>
  5609  For instance
  5610  </p>
  5611  
  5612  <pre>
  5613  type S struct { a int; b float64 }
  5614  new(S)
  5615  </pre>
  5616  
  5617  <p>
  5618  allocates storage for a variable of type <code>S</code>,
  5619  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5620  and returns a value of type <code>*S</code> containing the address
  5621  of the location.
  5622  </p>
  5623  
  5624  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5625  
  5626  <p>
  5627  The built-in function <code>make</code> takes a type <code>T</code>,
  5628  which must be a slice, map or channel type,
  5629  optionally followed by a type-specific list of expressions.
  5630  It returns a value of type <code>T</code> (not <code>*T</code>).
  5631  The memory is initialized as described in the section on
  5632  <a href="#The_zero_value">initial values</a>.
  5633  </p>
  5634  
  5635  <pre class="grammar">
  5636  Call             Type T     Result
  5637  
  5638  make(T, n)       slice      slice of type T with length n and capacity n
  5639  make(T, n, m)    slice      slice of type T with length n and capacity m
  5640  
  5641  make(T)          map        map of type T
  5642  make(T, n)       map        map of type T with initial space for n elements
  5643  
  5644  make(T)          channel    unbuffered channel of type T
  5645  make(T, n)       channel    buffered channel of type T, buffer size n
  5646  </pre>
  5647  
  5648  
  5649  <p>
  5650  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5651  A <a href="#Constants">constant</a> size argument must be non-negative and
  5652  representable by a value of type <code>int</code>.
  5653  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5654  <code>n</code> must be no larger than <code>m</code>.
  5655  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5656  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5657  </p>
  5658  
  5659  <pre>
  5660  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5661  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5662  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5663  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5664  c := make(chan int, 10)         // channel with a buffer size of 10
  5665  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5666  </pre>
  5667  
  5668  
  5669  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5670  
  5671  <p>
  5672  The built-in functions <code>append</code> and <code>copy</code> assist in
  5673  common slice operations.
  5674  For both functions, the result is independent of whether the memory referenced
  5675  by the arguments overlaps.
  5676  </p>
  5677  
  5678  <p>
  5679  The <a href="#Function_types">variadic</a> function <code>append</code>
  5680  appends zero or more values <code>x</code>
  5681  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5682  returns the resulting slice, also of type <code>S</code>.
  5683  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5684  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5685  <code>S</code> and the respective
  5686  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5687  As a special case, <code>append</code> also accepts a first argument
  5688  assignable to type <code>[]byte</code> with a second argument of
  5689  string type followed by <code>...</code>. This form appends the
  5690  bytes of the string.
  5691  </p>
  5692  
  5693  <pre class="grammar">
  5694  append(s S, x ...T) S  // T is the element type of S
  5695  </pre>
  5696  
  5697  <p>
  5698  If the capacity of <code>s</code> is not large enough to fit the additional
  5699  values, <code>append</code> allocates a new, sufficiently large underlying
  5700  array that fits both the existing slice elements and the additional values.
  5701  Otherwise, <code>append</code> re-uses the underlying array.
  5702  </p>
  5703  
  5704  <pre>
  5705  s0 := []int{0, 0}
  5706  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5707  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5708  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5709  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5710  
  5711  var t []interface{}
  5712  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5713  
  5714  var b []byte
  5715  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5716  </pre>
  5717  
  5718  <p>
  5719  The function <code>copy</code> copies slice elements from
  5720  a source <code>src</code> to a destination <code>dst</code> and returns the
  5721  number of elements copied.
  5722  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5723  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5724  The number of elements copied is the minimum of
  5725  <code>len(src)</code> and <code>len(dst)</code>.
  5726  As a special case, <code>copy</code> also accepts a destination argument assignable
  5727  to type <code>[]byte</code> with a source argument of a string type.
  5728  This form copies the bytes from the string into the byte slice.
  5729  </p>
  5730  
  5731  <pre class="grammar">
  5732  copy(dst, src []T) int
  5733  copy(dst []byte, src string) int
  5734  </pre>
  5735  
  5736  <p>
  5737  Examples:
  5738  </p>
  5739  
  5740  <pre>
  5741  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5742  var s = make([]int, 6)
  5743  var b = make([]byte, 5)
  5744  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5745  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5746  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5747  </pre>
  5748  
  5749  
  5750  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5751  
  5752  <p>
  5753  The built-in function <code>delete</code> removes the element with key
  5754  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5755  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5756  to the key type of <code>m</code>.
  5757  </p>
  5758  
  5759  <pre class="grammar">
  5760  delete(m, k)  // remove element m[k] from map m
  5761  </pre>
  5762  
  5763  <p>
  5764  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5765  does not exist, <code>delete</code> is a no-op.
  5766  </p>
  5767  
  5768  
  5769  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5770  
  5771  <p>
  5772  Three functions assemble and disassemble complex numbers.
  5773  The built-in function <code>complex</code> constructs a complex
  5774  value from a floating-point real and imaginary part, while
  5775  <code>real</code> and <code>imag</code>
  5776  extract the real and imaginary parts of a complex value.
  5777  </p>
  5778  
  5779  <pre class="grammar">
  5780  complex(realPart, imaginaryPart floatT) complexT
  5781  real(complexT) floatT
  5782  imag(complexT) floatT
  5783  </pre>
  5784  
  5785  <p>
  5786  The type of the arguments and return value correspond.
  5787  For <code>complex</code>, the two arguments must be of the same
  5788  floating-point type and the return type is the complex type
  5789  with the corresponding floating-point constituents:
  5790  <code>complex64</code> for <code>float32</code> arguments, and
  5791  <code>complex128</code> for <code>float64</code> arguments.
  5792  If one of the arguments evaluates to an untyped constant, it is first
  5793  <a href="#Conversions">converted</a> to the type of the other argument.
  5794  If both arguments evaluate to untyped constants, they must be non-complex
  5795  numbers or their imaginary parts must be zero, and the return value of
  5796  the function is an untyped complex constant.
  5797  </p>
  5798  
  5799  <p>
  5800  For <code>real</code> and <code>imag</code>, the argument must be
  5801  of complex type, and the return type is the corresponding floating-point
  5802  type: <code>float32</code> for a <code>complex64</code> argument, and
  5803  <code>float64</code> for a <code>complex128</code> argument.
  5804  If the argument evaluates to an untyped constant, it must be a number,
  5805  and the return value of the function is an untyped floating-point constant.
  5806  </p>
  5807  
  5808  <p>
  5809  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5810  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5811  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5812  </p>
  5813  
  5814  <p>
  5815  If the operands of these functions are all constants, the return
  5816  value is a constant.
  5817  </p>
  5818  
  5819  <pre>
  5820  var a = complex(2, -2)             // complex128
  5821  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5822  x := float32(math.Cos(math.Pi/2))  // float32
  5823  var c64 = complex(5, -x)           // complex64
  5824  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5825  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5826  var rl = real(c64)                 // float32
  5827  var im = imag(a)                   // float64
  5828  const c = imag(b)                  // untyped constant -1.4
  5829  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5830  </pre>
  5831  
  5832  <h3 id="Handling_panics">Handling panics</h3>
  5833  
  5834  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5835  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5836  and program-defined error conditions.
  5837  </p>
  5838  
  5839  <pre class="grammar">
  5840  func panic(interface{})
  5841  func recover() interface{}
  5842  </pre>
  5843  
  5844  <p>
  5845  While executing a function <code>F</code>,
  5846  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5847  terminates the execution of <code>F</code>.
  5848  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5849  are then executed as usual.
  5850  Next, any deferred functions run by <code>F's</code> caller are run,
  5851  and so on up to any deferred by the top-level function in the executing goroutine.
  5852  At that point, the program is terminated and the error
  5853  condition is reported, including the value of the argument to <code>panic</code>.
  5854  This termination sequence is called <i>panicking</i>.
  5855  </p>
  5856  
  5857  <pre>
  5858  panic(42)
  5859  panic("unreachable")
  5860  panic(Error("cannot parse"))
  5861  </pre>
  5862  
  5863  <p>
  5864  The <code>recover</code> function allows a program to manage behavior
  5865  of a panicking goroutine.
  5866  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5867  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5868  is executing.
  5869  When the running of deferred functions reaches <code>D</code>,
  5870  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5871  If <code>D</code> returns normally, without starting a new
  5872  <code>panic</code>, the panicking sequence stops. In that case,
  5873  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5874  is discarded, and normal execution resumes.
  5875  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5876  execution terminates by returning to its caller.
  5877  </p>
  5878  
  5879  <p>
  5880  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5881  </p>
  5882  <ul>
  5883  <li>
  5884  <code>panic</code>'s argument was <code>nil</code>;
  5885  </li>
  5886  <li>
  5887  the goroutine is not panicking;
  5888  </li>
  5889  <li>
  5890  <code>recover</code> was not called directly by a deferred function.
  5891  </li>
  5892  </ul>
  5893  
  5894  <p>
  5895  The <code>protect</code> function in the example below invokes
  5896  the function argument <code>g</code> and protects callers from
  5897  run-time panics raised by <code>g</code>.
  5898  </p>
  5899  
  5900  <pre>
  5901  func protect(g func()) {
  5902  	defer func() {
  5903  		log.Println("done")  // Println executes normally even if there is a panic
  5904  		if x := recover(); x != nil {
  5905  			log.Printf("run time panic: %v", x)
  5906  		}
  5907  	}()
  5908  	log.Println("start")
  5909  	g()
  5910  }
  5911  </pre>
  5912  
  5913  
  5914  <h3 id="Bootstrapping">Bootstrapping</h3>
  5915  
  5916  <p>
  5917  Current implementations provide several built-in functions useful during
  5918  bootstrapping. These functions are documented for completeness but are not
  5919  guaranteed to stay in the language. They do not return a result.
  5920  </p>
  5921  
  5922  <pre class="grammar">
  5923  Function   Behavior
  5924  
  5925  print      prints all arguments; formatting of arguments is implementation-specific
  5926  println    like print but prints spaces between arguments and a newline at the end
  5927  </pre>
  5928  
  5929  
  5930  <h2 id="Packages">Packages</h2>
  5931  
  5932  <p>
  5933  Go programs are constructed by linking together <i>packages</i>.
  5934  A package in turn is constructed from one or more source files
  5935  that together declare constants, types, variables and functions
  5936  belonging to the package and which are accessible in all files
  5937  of the same package. Those elements may be
  5938  <a href="#Exported_identifiers">exported</a> and used in another package.
  5939  </p>
  5940  
  5941  <h3 id="Source_file_organization">Source file organization</h3>
  5942  
  5943  <p>
  5944  Each source file consists of a package clause defining the package
  5945  to which it belongs, followed by a possibly empty set of import
  5946  declarations that declare packages whose contents it wishes to use,
  5947  followed by a possibly empty set of declarations of functions,
  5948  types, variables, and constants.
  5949  </p>
  5950  
  5951  <pre class="ebnf">
  5952  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5953  </pre>
  5954  
  5955  <h3 id="Package_clause">Package clause</h3>
  5956  
  5957  <p>
  5958  A package clause begins each source file and defines the package
  5959  to which the file belongs.
  5960  </p>
  5961  
  5962  <pre class="ebnf">
  5963  PackageClause  = "package" PackageName .
  5964  PackageName    = identifier .
  5965  </pre>
  5966  
  5967  <p>
  5968  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5969  </p>
  5970  
  5971  <pre>
  5972  package math
  5973  </pre>
  5974  
  5975  <p>
  5976  A set of files sharing the same PackageName form the implementation of a package.
  5977  An implementation may require that all source files for a package inhabit the same directory.
  5978  </p>
  5979  
  5980  <h3 id="Import_declarations">Import declarations</h3>
  5981  
  5982  <p>
  5983  An import declaration states that the source file containing the declaration
  5984  depends on functionality of the <i>imported</i> package
  5985  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5986  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5987  of that package.
  5988  The import names an identifier (PackageName) to be used for access and an ImportPath
  5989  that specifies the package to be imported.
  5990  </p>
  5991  
  5992  <pre class="ebnf">
  5993  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5994  ImportSpec       = [ "." | PackageName ] ImportPath .
  5995  ImportPath       = string_lit .
  5996  </pre>
  5997  
  5998  <p>
  5999  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6000  to access exported identifiers of the package within the importing source file.
  6001  It is declared in the <a href="#Blocks">file block</a>.
  6002  If the PackageName is omitted, it defaults to the identifier specified in the
  6003  <a href="#Package_clause">package clause</a> of the imported package.
  6004  If an explicit period (<code>.</code>) appears instead of a name, all the
  6005  package's exported identifiers declared in that package's
  6006  <a href="#Blocks">package block</a> will be declared in the importing source
  6007  file's file block and must be accessed without a qualifier.
  6008  </p>
  6009  
  6010  <p>
  6011  The interpretation of the ImportPath is implementation-dependent but
  6012  it is typically a substring of the full file name of the compiled
  6013  package and may be relative to a repository of installed packages.
  6014  </p>
  6015  
  6016  <p>
  6017  Implementation restriction: A compiler may restrict ImportPaths to
  6018  non-empty strings using only characters belonging to
  6019  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6020  L, M, N, P, and S general categories (the Graphic characters without
  6021  spaces) and may also exclude the characters
  6022  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6023  and the Unicode replacement character U+FFFD.
  6024  </p>
  6025  
  6026  <p>
  6027  Assume we have compiled a package containing the package clause
  6028  <code>package math</code>, which exports function <code>Sin</code>, and
  6029  installed the compiled package in the file identified by
  6030  <code>"lib/math"</code>.
  6031  This table illustrates how <code>Sin</code> is accessed in files
  6032  that import the package after the
  6033  various types of import declaration.
  6034  </p>
  6035  
  6036  <pre class="grammar">
  6037  Import declaration          Local name of Sin
  6038  
  6039  import   "lib/math"         math.Sin
  6040  import m "lib/math"         m.Sin
  6041  import . "lib/math"         Sin
  6042  </pre>
  6043  
  6044  <p>
  6045  An import declaration declares a dependency relation between
  6046  the importing and imported package.
  6047  It is illegal for a package to import itself, directly or indirectly,
  6048  or to directly import a package without
  6049  referring to any of its exported identifiers. To import a package solely for
  6050  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6051  identifier as explicit package name:
  6052  </p>
  6053  
  6054  <pre>
  6055  import _ "lib/math"
  6056  </pre>
  6057  
  6058  
  6059  <h3 id="An_example_package">An example package</h3>
  6060  
  6061  <p>
  6062  Here is a complete Go package that implements a concurrent prime sieve.
  6063  </p>
  6064  
  6065  <pre>
  6066  package main
  6067  
  6068  import "fmt"
  6069  
  6070  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6071  func generate(ch chan&lt;- int) {
  6072  	for i := 2; ; i++ {
  6073  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6074  	}
  6075  }
  6076  
  6077  // Copy the values from channel 'src' to channel 'dst',
  6078  // removing those divisible by 'prime'.
  6079  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6080  	for i := range src {  // Loop over values received from 'src'.
  6081  		if i%prime != 0 {
  6082  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6083  		}
  6084  	}
  6085  }
  6086  
  6087  // The prime sieve: Daisy-chain filter processes together.
  6088  func sieve() {
  6089  	ch := make(chan int)  // Create a new channel.
  6090  	go generate(ch)       // Start generate() as a subprocess.
  6091  	for {
  6092  		prime := &lt;-ch
  6093  		fmt.Print(prime, "\n")
  6094  		ch1 := make(chan int)
  6095  		go filter(ch, ch1, prime)
  6096  		ch = ch1
  6097  	}
  6098  }
  6099  
  6100  func main() {
  6101  	sieve()
  6102  }
  6103  </pre>
  6104  
  6105  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6106  
  6107  <h3 id="The_zero_value">The zero value</h3>
  6108  <p>
  6109  When storage is allocated for a <a href="#Variables">variable</a>,
  6110  either through a declaration or a call of <code>new</code>, or when
  6111  a new value is created, either through a composite literal or a call
  6112  of <code>make</code>,
  6113  and no explicit initialization is provided, the variable or value is
  6114  given a default value.  Each element of such a variable or value is
  6115  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6116  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6117  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6118  This initialization is done recursively, so for instance each element of an
  6119  array of structs will have its fields zeroed if no value is specified.
  6120  </p>
  6121  <p>
  6122  These two simple declarations are equivalent:
  6123  </p>
  6124  
  6125  <pre>
  6126  var i int
  6127  var i int = 0
  6128  </pre>
  6129  
  6130  <p>
  6131  After
  6132  </p>
  6133  
  6134  <pre>
  6135  type T struct { i int; f float64; next *T }
  6136  t := new(T)
  6137  </pre>
  6138  
  6139  <p>
  6140  the following holds:
  6141  </p>
  6142  
  6143  <pre>
  6144  t.i == 0
  6145  t.f == 0.0
  6146  t.next == nil
  6147  </pre>
  6148  
  6149  <p>
  6150  The same would also be true after
  6151  </p>
  6152  
  6153  <pre>
  6154  var t T
  6155  </pre>
  6156  
  6157  <h3 id="Package_initialization">Package initialization</h3>
  6158  
  6159  <p>
  6160  Within a package, package-level variables are initialized in
  6161  <i>declaration order</i> but after any of the variables
  6162  they <i>depend</i> on.
  6163  </p>
  6164  
  6165  <p>
  6166  More precisely, a package-level variable is considered <i>ready for
  6167  initialization</i> if it is not yet initialized and either has
  6168  no <a href="#Variable_declarations">initialization expression</a> or
  6169  its initialization expression has no dependencies on uninitialized variables.
  6170  Initialization proceeds by repeatedly initializing the next package-level
  6171  variable that is earliest in declaration order and ready for initialization,
  6172  until there are no variables ready for initialization.
  6173  </p>
  6174  
  6175  <p>
  6176  If any variables are still uninitialized when this
  6177  process ends, those variables are part of one or more initialization cycles,
  6178  and the program is not valid.
  6179  </p>
  6180  
  6181  <p>
  6182  The declaration order of variables declared in multiple files is determined
  6183  by the order in which the files are presented to the compiler: Variables
  6184  declared in the first file are declared before any of the variables declared
  6185  in the second file, and so on.
  6186  </p>
  6187  
  6188  <p>
  6189  Dependency analysis does not rely on the actual values of the
  6190  variables, only on lexical <i>references</i> to them in the source,
  6191  analyzed transitively. For instance, if a variable <code>x</code>'s
  6192  initialization expression refers to a function whose body refers to
  6193  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6194  Specifically:
  6195  </p>
  6196  
  6197  <ul>
  6198  <li>
  6199  A reference to a variable or function is an identifier denoting that
  6200  variable or function.
  6201  </li>
  6202  
  6203  <li>
  6204  A reference to a method <code>m</code> is a
  6205  <a href="#Method_values">method value</a> or
  6206  <a href="#Method_expressions">method expression</a> of the form
  6207  <code>t.m</code>, where the (static) type of <code>t</code> is
  6208  not an interface type, and the method <code>m</code> is in the
  6209  <a href="#Method_sets">method set</a> of <code>t</code>.
  6210  It is immaterial whether the resulting function value
  6211  <code>t.m</code> is invoked.
  6212  </li>
  6213  
  6214  <li>
  6215  A variable, function, or method <code>x</code> depends on a variable
  6216  <code>y</code> if <code>x</code>'s initialization expression or body
  6217  (for functions and methods) contains a reference to <code>y</code>
  6218  or to a function or method that depends on <code>y</code>.
  6219  </li>
  6220  </ul>
  6221  
  6222  <p>
  6223  Dependency analysis is performed per package; only references referring
  6224  to variables, functions, and methods declared in the current package
  6225  are considered.
  6226  </p>
  6227  
  6228  <p>
  6229  For example, given the declarations
  6230  </p>
  6231  
  6232  <pre>
  6233  var (
  6234  	a = c + b
  6235  	b = f()
  6236  	c = f()
  6237  	d = 3
  6238  )
  6239  
  6240  func f() int {
  6241  	d++
  6242  	return d
  6243  }
  6244  </pre>
  6245  
  6246  <p>
  6247  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6248  </p>
  6249  
  6250  <p>
  6251  Variables may also be initialized using functions named <code>init</code>
  6252  declared in the package block, with no arguments and no result parameters.
  6253  </p>
  6254  
  6255  <pre>
  6256  func init() { … }
  6257  </pre>
  6258  
  6259  <p>
  6260  Multiple such functions may be defined per package, even within a single
  6261  source file. In the package block, the <code>init</code> identifier can
  6262  be used only to declare <code>init</code> functions, yet the identifier
  6263  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6264  <code>init</code> functions cannot be referred to from anywhere
  6265  in a program.
  6266  </p>
  6267  
  6268  <p>
  6269  A package with no imports is initialized by assigning initial values
  6270  to all its package-level variables followed by calling all <code>init</code>
  6271  functions in the order they appear in the source, possibly in multiple files,
  6272  as presented to the compiler.
  6273  If a package has imports, the imported packages are initialized
  6274  before initializing the package itself. If multiple packages import
  6275  a package, the imported package will be initialized only once.
  6276  The importing of packages, by construction, guarantees that there
  6277  can be no cyclic initialization dependencies.
  6278  </p>
  6279  
  6280  <p>
  6281  Package initialization&mdash;variable initialization and the invocation of
  6282  <code>init</code> functions&mdash;happens in a single goroutine,
  6283  sequentially, one package at a time.
  6284  An <code>init</code> function may launch other goroutines, which can run
  6285  concurrently with the initialization code. However, initialization
  6286  always sequences
  6287  the <code>init</code> functions: it will not invoke the next one
  6288  until the previous one has returned.
  6289  </p>
  6290  
  6291  <p>
  6292  To ensure reproducible initialization behavior, build systems are encouraged
  6293  to present multiple files belonging to the same package in lexical file name
  6294  order to a compiler.
  6295  </p>
  6296  
  6297  
  6298  <h3 id="Program_execution">Program execution</h3>
  6299  <p>
  6300  A complete program is created by linking a single, unimported package
  6301  called the <i>main package</i> with all the packages it imports, transitively.
  6302  The main package must
  6303  have package name <code>main</code> and
  6304  declare a function <code>main</code> that takes no
  6305  arguments and returns no value.
  6306  </p>
  6307  
  6308  <pre>
  6309  func main() { … }
  6310  </pre>
  6311  
  6312  <p>
  6313  Program execution begins by initializing the main package and then
  6314  invoking the function <code>main</code>.
  6315  When that function invocation returns, the program exits.
  6316  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6317  </p>
  6318  
  6319  <h2 id="Errors">Errors</h2>
  6320  
  6321  <p>
  6322  The predeclared type <code>error</code> is defined as
  6323  </p>
  6324  
  6325  <pre>
  6326  type error interface {
  6327  	Error() string
  6328  }
  6329  </pre>
  6330  
  6331  <p>
  6332  It is the conventional interface for representing an error condition,
  6333  with the nil value representing no error.
  6334  For instance, a function to read data from a file might be defined:
  6335  </p>
  6336  
  6337  <pre>
  6338  func Read(f *File, b []byte) (n int, err error)
  6339  </pre>
  6340  
  6341  <h2 id="Run_time_panics">Run-time panics</h2>
  6342  
  6343  <p>
  6344  Execution errors such as attempting to index an array out
  6345  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6346  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6347  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6348  That type satisfies the predeclared interface type
  6349  <a href="#Errors"><code>error</code></a>.
  6350  The exact error values that
  6351  represent distinct run-time error conditions are unspecified.
  6352  </p>
  6353  
  6354  <pre>
  6355  package runtime
  6356  
  6357  type Error interface {
  6358  	error
  6359  	// and perhaps other methods
  6360  }
  6361  </pre>
  6362  
  6363  <h2 id="System_considerations">System considerations</h2>
  6364  
  6365  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6366  
  6367  <p>
  6368  The built-in package <code>unsafe</code>, known to the compiler,
  6369  provides facilities for low-level programming including operations
  6370  that violate the type system. A package using <code>unsafe</code>
  6371  must be vetted manually for type safety and may not be portable.
  6372  The package provides the following interface:
  6373  </p>
  6374  
  6375  <pre class="grammar">
  6376  package unsafe
  6377  
  6378  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6379  type Pointer *ArbitraryType
  6380  
  6381  func Alignof(variable ArbitraryType) uintptr
  6382  func Offsetof(selector ArbitraryType) uintptr
  6383  func Sizeof(variable ArbitraryType) uintptr
  6384  </pre>
  6385  
  6386  <p>
  6387  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6388  value may not be <a href="#Address_operators">dereferenced</a>.
  6389  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6390  a <code>Pointer</code> type and vice versa.
  6391  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6392  </p>
  6393  
  6394  <pre>
  6395  var f float64
  6396  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6397  
  6398  type ptr unsafe.Pointer
  6399  bits = *(*uint64)(ptr(&amp;f))
  6400  
  6401  var p ptr = nil
  6402  </pre>
  6403  
  6404  <p>
  6405  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6406  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6407  as if <code>v</code> was declared via <code>var v = x</code>.
  6408  </p>
  6409  <p>
  6410  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6411  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6412  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6413  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6414  without pointer indirections through fields of the struct.
  6415  For a struct <code>s</code> with field <code>f</code>:
  6416  </p>
  6417  
  6418  <pre>
  6419  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6420  </pre>
  6421  
  6422  <p>
  6423  Computer architectures may require memory addresses to be <i>aligned</i>;
  6424  that is, for addresses of a variable to be a multiple of a factor,
  6425  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6426  takes an expression denoting a variable of any type and returns the
  6427  alignment of the (type of the) variable in bytes.  For a variable
  6428  <code>x</code>:
  6429  </p>
  6430  
  6431  <pre>
  6432  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6433  </pre>
  6434  
  6435  <p>
  6436  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6437  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6438  </p>
  6439  
  6440  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6441  
  6442  <p>
  6443  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6444  </p>
  6445  
  6446  <pre class="grammar">
  6447  type                                 size in bytes
  6448  
  6449  byte, uint8, int8                     1
  6450  uint16, int16                         2
  6451  uint32, int32, float32                4
  6452  uint64, int64, float64, complex64     8
  6453  complex128                           16
  6454  </pre>
  6455  
  6456  <p>
  6457  The following minimal alignment properties are guaranteed:
  6458  </p>
  6459  <ol>
  6460  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6461  </li>
  6462  
  6463  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6464     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6465  </li>
  6466  
  6467  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6468     <code>unsafe.Alignof(x[0])</code>, but at least 1.
  6469  </li>
  6470  </ol>
  6471  
  6472  <p>
  6473  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6474  </p>