github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"html"
    11  	"os"
    12  	"sort"
    13  
    14  	"cmd/compile/internal/ssa"
    15  	"cmd/internal/obj"
    16  	"cmd/internal/sys"
    17  )
    18  
    19  var ssaConfig *ssa.Config
    20  var ssaExp ssaExport
    21  
    22  func initssa() *ssa.Config {
    23  	if ssaConfig == nil {
    24  		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
    25  		if Thearch.LinkArch.Name == "386" {
    26  			ssaConfig.Set387(Thearch.Use387)
    27  		}
    28  	}
    29  	ssaConfig.HTML = nil
    30  	return ssaConfig
    31  }
    32  
    33  // buildssa builds an SSA function.
    34  func buildssa(fn *Node) *ssa.Func {
    35  	name := fn.Func.Nname.Sym.Name
    36  	printssa := name == os.Getenv("GOSSAFUNC")
    37  	if printssa {
    38  		fmt.Println("generating SSA for", name)
    39  		dumplist("buildssa-enter", fn.Func.Enter)
    40  		dumplist("buildssa-body", fn.Nbody)
    41  		dumplist("buildssa-exit", fn.Func.Exit)
    42  	}
    43  
    44  	var s state
    45  	s.pushLine(fn.Lineno)
    46  	defer s.popLine()
    47  
    48  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
    49  		s.cgoUnsafeArgs = true
    50  	}
    51  	if fn.Func.Pragma&Nowritebarrier != 0 {
    52  		s.noWB = true
    53  	}
    54  	defer func() {
    55  		if s.WBLineno != 0 {
    56  			fn.Func.WBLineno = s.WBLineno
    57  		}
    58  	}()
    59  	// TODO(khr): build config just once at the start of the compiler binary
    60  
    61  	ssaExp.log = printssa
    62  
    63  	s.config = initssa()
    64  	s.f = s.config.NewFunc()
    65  	s.f.Name = name
    66  	s.exitCode = fn.Func.Exit
    67  	s.panics = map[funcLine]*ssa.Block{}
    68  	s.config.DebugTest = s.config.DebugHashMatch("GOSSAHASH", name)
    69  
    70  	if name == os.Getenv("GOSSAFUNC") {
    71  		// TODO: tempfile? it is handy to have the location
    72  		// of this file be stable, so you can just reload in the browser.
    73  		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
    74  		// TODO: generate and print a mapping from nodes to values and blocks
    75  	}
    76  
    77  	// Allocate starting block
    78  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
    79  
    80  	// Allocate starting values
    81  	s.labels = map[string]*ssaLabel{}
    82  	s.labeledNodes = map[*Node]*ssaLabel{}
    83  	s.fwdVars = map[*Node]*ssa.Value{}
    84  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
    85  	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
    86  	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
    87  
    88  	s.startBlock(s.f.Entry)
    89  	s.vars[&memVar] = s.startmem
    90  
    91  	s.varsyms = map[*Node]interface{}{}
    92  
    93  	// Generate addresses of local declarations
    94  	s.decladdrs = map[*Node]*ssa.Value{}
    95  	for _, n := range fn.Func.Dcl {
    96  		switch n.Class {
    97  		case PPARAM, PPARAMOUT:
    98  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
    99  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sp)
   100  			if n.Class == PPARAMOUT && s.canSSA(n) {
   101  				// Save ssa-able PPARAMOUT variables so we can
   102  				// store them back to the stack at the end of
   103  				// the function.
   104  				s.returns = append(s.returns, n)
   105  			}
   106  		case PAUTO:
   107  			// processed at each use, to prevent Addr coming
   108  			// before the decl.
   109  		case PAUTOHEAP:
   110  			// moved to heap - already handled by frontend
   111  		case PFUNC:
   112  			// local function - already handled by frontend
   113  		default:
   114  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class])
   115  		}
   116  	}
   117  
   118  	// Populate arguments.
   119  	for _, n := range fn.Func.Dcl {
   120  		if n.Class != PPARAM {
   121  			continue
   122  		}
   123  		var v *ssa.Value
   124  		if s.canSSA(n) {
   125  			v = s.newValue0A(ssa.OpArg, n.Type, n)
   126  		} else {
   127  			// Not SSAable. Load it.
   128  			v = s.newValue2(ssa.OpLoad, n.Type, s.decladdrs[n], s.startmem)
   129  		}
   130  		s.vars[n] = v
   131  	}
   132  
   133  	// Convert the AST-based IR to the SSA-based IR
   134  	s.stmtList(fn.Func.Enter)
   135  	s.stmtList(fn.Nbody)
   136  
   137  	// fallthrough to exit
   138  	if s.curBlock != nil {
   139  		s.pushLine(fn.Func.Endlineno)
   140  		s.exit()
   141  		s.popLine()
   142  	}
   143  
   144  	// Check that we used all labels
   145  	for name, lab := range s.labels {
   146  		if !lab.used() && !lab.reported && !lab.defNode.Used {
   147  			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
   148  			lab.reported = true
   149  		}
   150  		if lab.used() && !lab.defined() && !lab.reported {
   151  			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
   152  			lab.reported = true
   153  		}
   154  	}
   155  
   156  	// Check any forward gotos. Non-forward gotos have already been checked.
   157  	for _, n := range s.fwdGotos {
   158  		lab := s.labels[n.Left.Sym.Name]
   159  		// If the label is undefined, we have already have printed an error.
   160  		if lab.defined() {
   161  			s.checkgoto(n, lab.defNode)
   162  		}
   163  	}
   164  
   165  	if nerrors > 0 {
   166  		s.f.Free()
   167  		return nil
   168  	}
   169  
   170  	s.insertPhis()
   171  
   172  	// Don't carry reference this around longer than necessary
   173  	s.exitCode = Nodes{}
   174  
   175  	// Main call to ssa package to compile function
   176  	ssa.Compile(s.f)
   177  
   178  	return s.f
   179  }
   180  
   181  type state struct {
   182  	// configuration (arch) information
   183  	config *ssa.Config
   184  
   185  	// function we're building
   186  	f *ssa.Func
   187  
   188  	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
   189  	labels       map[string]*ssaLabel
   190  	labeledNodes map[*Node]*ssaLabel
   191  
   192  	// gotos that jump forward; required for deferred checkgoto calls
   193  	fwdGotos []*Node
   194  	// Code that must precede any return
   195  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   196  	exitCode Nodes
   197  
   198  	// unlabeled break and continue statement tracking
   199  	breakTo    *ssa.Block // current target for plain break statement
   200  	continueTo *ssa.Block // current target for plain continue statement
   201  
   202  	// current location where we're interpreting the AST
   203  	curBlock *ssa.Block
   204  
   205  	// variable assignments in the current block (map from variable symbol to ssa value)
   206  	// *Node is the unique identifier (an ONAME Node) for the variable.
   207  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   208  	vars map[*Node]*ssa.Value
   209  
   210  	// fwdVars are variables that are used before they are defined in the current block.
   211  	// This map exists just to coalesce multiple references into a single FwdRef op.
   212  	// *Node is the unique identifier (an ONAME Node) for the variable.
   213  	fwdVars map[*Node]*ssa.Value
   214  
   215  	// all defined variables at the end of each block. Indexed by block ID.
   216  	defvars []map[*Node]*ssa.Value
   217  
   218  	// addresses of PPARAM and PPARAMOUT variables.
   219  	decladdrs map[*Node]*ssa.Value
   220  
   221  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   222  	varsyms map[*Node]interface{}
   223  
   224  	// starting values. Memory, stack pointer, and globals pointer
   225  	startmem *ssa.Value
   226  	sp       *ssa.Value
   227  	sb       *ssa.Value
   228  
   229  	// line number stack. The current line number is top of stack
   230  	line []int32
   231  
   232  	// list of panic calls by function name and line number.
   233  	// Used to deduplicate panic calls.
   234  	panics map[funcLine]*ssa.Block
   235  
   236  	// list of PPARAMOUT (return) variables.
   237  	returns []*Node
   238  
   239  	// A dummy value used during phi construction.
   240  	placeholder *ssa.Value
   241  
   242  	cgoUnsafeArgs bool
   243  	noWB          bool
   244  	WBLineno      int32 // line number of first write barrier. 0=no write barriers
   245  }
   246  
   247  type funcLine struct {
   248  	f    *Node
   249  	line int32
   250  }
   251  
   252  type ssaLabel struct {
   253  	target         *ssa.Block // block identified by this label
   254  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   255  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   256  	defNode        *Node      // label definition Node (OLABEL)
   257  	// Label use Node (OGOTO, OBREAK, OCONTINUE).
   258  	// Used only for error detection and reporting.
   259  	// There might be multiple uses, but we only need to track one.
   260  	useNode  *Node
   261  	reported bool // reported indicates whether an error has already been reported for this label
   262  }
   263  
   264  // defined reports whether the label has a definition (OLABEL node).
   265  func (l *ssaLabel) defined() bool { return l.defNode != nil }
   266  
   267  // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
   268  func (l *ssaLabel) used() bool { return l.useNode != nil }
   269  
   270  // label returns the label associated with sym, creating it if necessary.
   271  func (s *state) label(sym *Sym) *ssaLabel {
   272  	lab := s.labels[sym.Name]
   273  	if lab == nil {
   274  		lab = new(ssaLabel)
   275  		s.labels[sym.Name] = lab
   276  	}
   277  	return lab
   278  }
   279  
   280  func (s *state) Logf(msg string, args ...interface{})              { s.config.Logf(msg, args...) }
   281  func (s *state) Log() bool                                         { return s.config.Log() }
   282  func (s *state) Fatalf(msg string, args ...interface{})            { s.config.Fatalf(s.peekLine(), msg, args...) }
   283  func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
   284  func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }
   285  
   286  var (
   287  	// dummy node for the memory variable
   288  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
   289  
   290  	// dummy nodes for temporary variables
   291  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
   292  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
   293  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
   294  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
   295  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
   296  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
   297  )
   298  
   299  // startBlock sets the current block we're generating code in to b.
   300  func (s *state) startBlock(b *ssa.Block) {
   301  	if s.curBlock != nil {
   302  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   303  	}
   304  	s.curBlock = b
   305  	s.vars = map[*Node]*ssa.Value{}
   306  	for n := range s.fwdVars {
   307  		delete(s.fwdVars, n)
   308  	}
   309  }
   310  
   311  // endBlock marks the end of generating code for the current block.
   312  // Returns the (former) current block. Returns nil if there is no current
   313  // block, i.e. if no code flows to the current execution point.
   314  func (s *state) endBlock() *ssa.Block {
   315  	b := s.curBlock
   316  	if b == nil {
   317  		return nil
   318  	}
   319  	for len(s.defvars) <= int(b.ID) {
   320  		s.defvars = append(s.defvars, nil)
   321  	}
   322  	s.defvars[b.ID] = s.vars
   323  	s.curBlock = nil
   324  	s.vars = nil
   325  	b.Line = s.peekLine()
   326  	return b
   327  }
   328  
   329  // pushLine pushes a line number on the line number stack.
   330  func (s *state) pushLine(line int32) {
   331  	if line == 0 {
   332  		// the frontend may emit node with line number missing,
   333  		// use the parent line number in this case.
   334  		line = s.peekLine()
   335  		if Debug['K'] != 0 {
   336  			Warn("buildssa: line 0")
   337  		}
   338  	}
   339  	s.line = append(s.line, line)
   340  }
   341  
   342  // popLine pops the top of the line number stack.
   343  func (s *state) popLine() {
   344  	s.line = s.line[:len(s.line)-1]
   345  }
   346  
   347  // peekLine peek the top of the line number stack.
   348  func (s *state) peekLine() int32 {
   349  	return s.line[len(s.line)-1]
   350  }
   351  
   352  func (s *state) Error(msg string, args ...interface{}) {
   353  	yyerrorl(s.peekLine(), msg, args...)
   354  }
   355  
   356  // newValue0 adds a new value with no arguments to the current block.
   357  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   358  	return s.curBlock.NewValue0(s.peekLine(), op, t)
   359  }
   360  
   361  // newValue0A adds a new value with no arguments and an aux value to the current block.
   362  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   363  	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
   364  }
   365  
   366  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   367  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   368  	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
   369  }
   370  
   371  // newValue1 adds a new value with one argument to the current block.
   372  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   373  	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
   374  }
   375  
   376  // newValue1A adds a new value with one argument and an aux value to the current block.
   377  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   378  	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
   379  }
   380  
   381  // newValue1I adds a new value with one argument and an auxint value to the current block.
   382  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   383  	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
   384  }
   385  
   386  // newValue2 adds a new value with two arguments to the current block.
   387  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   388  	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
   389  }
   390  
   391  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   392  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   393  	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
   394  }
   395  
   396  // newValue3 adds a new value with three arguments to the current block.
   397  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   398  	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
   399  }
   400  
   401  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   402  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   403  	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
   404  }
   405  
   406  // newValue4 adds a new value with four arguments to the current block.
   407  func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   408  	return s.curBlock.NewValue4(s.peekLine(), op, t, arg0, arg1, arg2, arg3)
   409  }
   410  
   411  // entryNewValue0 adds a new value with no arguments to the entry block.
   412  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   413  	return s.f.Entry.NewValue0(s.peekLine(), op, t)
   414  }
   415  
   416  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   417  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   418  	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
   419  }
   420  
   421  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   422  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   423  	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
   424  }
   425  
   426  // entryNewValue1 adds a new value with one argument to the entry block.
   427  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   428  	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
   429  }
   430  
   431  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   432  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   433  	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
   434  }
   435  
   436  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   437  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   438  	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
   439  }
   440  
   441  // entryNewValue2 adds a new value with two arguments to the entry block.
   442  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   443  	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
   444  }
   445  
   446  // const* routines add a new const value to the entry block.
   447  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
   448  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
   449  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
   450  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
   451  func (s *state) constBool(c bool) *ssa.Value {
   452  	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
   453  }
   454  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   455  	return s.f.ConstInt8(s.peekLine(), t, c)
   456  }
   457  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   458  	return s.f.ConstInt16(s.peekLine(), t, c)
   459  }
   460  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   461  	return s.f.ConstInt32(s.peekLine(), t, c)
   462  }
   463  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   464  	return s.f.ConstInt64(s.peekLine(), t, c)
   465  }
   466  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   467  	return s.f.ConstFloat32(s.peekLine(), t, c)
   468  }
   469  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   470  	return s.f.ConstFloat64(s.peekLine(), t, c)
   471  }
   472  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   473  	if s.config.IntSize == 8 {
   474  		return s.constInt64(t, c)
   475  	}
   476  	if int64(int32(c)) != c {
   477  		s.Fatalf("integer constant too big %d", c)
   478  	}
   479  	return s.constInt32(t, int32(c))
   480  }
   481  
   482  // stmtList converts the statement list n to SSA and adds it to s.
   483  func (s *state) stmtList(l Nodes) {
   484  	for _, n := range l.Slice() {
   485  		s.stmt(n)
   486  	}
   487  }
   488  
   489  // stmt converts the statement n to SSA and adds it to s.
   490  func (s *state) stmt(n *Node) {
   491  	s.pushLine(n.Lineno)
   492  	defer s.popLine()
   493  
   494  	// If s.curBlock is nil, then we're about to generate dead code.
   495  	// We can't just short-circuit here, though,
   496  	// because we check labels and gotos as part of SSA generation.
   497  	// Provide a block for the dead code so that we don't have
   498  	// to add special cases everywhere else.
   499  	if s.curBlock == nil {
   500  		dead := s.f.NewBlock(ssa.BlockPlain)
   501  		s.startBlock(dead)
   502  	}
   503  
   504  	s.stmtList(n.Ninit)
   505  	switch n.Op {
   506  
   507  	case OBLOCK:
   508  		s.stmtList(n.List)
   509  
   510  	// No-ops
   511  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   512  
   513  	// Expression statements
   514  	case OCALLFUNC:
   515  		if isIntrinsicCall(n) {
   516  			s.intrinsicCall(n)
   517  			return
   518  		}
   519  		fallthrough
   520  
   521  	case OCALLMETH, OCALLINTER:
   522  		s.call(n, callNormal)
   523  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC {
   524  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   525  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "selectgo" || fn == "block") {
   526  				m := s.mem()
   527  				b := s.endBlock()
   528  				b.Kind = ssa.BlockExit
   529  				b.SetControl(m)
   530  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   531  				// first place. Need to wait until all backends
   532  				// go through SSA.
   533  			}
   534  		}
   535  	case ODEFER:
   536  		s.call(n.Left, callDefer)
   537  	case OPROC:
   538  		s.call(n.Left, callGo)
   539  
   540  	case OAS2DOTTYPE:
   541  		res, resok := s.dottype(n.Rlist.First(), true)
   542  		deref := false
   543  		if !canSSAType(n.Rlist.First().Type) {
   544  			if res.Op != ssa.OpLoad {
   545  				s.Fatalf("dottype of non-load")
   546  			}
   547  			mem := s.mem()
   548  			if mem.Op == ssa.OpVarKill {
   549  				mem = mem.Args[0]
   550  			}
   551  			if res.Args[1] != mem {
   552  				s.Fatalf("memory no longer live from 2-result dottype load")
   553  			}
   554  			deref = true
   555  			res = res.Args[0]
   556  		}
   557  		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), deref, n.Lineno, 0, false)
   558  		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
   559  		return
   560  
   561  	case OAS2FUNC:
   562  		// We come here only when it is an intrinsic call returning two values.
   563  		if !isIntrinsicCall(n.Rlist.First()) {
   564  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   565  		}
   566  		v := s.intrinsicCall(n.Rlist.First())
   567  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   568  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   569  		// Make a fake node to mimic loading return value, ONLY for write barrier test.
   570  		// This is future-proofing against non-scalar 2-result intrinsics.
   571  		// Currently we only have scalar ones, which result in no write barrier.
   572  		fakeret := &Node{Op: OINDREGSP}
   573  		s.assign(n.List.First(), v1, needwritebarrier(n.List.First(), fakeret), false, n.Lineno, 0, false)
   574  		s.assign(n.List.Second(), v2, needwritebarrier(n.List.Second(), fakeret), false, n.Lineno, 0, false)
   575  		return
   576  
   577  	case ODCL:
   578  		if n.Left.Class == PAUTOHEAP {
   579  			Fatalf("DCL %v", n)
   580  		}
   581  
   582  	case OLABEL:
   583  		sym := n.Left.Sym
   584  
   585  		if isblanksym(sym) {
   586  			// Empty identifier is valid but useless.
   587  			// See issues 11589, 11593.
   588  			return
   589  		}
   590  
   591  		lab := s.label(sym)
   592  
   593  		// Associate label with its control flow node, if any
   594  		if ctl := n.Name.Defn; ctl != nil {
   595  			switch ctl.Op {
   596  			case OFOR, OSWITCH, OSELECT:
   597  				s.labeledNodes[ctl] = lab
   598  			}
   599  		}
   600  
   601  		if !lab.defined() {
   602  			lab.defNode = n
   603  		} else {
   604  			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
   605  			lab.reported = true
   606  		}
   607  		// The label might already have a target block via a goto.
   608  		if lab.target == nil {
   609  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   610  		}
   611  
   612  		// go to that label (we pretend "label:" is preceded by "goto label")
   613  		b := s.endBlock()
   614  		b.AddEdgeTo(lab.target)
   615  		s.startBlock(lab.target)
   616  
   617  	case OGOTO:
   618  		sym := n.Left.Sym
   619  
   620  		lab := s.label(sym)
   621  		if lab.target == nil {
   622  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   623  		}
   624  		if !lab.used() {
   625  			lab.useNode = n
   626  		}
   627  
   628  		if lab.defined() {
   629  			s.checkgoto(n, lab.defNode)
   630  		} else {
   631  			s.fwdGotos = append(s.fwdGotos, n)
   632  		}
   633  
   634  		b := s.endBlock()
   635  		b.AddEdgeTo(lab.target)
   636  
   637  	case OAS, OASWB:
   638  		// Check whether we can generate static data rather than code.
   639  		// If so, ignore n and defer data generation until codegen.
   640  		// Failure to do this causes writes to readonly symbols.
   641  		if gen_as_init(n, true) {
   642  			var data []*Node
   643  			if s.f.StaticData != nil {
   644  				data = s.f.StaticData.([]*Node)
   645  			}
   646  			s.f.StaticData = append(data, n)
   647  			return
   648  		}
   649  
   650  		if n.Left == n.Right && n.Left.Op == ONAME {
   651  			// An x=x assignment. No point in doing anything
   652  			// here. In addition, skipping this assignment
   653  			// prevents generating:
   654  			//   VARDEF x
   655  			//   COPY x -> x
   656  			// which is bad because x is incorrectly considered
   657  			// dead before the vardef. See issue #14904.
   658  			return
   659  		}
   660  
   661  		var t *Type
   662  		if n.Right != nil {
   663  			t = n.Right.Type
   664  		} else {
   665  			t = n.Left.Type
   666  		}
   667  
   668  		// Evaluate RHS.
   669  		rhs := n.Right
   670  		if rhs != nil {
   671  			switch rhs.Op {
   672  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   673  				// All literals with nonzero fields have already been
   674  				// rewritten during walk. Any that remain are just T{}
   675  				// or equivalents. Use the zero value.
   676  				if !iszero(rhs) {
   677  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   678  				}
   679  				rhs = nil
   680  			case OAPPEND:
   681  				// If we're writing the result of an append back to the same slice,
   682  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   683  				// If the slice can be SSA'd, it'll be on the stack,
   684  				// so there will be no write barriers,
   685  				// so there's no need to attempt to prevent them.
   686  				if samesafeexpr(n.Left, rhs.List.First()) {
   687  					if !s.canSSA(n.Left) {
   688  						if Debug_append > 0 {
   689  							Warnl(n.Lineno, "append: len-only update")
   690  						}
   691  						s.append(rhs, true)
   692  						return
   693  					} else {
   694  						if Debug_append > 0 { // replicating old diagnostic message
   695  							Warnl(n.Lineno, "append: len-only update (in local slice)")
   696  						}
   697  					}
   698  				}
   699  			}
   700  		}
   701  		var r *ssa.Value
   702  		var isVolatile bool
   703  		needwb := n.Op == OASWB
   704  		deref := !canSSAType(t)
   705  		if deref {
   706  			if rhs == nil {
   707  				r = nil // Signal assign to use OpZero.
   708  			} else {
   709  				r, isVolatile = s.addr(rhs, false)
   710  			}
   711  		} else {
   712  			if rhs == nil {
   713  				r = s.zeroVal(t)
   714  			} else {
   715  				r = s.expr(rhs)
   716  			}
   717  		}
   718  		if rhs != nil && rhs.Op == OAPPEND && needwritebarrier(n.Left, rhs) {
   719  			// The frontend gets rid of the write barrier to enable the special OAPPEND
   720  			// handling above, but since this is not a special case, we need it.
   721  			// TODO: just add a ptr graying to the end of growslice?
   722  			// TODO: check whether we need to provide special handling and a write barrier
   723  			// for ODOTTYPE and ORECV also.
   724  			// They get similar wb-removal treatment in walk.go:OAS.
   725  			needwb = true
   726  		}
   727  
   728  		var skip skipMask
   729  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   730  			// We're assigning a slicing operation back to its source.
   731  			// Don't write back fields we aren't changing. See issue #14855.
   732  			i, j, k := rhs.SliceBounds()
   733  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   734  				// [0:...] is the same as [:...]
   735  				i = nil
   736  			}
   737  			// TODO: detect defaults for len/cap also.
   738  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   739  			//    tmp = len(*p)
   740  			//    (*p)[:tmp]
   741  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   742  			//      j = nil
   743  			//}
   744  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   745  			//      k = nil
   746  			//}
   747  			if i == nil {
   748  				skip |= skipPtr
   749  				if j == nil {
   750  					skip |= skipLen
   751  				}
   752  				if k == nil {
   753  					skip |= skipCap
   754  				}
   755  			}
   756  		}
   757  
   758  		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)
   759  
   760  	case OIF:
   761  		bThen := s.f.NewBlock(ssa.BlockPlain)
   762  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   763  		var bElse *ssa.Block
   764  		if n.Rlist.Len() != 0 {
   765  			bElse = s.f.NewBlock(ssa.BlockPlain)
   766  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   767  		} else {
   768  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   769  		}
   770  
   771  		s.startBlock(bThen)
   772  		s.stmtList(n.Nbody)
   773  		if b := s.endBlock(); b != nil {
   774  			b.AddEdgeTo(bEnd)
   775  		}
   776  
   777  		if n.Rlist.Len() != 0 {
   778  			s.startBlock(bElse)
   779  			s.stmtList(n.Rlist)
   780  			if b := s.endBlock(); b != nil {
   781  				b.AddEdgeTo(bEnd)
   782  			}
   783  		}
   784  		s.startBlock(bEnd)
   785  
   786  	case ORETURN:
   787  		s.stmtList(n.List)
   788  		s.exit()
   789  	case ORETJMP:
   790  		s.stmtList(n.List)
   791  		b := s.exit()
   792  		b.Kind = ssa.BlockRetJmp // override BlockRet
   793  		b.Aux = n.Left.Sym
   794  
   795  	case OCONTINUE, OBREAK:
   796  		var op string
   797  		var to *ssa.Block
   798  		switch n.Op {
   799  		case OCONTINUE:
   800  			op = "continue"
   801  			to = s.continueTo
   802  		case OBREAK:
   803  			op = "break"
   804  			to = s.breakTo
   805  		}
   806  		if n.Left == nil {
   807  			// plain break/continue
   808  			if to == nil {
   809  				s.Error("%s is not in a loop", op)
   810  				return
   811  			}
   812  			// nothing to do; "to" is already the correct target
   813  		} else {
   814  			// labeled break/continue; look up the target
   815  			sym := n.Left.Sym
   816  			lab := s.label(sym)
   817  			if !lab.used() {
   818  				lab.useNode = n.Left
   819  			}
   820  			if !lab.defined() {
   821  				s.Error("%s label not defined: %v", op, sym)
   822  				lab.reported = true
   823  				return
   824  			}
   825  			switch n.Op {
   826  			case OCONTINUE:
   827  				to = lab.continueTarget
   828  			case OBREAK:
   829  				to = lab.breakTarget
   830  			}
   831  			if to == nil {
   832  				// Valid label but not usable with a break/continue here, e.g.:
   833  				// for {
   834  				// 	continue abc
   835  				// }
   836  				// abc:
   837  				// for {}
   838  				s.Error("invalid %s label %v", op, sym)
   839  				lab.reported = true
   840  				return
   841  			}
   842  		}
   843  
   844  		b := s.endBlock()
   845  		b.AddEdgeTo(to)
   846  
   847  	case OFOR:
   848  		// OFOR: for Ninit; Left; Right { Nbody }
   849  		bCond := s.f.NewBlock(ssa.BlockPlain)
   850  		bBody := s.f.NewBlock(ssa.BlockPlain)
   851  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   852  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   853  
   854  		// first, jump to condition test
   855  		b := s.endBlock()
   856  		b.AddEdgeTo(bCond)
   857  
   858  		// generate code to test condition
   859  		s.startBlock(bCond)
   860  		if n.Left != nil {
   861  			s.condBranch(n.Left, bBody, bEnd, 1)
   862  		} else {
   863  			b := s.endBlock()
   864  			b.Kind = ssa.BlockPlain
   865  			b.AddEdgeTo(bBody)
   866  		}
   867  
   868  		// set up for continue/break in body
   869  		prevContinue := s.continueTo
   870  		prevBreak := s.breakTo
   871  		s.continueTo = bIncr
   872  		s.breakTo = bEnd
   873  		lab := s.labeledNodes[n]
   874  		if lab != nil {
   875  			// labeled for loop
   876  			lab.continueTarget = bIncr
   877  			lab.breakTarget = bEnd
   878  		}
   879  
   880  		// generate body
   881  		s.startBlock(bBody)
   882  		s.stmtList(n.Nbody)
   883  
   884  		// tear down continue/break
   885  		s.continueTo = prevContinue
   886  		s.breakTo = prevBreak
   887  		if lab != nil {
   888  			lab.continueTarget = nil
   889  			lab.breakTarget = nil
   890  		}
   891  
   892  		// done with body, goto incr
   893  		if b := s.endBlock(); b != nil {
   894  			b.AddEdgeTo(bIncr)
   895  		}
   896  
   897  		// generate incr
   898  		s.startBlock(bIncr)
   899  		if n.Right != nil {
   900  			s.stmt(n.Right)
   901  		}
   902  		if b := s.endBlock(); b != nil {
   903  			b.AddEdgeTo(bCond)
   904  		}
   905  		s.startBlock(bEnd)
   906  
   907  	case OSWITCH, OSELECT:
   908  		// These have been mostly rewritten by the front end into their Nbody fields.
   909  		// Our main task is to correctly hook up any break statements.
   910  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   911  
   912  		prevBreak := s.breakTo
   913  		s.breakTo = bEnd
   914  		lab := s.labeledNodes[n]
   915  		if lab != nil {
   916  			// labeled
   917  			lab.breakTarget = bEnd
   918  		}
   919  
   920  		// generate body code
   921  		s.stmtList(n.Nbody)
   922  
   923  		s.breakTo = prevBreak
   924  		if lab != nil {
   925  			lab.breakTarget = nil
   926  		}
   927  
   928  		// OSWITCH never falls through (s.curBlock == nil here).
   929  		// OSELECT does not fall through if we're calling selectgo.
   930  		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
   931  		// In those latter cases, go to the code after the select.
   932  		if b := s.endBlock(); b != nil {
   933  			b.AddEdgeTo(bEnd)
   934  		}
   935  		s.startBlock(bEnd)
   936  
   937  	case OVARKILL:
   938  		// Insert a varkill op to record that a variable is no longer live.
   939  		// We only care about liveness info at call sites, so putting the
   940  		// varkill in the store chain is enough to keep it correctly ordered
   941  		// with respect to call ops.
   942  		if !s.canSSA(n.Left) {
   943  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   944  		}
   945  
   946  	case OVARLIVE:
   947  		// Insert a varlive op to record that a variable is still live.
   948  		if !n.Left.Addrtaken {
   949  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   950  		}
   951  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   952  
   953  	case OCHECKNIL:
   954  		p := s.expr(n.Left)
   955  		s.nilCheck(p)
   956  
   957  	case OSQRT:
   958  		s.expr(n.Left)
   959  
   960  	default:
   961  		s.Fatalf("unhandled stmt %v", n.Op)
   962  	}
   963  }
   964  
   965  // exit processes any code that needs to be generated just before returning.
   966  // It returns a BlockRet block that ends the control flow. Its control value
   967  // will be set to the final memory state.
   968  func (s *state) exit() *ssa.Block {
   969  	if hasdefer {
   970  		s.rtcall(Deferreturn, true, nil)
   971  	}
   972  
   973  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   974  	// variables back to the stack.
   975  	s.stmtList(s.exitCode)
   976  
   977  	// Store SSAable PPARAMOUT variables back to stack locations.
   978  	for _, n := range s.returns {
   979  		addr := s.decladdrs[n]
   980  		val := s.variable(n, n.Type)
   981  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
   982  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
   983  		// TODO: if val is ever spilled, we'd like to use the
   984  		// PPARAMOUT slot for spilling it. That won't happen
   985  		// currently.
   986  	}
   987  
   988  	// Do actual return.
   989  	m := s.mem()
   990  	b := s.endBlock()
   991  	b.Kind = ssa.BlockRet
   992  	b.SetControl(m)
   993  	return b
   994  }
   995  
   996  type opAndType struct {
   997  	op    Op
   998  	etype EType
   999  }
  1000  
  1001  var opToSSA = map[opAndType]ssa.Op{
  1002  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1003  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1004  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1005  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1006  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1007  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1008  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1009  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1010  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1011  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1012  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1013  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1014  
  1015  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1016  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1017  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1018  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1019  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1020  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1021  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1022  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1023  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1024  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1025  
  1026  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1027  
  1028  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1029  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1030  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1031  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1032  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1033  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1034  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1035  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1036  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1037  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1038  
  1039  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1040  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1041  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1042  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1043  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1044  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1045  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1046  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1047  
  1048  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1049  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1050  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1051  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1052  
  1053  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1054  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1055  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1056  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1057  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1058  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1059  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1060  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1061  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1062  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1063  
  1064  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1065  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1066  
  1067  	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
  1068  	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
  1069  	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
  1070  	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
  1071  	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
  1072  	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
  1073  
  1074  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1075  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1076  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1077  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1078  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1079  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1080  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1081  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1082  
  1083  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1084  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1085  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1086  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1087  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1088  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1089  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1090  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1091  
  1092  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1093  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1094  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1095  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1096  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1097  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1098  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1099  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1100  
  1101  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1102  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1103  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1104  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1105  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1106  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1107  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1108  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1109  
  1110  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1111  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1112  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1113  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1114  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1115  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1116  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1117  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1118  
  1119  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1120  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1121  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1122  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1123  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1124  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1125  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1126  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1127  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1128  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1129  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1130  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1131  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1132  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1133  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1134  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1135  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1136  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1137  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1138  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1139  
  1140  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1141  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1142  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1143  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1144  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1145  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1146  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1147  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1148  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1149  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1150  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1151  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1152  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1153  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1154  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1155  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1156  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1157  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1158  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1159  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1160  
  1161  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1162  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1163  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1164  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1165  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1166  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1167  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1168  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1169  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1170  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1171  
  1172  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1173  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1174  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1175  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1176  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1177  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1178  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1179  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1180  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1181  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1182  
  1183  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1184  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1185  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1186  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1187  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1188  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1189  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1190  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1191  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1192  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1193  
  1194  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1195  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1196  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1197  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1198  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1199  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1200  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1201  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1202  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1203  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1204  
  1205  	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
  1206  	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
  1207  	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
  1208  	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
  1209  
  1210  	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
  1211  }
  1212  
  1213  func (s *state) concreteEtype(t *Type) EType {
  1214  	e := t.Etype
  1215  	switch e {
  1216  	default:
  1217  		return e
  1218  	case TINT:
  1219  		if s.config.IntSize == 8 {
  1220  			return TINT64
  1221  		}
  1222  		return TINT32
  1223  	case TUINT:
  1224  		if s.config.IntSize == 8 {
  1225  			return TUINT64
  1226  		}
  1227  		return TUINT32
  1228  	case TUINTPTR:
  1229  		if s.config.PtrSize == 8 {
  1230  			return TUINT64
  1231  		}
  1232  		return TUINT32
  1233  	}
  1234  }
  1235  
  1236  func (s *state) ssaOp(op Op, t *Type) ssa.Op {
  1237  	etype := s.concreteEtype(t)
  1238  	x, ok := opToSSA[opAndType{op, etype}]
  1239  	if !ok {
  1240  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1241  	}
  1242  	return x
  1243  }
  1244  
  1245  func floatForComplex(t *Type) *Type {
  1246  	if t.Size() == 8 {
  1247  		return Types[TFLOAT32]
  1248  	} else {
  1249  		return Types[TFLOAT64]
  1250  	}
  1251  }
  1252  
  1253  type opAndTwoTypes struct {
  1254  	op     Op
  1255  	etype1 EType
  1256  	etype2 EType
  1257  }
  1258  
  1259  type twoTypes struct {
  1260  	etype1 EType
  1261  	etype2 EType
  1262  }
  1263  
  1264  type twoOpsAndType struct {
  1265  	op1              ssa.Op
  1266  	op2              ssa.Op
  1267  	intermediateType EType
  1268  }
  1269  
  1270  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1271  
  1272  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1273  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1274  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1275  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1276  
  1277  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1278  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1279  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1280  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1281  
  1282  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1283  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1284  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1285  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1286  
  1287  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1288  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1289  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1290  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1291  	// unsigned
  1292  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1293  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1294  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1295  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1296  
  1297  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1298  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1299  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1300  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1301  
  1302  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1303  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1304  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1305  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1306  
  1307  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1308  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1309  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1310  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1311  
  1312  	// float
  1313  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1314  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
  1315  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
  1316  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1317  }
  1318  
  1319  // this map is used only for 32-bit arch, and only includes the difference
  1320  // on 32-bit arch, don't use int64<->float conversion for uint32
  1321  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1322  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1323  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1324  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1325  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1326  }
  1327  
  1328  // uint64<->float conversions, only on machines that have intructions for that
  1329  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1330  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1331  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1332  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1333  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1334  }
  1335  
  1336  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1337  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1338  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1339  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1340  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1341  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1342  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1343  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1344  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1345  
  1346  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1347  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1348  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1349  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1350  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1351  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1352  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1353  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1354  
  1355  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1356  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1357  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1358  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1359  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1360  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1361  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1362  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1363  
  1364  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1365  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1366  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1367  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1368  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1369  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1370  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1371  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1372  
  1373  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1374  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1375  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1376  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1377  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1378  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1379  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1380  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1381  
  1382  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1383  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1384  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1385  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1386  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1387  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1388  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1389  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1390  
  1391  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1392  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1393  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1394  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1395  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1396  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1397  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1398  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1399  
  1400  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1401  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1402  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1403  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1404  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1405  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1406  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1407  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1408  }
  1409  
  1410  func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
  1411  	etype1 := s.concreteEtype(t)
  1412  	etype2 := s.concreteEtype(u)
  1413  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1414  	if !ok {
  1415  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1416  	}
  1417  	return x
  1418  }
  1419  
  1420  func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
  1421  	etype1 := s.concreteEtype(t)
  1422  	x, ok := opToSSA[opAndType{op, etype1}]
  1423  	if !ok {
  1424  		s.Fatalf("unhandled rotate op %v etype=%s", op, etype1)
  1425  	}
  1426  	return x
  1427  }
  1428  
  1429  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1430  func (s *state) expr(n *Node) *ssa.Value {
  1431  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1432  		// ONAMEs and named OLITERALs have the line number
  1433  		// of the decl, not the use. See issue 14742.
  1434  		s.pushLine(n.Lineno)
  1435  		defer s.popLine()
  1436  	}
  1437  
  1438  	s.stmtList(n.Ninit)
  1439  	switch n.Op {
  1440  	case OARRAYBYTESTRTMP:
  1441  		slice := s.expr(n.Left)
  1442  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
  1443  		len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  1444  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1445  	case OSTRARRAYBYTETMP:
  1446  		str := s.expr(n.Left)
  1447  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), str)
  1448  		len := s.newValue1(ssa.OpStringLen, Types[TINT], str)
  1449  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1450  	case OCFUNC:
  1451  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
  1452  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1453  	case ONAME:
  1454  		if n.Class == PFUNC {
  1455  			// "value" of a function is the address of the function's closure
  1456  			sym := funcsym(n.Sym)
  1457  			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
  1458  			return s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sb)
  1459  		}
  1460  		if s.canSSA(n) {
  1461  			return s.variable(n, n.Type)
  1462  		}
  1463  		addr, _ := s.addr(n, false)
  1464  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1465  	case OCLOSUREVAR:
  1466  		addr, _ := s.addr(n, false)
  1467  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1468  	case OLITERAL:
  1469  		switch u := n.Val().U.(type) {
  1470  		case *Mpint:
  1471  			i := u.Int64()
  1472  			switch n.Type.Size() {
  1473  			case 1:
  1474  				return s.constInt8(n.Type, int8(i))
  1475  			case 2:
  1476  				return s.constInt16(n.Type, int16(i))
  1477  			case 4:
  1478  				return s.constInt32(n.Type, int32(i))
  1479  			case 8:
  1480  				return s.constInt64(n.Type, i)
  1481  			default:
  1482  				s.Fatalf("bad integer size %d", n.Type.Size())
  1483  				return nil
  1484  			}
  1485  		case string:
  1486  			if u == "" {
  1487  				return s.constEmptyString(n.Type)
  1488  			}
  1489  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1490  		case bool:
  1491  			return s.constBool(u)
  1492  		case *NilVal:
  1493  			t := n.Type
  1494  			switch {
  1495  			case t.IsSlice():
  1496  				return s.constSlice(t)
  1497  			case t.IsInterface():
  1498  				return s.constInterface(t)
  1499  			default:
  1500  				return s.constNil(t)
  1501  			}
  1502  		case *Mpflt:
  1503  			switch n.Type.Size() {
  1504  			case 4:
  1505  				return s.constFloat32(n.Type, u.Float32())
  1506  			case 8:
  1507  				return s.constFloat64(n.Type, u.Float64())
  1508  			default:
  1509  				s.Fatalf("bad float size %d", n.Type.Size())
  1510  				return nil
  1511  			}
  1512  		case *Mpcplx:
  1513  			r := &u.Real
  1514  			i := &u.Imag
  1515  			switch n.Type.Size() {
  1516  			case 8:
  1517  				pt := Types[TFLOAT32]
  1518  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1519  					s.constFloat32(pt, r.Float32()),
  1520  					s.constFloat32(pt, i.Float32()))
  1521  			case 16:
  1522  				pt := Types[TFLOAT64]
  1523  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1524  					s.constFloat64(pt, r.Float64()),
  1525  					s.constFloat64(pt, i.Float64()))
  1526  			default:
  1527  				s.Fatalf("bad float size %d", n.Type.Size())
  1528  				return nil
  1529  			}
  1530  
  1531  		default:
  1532  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1533  			return nil
  1534  		}
  1535  	case OCONVNOP:
  1536  		to := n.Type
  1537  		from := n.Left.Type
  1538  
  1539  		// Assume everything will work out, so set up our return value.
  1540  		// Anything interesting that happens from here is a fatal.
  1541  		x := s.expr(n.Left)
  1542  
  1543  		// Special case for not confusing GC and liveness.
  1544  		// We don't want pointers accidentally classified
  1545  		// as not-pointers or vice-versa because of copy
  1546  		// elision.
  1547  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1548  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1549  		}
  1550  
  1551  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1552  
  1553  		// CONVNOP closure
  1554  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1555  			return v
  1556  		}
  1557  
  1558  		// named <--> unnamed type or typed <--> untyped const
  1559  		if from.Etype == to.Etype {
  1560  			return v
  1561  		}
  1562  
  1563  		// unsafe.Pointer <--> *T
  1564  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1565  			return v
  1566  		}
  1567  
  1568  		dowidth(from)
  1569  		dowidth(to)
  1570  		if from.Width != to.Width {
  1571  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1572  			return nil
  1573  		}
  1574  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1575  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1576  			return nil
  1577  		}
  1578  
  1579  		if instrumenting {
  1580  			// These appear to be fine, but they fail the
  1581  			// integer constraint below, so okay them here.
  1582  			// Sample non-integer conversion: map[string]string -> *uint8
  1583  			return v
  1584  		}
  1585  
  1586  		if etypesign(from.Etype) == 0 {
  1587  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1588  			return nil
  1589  		}
  1590  
  1591  		// integer, same width, same sign
  1592  		return v
  1593  
  1594  	case OCONV:
  1595  		x := s.expr(n.Left)
  1596  		ft := n.Left.Type // from type
  1597  		tt := n.Type      // to type
  1598  		if ft.IsInteger() && tt.IsInteger() {
  1599  			var op ssa.Op
  1600  			if tt.Size() == ft.Size() {
  1601  				op = ssa.OpCopy
  1602  			} else if tt.Size() < ft.Size() {
  1603  				// truncation
  1604  				switch 10*ft.Size() + tt.Size() {
  1605  				case 21:
  1606  					op = ssa.OpTrunc16to8
  1607  				case 41:
  1608  					op = ssa.OpTrunc32to8
  1609  				case 42:
  1610  					op = ssa.OpTrunc32to16
  1611  				case 81:
  1612  					op = ssa.OpTrunc64to8
  1613  				case 82:
  1614  					op = ssa.OpTrunc64to16
  1615  				case 84:
  1616  					op = ssa.OpTrunc64to32
  1617  				default:
  1618  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1619  				}
  1620  			} else if ft.IsSigned() {
  1621  				// sign extension
  1622  				switch 10*ft.Size() + tt.Size() {
  1623  				case 12:
  1624  					op = ssa.OpSignExt8to16
  1625  				case 14:
  1626  					op = ssa.OpSignExt8to32
  1627  				case 18:
  1628  					op = ssa.OpSignExt8to64
  1629  				case 24:
  1630  					op = ssa.OpSignExt16to32
  1631  				case 28:
  1632  					op = ssa.OpSignExt16to64
  1633  				case 48:
  1634  					op = ssa.OpSignExt32to64
  1635  				default:
  1636  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1637  				}
  1638  			} else {
  1639  				// zero extension
  1640  				switch 10*ft.Size() + tt.Size() {
  1641  				case 12:
  1642  					op = ssa.OpZeroExt8to16
  1643  				case 14:
  1644  					op = ssa.OpZeroExt8to32
  1645  				case 18:
  1646  					op = ssa.OpZeroExt8to64
  1647  				case 24:
  1648  					op = ssa.OpZeroExt16to32
  1649  				case 28:
  1650  					op = ssa.OpZeroExt16to64
  1651  				case 48:
  1652  					op = ssa.OpZeroExt32to64
  1653  				default:
  1654  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1655  				}
  1656  			}
  1657  			return s.newValue1(op, n.Type, x)
  1658  		}
  1659  
  1660  		if ft.IsFloat() || tt.IsFloat() {
  1661  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1662  			if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" {
  1663  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1664  					conv = conv1
  1665  				}
  1666  			}
  1667  			if Thearch.LinkArch.Name == "arm64" {
  1668  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1669  					conv = conv1
  1670  				}
  1671  			}
  1672  			if !ok {
  1673  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1674  			}
  1675  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1676  
  1677  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1678  				// normal case, not tripping over unsigned 64
  1679  				if op1 == ssa.OpCopy {
  1680  					if op2 == ssa.OpCopy {
  1681  						return x
  1682  					}
  1683  					return s.newValue1(op2, n.Type, x)
  1684  				}
  1685  				if op2 == ssa.OpCopy {
  1686  					return s.newValue1(op1, n.Type, x)
  1687  				}
  1688  				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
  1689  			}
  1690  			// Tricky 64-bit unsigned cases.
  1691  			if ft.IsInteger() {
  1692  				// therefore tt is float32 or float64, and ft is also unsigned
  1693  				if tt.Size() == 4 {
  1694  					return s.uint64Tofloat32(n, x, ft, tt)
  1695  				}
  1696  				if tt.Size() == 8 {
  1697  					return s.uint64Tofloat64(n, x, ft, tt)
  1698  				}
  1699  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1700  			}
  1701  			// therefore ft is float32 or float64, and tt is unsigned integer
  1702  			if ft.Size() == 4 {
  1703  				return s.float32ToUint64(n, x, ft, tt)
  1704  			}
  1705  			if ft.Size() == 8 {
  1706  				return s.float64ToUint64(n, x, ft, tt)
  1707  			}
  1708  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1709  			return nil
  1710  		}
  1711  
  1712  		if ft.IsComplex() && tt.IsComplex() {
  1713  			var op ssa.Op
  1714  			if ft.Size() == tt.Size() {
  1715  				op = ssa.OpCopy
  1716  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1717  				op = ssa.OpCvt32Fto64F
  1718  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1719  				op = ssa.OpCvt64Fto32F
  1720  			} else {
  1721  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1722  			}
  1723  			ftp := floatForComplex(ft)
  1724  			ttp := floatForComplex(tt)
  1725  			return s.newValue2(ssa.OpComplexMake, tt,
  1726  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1727  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1728  		}
  1729  
  1730  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1731  		return nil
  1732  
  1733  	case ODOTTYPE:
  1734  		res, _ := s.dottype(n, false)
  1735  		return res
  1736  
  1737  	// binary ops
  1738  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1739  		a := s.expr(n.Left)
  1740  		b := s.expr(n.Right)
  1741  		if n.Left.Type.IsComplex() {
  1742  			pt := floatForComplex(n.Left.Type)
  1743  			op := s.ssaOp(OEQ, pt)
  1744  			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1745  			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1746  			c := s.newValue2(ssa.OpAndB, Types[TBOOL], r, i)
  1747  			switch n.Op {
  1748  			case OEQ:
  1749  				return c
  1750  			case ONE:
  1751  				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
  1752  			default:
  1753  				s.Fatalf("ordered complex compare %v", n.Op)
  1754  			}
  1755  		}
  1756  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
  1757  	case OMUL:
  1758  		a := s.expr(n.Left)
  1759  		b := s.expr(n.Right)
  1760  		if n.Type.IsComplex() {
  1761  			mulop := ssa.OpMul64F
  1762  			addop := ssa.OpAdd64F
  1763  			subop := ssa.OpSub64F
  1764  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1765  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1766  
  1767  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1768  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1769  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1770  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1771  
  1772  			if pt != wt { // Widen for calculation
  1773  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1774  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1775  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1776  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1777  			}
  1778  
  1779  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1780  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1781  
  1782  			if pt != wt { // Narrow to store back
  1783  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1784  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1785  			}
  1786  
  1787  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1788  		}
  1789  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1790  
  1791  	case ODIV:
  1792  		a := s.expr(n.Left)
  1793  		b := s.expr(n.Right)
  1794  		if n.Type.IsComplex() {
  1795  			// TODO this is not executed because the front-end substitutes a runtime call.
  1796  			// That probably ought to change; with modest optimization the widen/narrow
  1797  			// conversions could all be elided in larger expression trees.
  1798  			mulop := ssa.OpMul64F
  1799  			addop := ssa.OpAdd64F
  1800  			subop := ssa.OpSub64F
  1801  			divop := ssa.OpDiv64F
  1802  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1803  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1804  
  1805  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1806  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1807  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1808  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1809  
  1810  			if pt != wt { // Widen for calculation
  1811  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1812  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1813  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1814  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1815  			}
  1816  
  1817  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1818  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1819  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1820  
  1821  			// TODO not sure if this is best done in wide precision or narrow
  1822  			// Double-rounding might be an issue.
  1823  			// Note that the pre-SSA implementation does the entire calculation
  1824  			// in wide format, so wide is compatible.
  1825  			xreal = s.newValue2(divop, wt, xreal, denom)
  1826  			ximag = s.newValue2(divop, wt, ximag, denom)
  1827  
  1828  			if pt != wt { // Narrow to store back
  1829  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1830  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1831  			}
  1832  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1833  		}
  1834  		if n.Type.IsFloat() {
  1835  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1836  		}
  1837  		return s.intDivide(n, a, b)
  1838  	case OMOD:
  1839  		a := s.expr(n.Left)
  1840  		b := s.expr(n.Right)
  1841  		return s.intDivide(n, a, b)
  1842  	case OADD, OSUB:
  1843  		a := s.expr(n.Left)
  1844  		b := s.expr(n.Right)
  1845  		if n.Type.IsComplex() {
  1846  			pt := floatForComplex(n.Type)
  1847  			op := s.ssaOp(n.Op, pt)
  1848  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1849  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1850  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1851  		}
  1852  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1853  	case OAND, OOR, OHMUL, OXOR:
  1854  		a := s.expr(n.Left)
  1855  		b := s.expr(n.Right)
  1856  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1857  	case OLSH, ORSH:
  1858  		a := s.expr(n.Left)
  1859  		b := s.expr(n.Right)
  1860  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1861  	case OLROT:
  1862  		a := s.expr(n.Left)
  1863  		i := n.Right.Int64()
  1864  		if i <= 0 || i >= n.Type.Size()*8 {
  1865  			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
  1866  		}
  1867  		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
  1868  	case OANDAND, OOROR:
  1869  		// To implement OANDAND (and OOROR), we introduce a
  1870  		// new temporary variable to hold the result. The
  1871  		// variable is associated with the OANDAND node in the
  1872  		// s.vars table (normally variables are only
  1873  		// associated with ONAME nodes). We convert
  1874  		//     A && B
  1875  		// to
  1876  		//     var = A
  1877  		//     if var {
  1878  		//         var = B
  1879  		//     }
  1880  		// Using var in the subsequent block introduces the
  1881  		// necessary phi variable.
  1882  		el := s.expr(n.Left)
  1883  		s.vars[n] = el
  1884  
  1885  		b := s.endBlock()
  1886  		b.Kind = ssa.BlockIf
  1887  		b.SetControl(el)
  1888  		// In theory, we should set b.Likely here based on context.
  1889  		// However, gc only gives us likeliness hints
  1890  		// in a single place, for plain OIF statements,
  1891  		// and passing around context is finnicky, so don't bother for now.
  1892  
  1893  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1894  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1895  		if n.Op == OANDAND {
  1896  			b.AddEdgeTo(bRight)
  1897  			b.AddEdgeTo(bResult)
  1898  		} else if n.Op == OOROR {
  1899  			b.AddEdgeTo(bResult)
  1900  			b.AddEdgeTo(bRight)
  1901  		}
  1902  
  1903  		s.startBlock(bRight)
  1904  		er := s.expr(n.Right)
  1905  		s.vars[n] = er
  1906  
  1907  		b = s.endBlock()
  1908  		b.AddEdgeTo(bResult)
  1909  
  1910  		s.startBlock(bResult)
  1911  		return s.variable(n, Types[TBOOL])
  1912  	case OCOMPLEX:
  1913  		r := s.expr(n.Left)
  1914  		i := s.expr(n.Right)
  1915  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1916  
  1917  	// unary ops
  1918  	case OMINUS:
  1919  		a := s.expr(n.Left)
  1920  		if n.Type.IsComplex() {
  1921  			tp := floatForComplex(n.Type)
  1922  			negop := s.ssaOp(n.Op, tp)
  1923  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1924  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1925  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1926  		}
  1927  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1928  	case ONOT, OCOM, OSQRT:
  1929  		a := s.expr(n.Left)
  1930  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1931  	case OIMAG, OREAL:
  1932  		a := s.expr(n.Left)
  1933  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1934  	case OPLUS:
  1935  		return s.expr(n.Left)
  1936  
  1937  	case OADDR:
  1938  		a, _ := s.addr(n.Left, n.Bounded)
  1939  		// Note we know the volatile result is false because you can't write &f() in Go.
  1940  		return a
  1941  
  1942  	case OINDREGSP:
  1943  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(n.Type), n.Xoffset, s.sp)
  1944  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1945  
  1946  	case OIND:
  1947  		p := s.exprPtr(n.Left, false, n.Lineno)
  1948  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1949  
  1950  	case ODOT:
  1951  		t := n.Left.Type
  1952  		if canSSAType(t) {
  1953  			v := s.expr(n.Left)
  1954  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1955  		}
  1956  		p, _ := s.addr(n, false)
  1957  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1958  
  1959  	case ODOTPTR:
  1960  		p := s.exprPtr(n.Left, false, n.Lineno)
  1961  		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
  1962  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1963  
  1964  	case OINDEX:
  1965  		switch {
  1966  		case n.Left.Type.IsString():
  1967  			if n.Bounded && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  1968  				// Replace "abc"[1] with 'b'.
  1969  				// Delayed until now because "abc"[1] is not an ideal constant.
  1970  				// See test/fixedbugs/issue11370.go.
  1971  				return s.newValue0I(ssa.OpConst8, Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  1972  			}
  1973  			a := s.expr(n.Left)
  1974  			i := s.expr(n.Right)
  1975  			i = s.extendIndex(i, panicindex)
  1976  			if !n.Bounded {
  1977  				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
  1978  				s.boundsCheck(i, len)
  1979  			}
  1980  			ptrtyp := ptrto(Types[TUINT8])
  1981  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  1982  			if Isconst(n.Right, CTINT) {
  1983  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  1984  			} else {
  1985  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  1986  			}
  1987  			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
  1988  		case n.Left.Type.IsSlice():
  1989  			p, _ := s.addr(n, false)
  1990  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1991  		case n.Left.Type.IsArray():
  1992  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  1993  				// SSA can handle arrays of length at most 1.
  1994  				a := s.expr(n.Left)
  1995  				i := s.expr(n.Right)
  1996  				if bound == 0 {
  1997  					// Bounds check will never succeed.  Might as well
  1998  					// use constants for the bounds check.
  1999  					z := s.constInt(Types[TINT], 0)
  2000  					s.boundsCheck(z, z)
  2001  					// The return value won't be live, return junk.
  2002  					return s.newValue0(ssa.OpUnknown, n.Type)
  2003  				}
  2004  				i = s.extendIndex(i, panicindex)
  2005  				s.boundsCheck(i, s.constInt(Types[TINT], bound))
  2006  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  2007  			}
  2008  			p, _ := s.addr(n, false)
  2009  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2010  		default:
  2011  			s.Fatalf("bad type for index %v", n.Left.Type)
  2012  			return nil
  2013  		}
  2014  
  2015  	case OLEN, OCAP:
  2016  		switch {
  2017  		case n.Left.Type.IsSlice():
  2018  			op := ssa.OpSliceLen
  2019  			if n.Op == OCAP {
  2020  				op = ssa.OpSliceCap
  2021  			}
  2022  			return s.newValue1(op, Types[TINT], s.expr(n.Left))
  2023  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2024  			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
  2025  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2026  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2027  		default: // array
  2028  			return s.constInt(Types[TINT], n.Left.Type.NumElem())
  2029  		}
  2030  
  2031  	case OSPTR:
  2032  		a := s.expr(n.Left)
  2033  		if n.Left.Type.IsSlice() {
  2034  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2035  		} else {
  2036  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2037  		}
  2038  
  2039  	case OITAB:
  2040  		a := s.expr(n.Left)
  2041  		return s.newValue1(ssa.OpITab, n.Type, a)
  2042  
  2043  	case OIDATA:
  2044  		a := s.expr(n.Left)
  2045  		return s.newValue1(ssa.OpIData, n.Type, a)
  2046  
  2047  	case OEFACE:
  2048  		tab := s.expr(n.Left)
  2049  		data := s.expr(n.Right)
  2050  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2051  
  2052  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2053  		v := s.expr(n.Left)
  2054  		var i, j, k *ssa.Value
  2055  		low, high, max := n.SliceBounds()
  2056  		if low != nil {
  2057  			i = s.extendIndex(s.expr(low), panicslice)
  2058  		}
  2059  		if high != nil {
  2060  			j = s.extendIndex(s.expr(high), panicslice)
  2061  		}
  2062  		if max != nil {
  2063  			k = s.extendIndex(s.expr(max), panicslice)
  2064  		}
  2065  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2066  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2067  
  2068  	case OSLICESTR:
  2069  		v := s.expr(n.Left)
  2070  		var i, j *ssa.Value
  2071  		low, high, _ := n.SliceBounds()
  2072  		if low != nil {
  2073  			i = s.extendIndex(s.expr(low), panicslice)
  2074  		}
  2075  		if high != nil {
  2076  			j = s.extendIndex(s.expr(high), panicslice)
  2077  		}
  2078  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2079  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2080  
  2081  	case OCALLFUNC:
  2082  		if isIntrinsicCall(n) {
  2083  			return s.intrinsicCall(n)
  2084  		}
  2085  		fallthrough
  2086  
  2087  	case OCALLINTER, OCALLMETH:
  2088  		a := s.call(n, callNormal)
  2089  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2090  
  2091  	case OGETG:
  2092  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2093  
  2094  	case OAPPEND:
  2095  		return s.append(n, false)
  2096  
  2097  	default:
  2098  		s.Fatalf("unhandled expr %v", n.Op)
  2099  		return nil
  2100  	}
  2101  }
  2102  
  2103  // append converts an OAPPEND node to SSA.
  2104  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2105  // adds it to s, and returns the Value.
  2106  // If inplace is true, it writes the result of the OAPPEND expression n
  2107  // back to the slice being appended to, and returns nil.
  2108  // inplace MUST be set to false if the slice can be SSA'd.
  2109  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2110  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2111  	//
  2112  	// ptr, len, cap := s
  2113  	// newlen := len + 3
  2114  	// if newlen > cap {
  2115  	//     ptr, len, cap = growslice(s, newlen)
  2116  	//     newlen = len + 3 // recalculate to avoid a spill
  2117  	// }
  2118  	// // with write barriers, if needed:
  2119  	// *(ptr+len) = e1
  2120  	// *(ptr+len+1) = e2
  2121  	// *(ptr+len+2) = e3
  2122  	// return makeslice(ptr, newlen, cap)
  2123  	//
  2124  	//
  2125  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2126  	//
  2127  	// a := &s
  2128  	// ptr, len, cap := s
  2129  	// newlen := len + 3
  2130  	// if newlen > cap {
  2131  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2132  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2133  	//    *a.cap = newcap // write before ptr to avoid a spill
  2134  	//    *a.ptr = newptr // with write barrier
  2135  	// }
  2136  	// newlen = len + 3 // recalculate to avoid a spill
  2137  	// *a.len = newlen
  2138  	// // with write barriers, if needed:
  2139  	// *(ptr+len) = e1
  2140  	// *(ptr+len+1) = e2
  2141  	// *(ptr+len+2) = e3
  2142  
  2143  	et := n.Type.Elem()
  2144  	pt := ptrto(et)
  2145  
  2146  	// Evaluate slice
  2147  	sn := n.List.First() // the slice node is the first in the list
  2148  
  2149  	var slice, addr *ssa.Value
  2150  	if inplace {
  2151  		addr, _ = s.addr(sn, false)
  2152  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2153  	} else {
  2154  		slice = s.expr(sn)
  2155  	}
  2156  
  2157  	// Allocate new blocks
  2158  	grow := s.f.NewBlock(ssa.BlockPlain)
  2159  	assign := s.f.NewBlock(ssa.BlockPlain)
  2160  
  2161  	// Decide if we need to grow
  2162  	nargs := int64(n.List.Len() - 1)
  2163  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2164  	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2165  	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
  2166  	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2167  
  2168  	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
  2169  	s.vars[&ptrVar] = p
  2170  
  2171  	if !inplace {
  2172  		s.vars[&newlenVar] = nl
  2173  		s.vars[&capVar] = c
  2174  	} else {
  2175  		s.vars[&lenVar] = l
  2176  	}
  2177  
  2178  	b := s.endBlock()
  2179  	b.Kind = ssa.BlockIf
  2180  	b.Likely = ssa.BranchUnlikely
  2181  	b.SetControl(cmp)
  2182  	b.AddEdgeTo(grow)
  2183  	b.AddEdgeTo(assign)
  2184  
  2185  	// Call growslice
  2186  	s.startBlock(grow)
  2187  	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)
  2188  
  2189  	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
  2190  
  2191  	if inplace {
  2192  		if sn.Op == ONAME {
  2193  			// Tell liveness we're about to build a new slice
  2194  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2195  		}
  2196  		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_cap), addr)
  2197  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
  2198  		if ssa.IsStackAddr(addr) {
  2199  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, pt.Size(), addr, r[0], s.mem())
  2200  		} else {
  2201  			s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
  2202  		}
  2203  		// load the value we just stored to avoid having to spill it
  2204  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2205  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2206  	} else {
  2207  		s.vars[&ptrVar] = r[0]
  2208  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
  2209  		s.vars[&capVar] = r[2]
  2210  	}
  2211  
  2212  	b = s.endBlock()
  2213  	b.AddEdgeTo(assign)
  2214  
  2215  	// assign new elements to slots
  2216  	s.startBlock(assign)
  2217  
  2218  	if inplace {
  2219  		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
  2220  		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2221  		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_nel), addr)
  2222  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
  2223  	}
  2224  
  2225  	// Evaluate args
  2226  	type argRec struct {
  2227  		// if store is true, we're appending the value v.  If false, we're appending the
  2228  		// value at *v.  If store==false, isVolatile reports whether the source
  2229  		// is in the outargs section of the stack frame.
  2230  		v          *ssa.Value
  2231  		store      bool
  2232  		isVolatile bool
  2233  	}
  2234  	args := make([]argRec, 0, nargs)
  2235  	for _, n := range n.List.Slice()[1:] {
  2236  		if canSSAType(n.Type) {
  2237  			args = append(args, argRec{v: s.expr(n), store: true})
  2238  		} else {
  2239  			v, isVolatile := s.addr(n, false)
  2240  			args = append(args, argRec{v: v, isVolatile: isVolatile})
  2241  		}
  2242  	}
  2243  
  2244  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2245  	if !inplace {
  2246  		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
  2247  		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
  2248  	}
  2249  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2250  	// TODO: just one write barrier call for all of these writes?
  2251  	// TODO: maybe just one writeBarrier.enabled check?
  2252  	for i, arg := range args {
  2253  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
  2254  		if arg.store {
  2255  			if haspointers(et) {
  2256  				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
  2257  			} else {
  2258  				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2259  			}
  2260  		} else {
  2261  			if haspointers(et) {
  2262  				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
  2263  			} else {
  2264  				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(et), addr, arg.v, s.mem())
  2265  			}
  2266  		}
  2267  	}
  2268  
  2269  	delete(s.vars, &ptrVar)
  2270  	if inplace {
  2271  		delete(s.vars, &lenVar)
  2272  		return nil
  2273  	}
  2274  	delete(s.vars, &newlenVar)
  2275  	delete(s.vars, &capVar)
  2276  	// make result
  2277  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2278  }
  2279  
  2280  // condBranch evaluates the boolean expression cond and branches to yes
  2281  // if cond is true and no if cond is false.
  2282  // This function is intended to handle && and || better than just calling
  2283  // s.expr(cond) and branching on the result.
  2284  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2285  	if cond.Op == OANDAND {
  2286  		mid := s.f.NewBlock(ssa.BlockPlain)
  2287  		s.stmtList(cond.Ninit)
  2288  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2289  		s.startBlock(mid)
  2290  		s.condBranch(cond.Right, yes, no, likely)
  2291  		return
  2292  		// Note: if likely==1, then both recursive calls pass 1.
  2293  		// If likely==-1, then we don't have enough information to decide
  2294  		// whether the first branch is likely or not. So we pass 0 for
  2295  		// the likeliness of the first branch.
  2296  		// TODO: have the frontend give us branch prediction hints for
  2297  		// OANDAND and OOROR nodes (if it ever has such info).
  2298  	}
  2299  	if cond.Op == OOROR {
  2300  		mid := s.f.NewBlock(ssa.BlockPlain)
  2301  		s.stmtList(cond.Ninit)
  2302  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2303  		s.startBlock(mid)
  2304  		s.condBranch(cond.Right, yes, no, likely)
  2305  		return
  2306  		// Note: if likely==-1, then both recursive calls pass -1.
  2307  		// If likely==1, then we don't have enough info to decide
  2308  		// the likelihood of the first branch.
  2309  	}
  2310  	if cond.Op == ONOT {
  2311  		s.stmtList(cond.Ninit)
  2312  		s.condBranch(cond.Left, no, yes, -likely)
  2313  		return
  2314  	}
  2315  	c := s.expr(cond)
  2316  	b := s.endBlock()
  2317  	b.Kind = ssa.BlockIf
  2318  	b.SetControl(c)
  2319  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2320  	b.AddEdgeTo(yes)
  2321  	b.AddEdgeTo(no)
  2322  }
  2323  
  2324  type skipMask uint8
  2325  
  2326  const (
  2327  	skipPtr skipMask = 1 << iota
  2328  	skipLen
  2329  	skipCap
  2330  )
  2331  
  2332  // assign does left = right.
  2333  // Right has already been evaluated to ssa, left has not.
  2334  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2335  // If deref is true and right == nil, just do left = 0.
  2336  // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
  2337  // Include a write barrier if wb is true.
  2338  // skip indicates assignments (at the top level) that can be avoided.
  2339  func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
  2340  	if left.Op == ONAME && isblank(left) {
  2341  		return
  2342  	}
  2343  	t := left.Type
  2344  	dowidth(t)
  2345  	if s.canSSA(left) {
  2346  		if deref {
  2347  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2348  		}
  2349  		if left.Op == ODOT {
  2350  			// We're assigning to a field of an ssa-able value.
  2351  			// We need to build a new structure with the new value for the
  2352  			// field we're assigning and the old values for the other fields.
  2353  			// For instance:
  2354  			//   type T struct {a, b, c int}
  2355  			//   var T x
  2356  			//   x.b = 5
  2357  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2358  
  2359  			// Grab information about the structure type.
  2360  			t := left.Left.Type
  2361  			nf := t.NumFields()
  2362  			idx := fieldIdx(left)
  2363  
  2364  			// Grab old value of structure.
  2365  			old := s.expr(left.Left)
  2366  
  2367  			// Make new structure.
  2368  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2369  
  2370  			// Add fields as args.
  2371  			for i := 0; i < nf; i++ {
  2372  				if i == idx {
  2373  					new.AddArg(right)
  2374  				} else {
  2375  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2376  				}
  2377  			}
  2378  
  2379  			// Recursively assign the new value we've made to the base of the dot op.
  2380  			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
  2381  			// TODO: do we need to update named values here?
  2382  			return
  2383  		}
  2384  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2385  			// We're assigning to an element of an ssa-able array.
  2386  			// a[i] = v
  2387  			t := left.Left.Type
  2388  			n := t.NumElem()
  2389  
  2390  			i := s.expr(left.Right) // index
  2391  			if n == 0 {
  2392  				// The bounds check must fail.  Might as well
  2393  				// ignore the actual index and just use zeros.
  2394  				z := s.constInt(Types[TINT], 0)
  2395  				s.boundsCheck(z, z)
  2396  				return
  2397  			}
  2398  			if n != 1 {
  2399  				s.Fatalf("assigning to non-1-length array")
  2400  			}
  2401  			// Rewrite to a = [1]{v}
  2402  			i = s.extendIndex(i, panicindex)
  2403  			s.boundsCheck(i, s.constInt(Types[TINT], 1))
  2404  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2405  			s.assign(left.Left, v, false, false, line, 0, rightIsVolatile)
  2406  			return
  2407  		}
  2408  		// Update variable assignment.
  2409  		s.vars[left] = right
  2410  		s.addNamedValue(left, right)
  2411  		return
  2412  	}
  2413  	// Left is not ssa-able. Compute its address.
  2414  	addr, _ := s.addr(left, false)
  2415  	if left.Op == ONAME && skip == 0 {
  2416  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2417  	}
  2418  	if deref {
  2419  		// Treat as a mem->mem move.
  2420  		if wb && !ssa.IsStackAddr(addr) {
  2421  			s.insertWBmove(t, addr, right, line, rightIsVolatile)
  2422  			return
  2423  		}
  2424  		if right == nil {
  2425  			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(t), addr, s.mem())
  2426  			return
  2427  		}
  2428  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), addr, right, s.mem())
  2429  		return
  2430  	}
  2431  	// Treat as a store.
  2432  	if wb && !ssa.IsStackAddr(addr) {
  2433  		if skip&skipPtr != 0 {
  2434  			// Special case: if we don't write back the pointers, don't bother
  2435  			// doing the write barrier check.
  2436  			s.storeTypeScalars(t, addr, right, skip)
  2437  			return
  2438  		}
  2439  		s.insertWBstore(t, addr, right, line, skip)
  2440  		return
  2441  	}
  2442  	if skip != 0 {
  2443  		if skip&skipPtr == 0 {
  2444  			s.storeTypePtrs(t, addr, right)
  2445  		}
  2446  		s.storeTypeScalars(t, addr, right, skip)
  2447  		return
  2448  	}
  2449  	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2450  }
  2451  
  2452  // zeroVal returns the zero value for type t.
  2453  func (s *state) zeroVal(t *Type) *ssa.Value {
  2454  	switch {
  2455  	case t.IsInteger():
  2456  		switch t.Size() {
  2457  		case 1:
  2458  			return s.constInt8(t, 0)
  2459  		case 2:
  2460  			return s.constInt16(t, 0)
  2461  		case 4:
  2462  			return s.constInt32(t, 0)
  2463  		case 8:
  2464  			return s.constInt64(t, 0)
  2465  		default:
  2466  			s.Fatalf("bad sized integer type %v", t)
  2467  		}
  2468  	case t.IsFloat():
  2469  		switch t.Size() {
  2470  		case 4:
  2471  			return s.constFloat32(t, 0)
  2472  		case 8:
  2473  			return s.constFloat64(t, 0)
  2474  		default:
  2475  			s.Fatalf("bad sized float type %v", t)
  2476  		}
  2477  	case t.IsComplex():
  2478  		switch t.Size() {
  2479  		case 8:
  2480  			z := s.constFloat32(Types[TFLOAT32], 0)
  2481  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2482  		case 16:
  2483  			z := s.constFloat64(Types[TFLOAT64], 0)
  2484  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2485  		default:
  2486  			s.Fatalf("bad sized complex type %v", t)
  2487  		}
  2488  
  2489  	case t.IsString():
  2490  		return s.constEmptyString(t)
  2491  	case t.IsPtrShaped():
  2492  		return s.constNil(t)
  2493  	case t.IsBoolean():
  2494  		return s.constBool(false)
  2495  	case t.IsInterface():
  2496  		return s.constInterface(t)
  2497  	case t.IsSlice():
  2498  		return s.constSlice(t)
  2499  	case t.IsStruct():
  2500  		n := t.NumFields()
  2501  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2502  		for i := 0; i < n; i++ {
  2503  			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
  2504  		}
  2505  		return v
  2506  	case t.IsArray():
  2507  		switch t.NumElem() {
  2508  		case 0:
  2509  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2510  		case 1:
  2511  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2512  		}
  2513  	}
  2514  	s.Fatalf("zero for type %v not implemented", t)
  2515  	return nil
  2516  }
  2517  
  2518  type callKind int8
  2519  
  2520  const (
  2521  	callNormal callKind = iota
  2522  	callDefer
  2523  	callGo
  2524  )
  2525  
  2526  // TODO: make this a field of a configuration object instead of a global.
  2527  var intrinsics *intrinsicInfo
  2528  
  2529  type intrinsicInfo struct {
  2530  	std      map[intrinsicKey]intrinsicBuilder
  2531  	intSized map[sizedIntrinsicKey]intrinsicBuilder
  2532  	ptrSized map[sizedIntrinsicKey]intrinsicBuilder
  2533  }
  2534  
  2535  // An intrinsicBuilder converts a call node n into an ssa value that
  2536  // implements that call as an intrinsic. args is a list of arguments to the func.
  2537  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2538  
  2539  type intrinsicKey struct {
  2540  	pkg string
  2541  	fn  string
  2542  }
  2543  
  2544  type sizedIntrinsicKey struct {
  2545  	pkg  string
  2546  	fn   string
  2547  	size int
  2548  }
  2549  
  2550  // disableForInstrumenting returns nil when instrumenting, fn otherwise
  2551  func disableForInstrumenting(fn intrinsicBuilder) intrinsicBuilder {
  2552  	if instrumenting {
  2553  		return nil
  2554  	}
  2555  	return fn
  2556  }
  2557  
  2558  // enableOnArch returns fn on given archs, nil otherwise
  2559  func enableOnArch(fn intrinsicBuilder, archs ...sys.ArchFamily) intrinsicBuilder {
  2560  	if Thearch.LinkArch.InFamily(archs...) {
  2561  		return fn
  2562  	}
  2563  	return nil
  2564  }
  2565  
  2566  func intrinsicInit() {
  2567  	i := &intrinsicInfo{}
  2568  	intrinsics = i
  2569  
  2570  	// initial set of intrinsics.
  2571  	i.std = map[intrinsicKey]intrinsicBuilder{
  2572  		/******** runtime ********/
  2573  		intrinsicKey{"runtime", "slicebytetostringtmp"}: disableForInstrumenting(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2574  			// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2575  			// for the backend instead of slicebytetostringtmp calls
  2576  			// when not instrumenting.
  2577  			slice := args[0]
  2578  			ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
  2579  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2580  			return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2581  		}),
  2582  		intrinsicKey{"runtime", "KeepAlive"}: func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2583  			data := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), args[0])
  2584  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem())
  2585  			return nil
  2586  		},
  2587  
  2588  		/******** runtime/internal/sys ********/
  2589  		intrinsicKey{"runtime/internal/sys", "Ctz32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2590  			return s.newValue1(ssa.OpCtz32, Types[TUINT32], args[0])
  2591  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2592  		intrinsicKey{"runtime/internal/sys", "Ctz64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2593  			return s.newValue1(ssa.OpCtz64, Types[TUINT64], args[0])
  2594  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2595  		intrinsicKey{"runtime/internal/sys", "Bswap32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2596  			return s.newValue1(ssa.OpBswap32, Types[TUINT32], args[0])
  2597  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2598  		intrinsicKey{"runtime/internal/sys", "Bswap64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2599  			return s.newValue1(ssa.OpBswap64, Types[TUINT64], args[0])
  2600  		}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
  2601  
  2602  		/******** runtime/internal/atomic ********/
  2603  		intrinsicKey{"runtime/internal/atomic", "Load"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2604  			v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], s.mem())
  2605  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2606  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2607  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2608  		intrinsicKey{"runtime/internal/atomic", "Load64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2609  			v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], s.mem())
  2610  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2611  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2612  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2613  		intrinsicKey{"runtime/internal/atomic", "Loadp"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2614  			v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(ptrto(Types[TUINT8]), ssa.TypeMem), args[0], s.mem())
  2615  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2616  			return s.newValue1(ssa.OpSelect0, ptrto(Types[TUINT8]), v)
  2617  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2618  
  2619  		intrinsicKey{"runtime/internal/atomic", "Store"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2620  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, args[0], args[1], s.mem())
  2621  			return nil
  2622  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2623  		intrinsicKey{"runtime/internal/atomic", "Store64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2624  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, args[0], args[1], s.mem())
  2625  			return nil
  2626  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2627  		intrinsicKey{"runtime/internal/atomic", "StorepNoWB"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2628  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, args[0], args[1], s.mem())
  2629  			return nil
  2630  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2631  
  2632  		intrinsicKey{"runtime/internal/atomic", "Xchg"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2633  			v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2634  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2635  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2636  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2637  		intrinsicKey{"runtime/internal/atomic", "Xchg64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2638  			v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2639  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2640  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2641  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2642  
  2643  		intrinsicKey{"runtime/internal/atomic", "Xadd"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2644  			v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
  2645  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2646  			return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
  2647  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2648  		intrinsicKey{"runtime/internal/atomic", "Xadd64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2649  			v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
  2650  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2651  			return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
  2652  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2653  
  2654  		intrinsicKey{"runtime/internal/atomic", "Cas"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2655  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2656  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2657  			return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
  2658  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2659  		intrinsicKey{"runtime/internal/atomic", "Cas64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2660  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
  2661  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
  2662  			return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
  2663  		}, sys.AMD64, sys.ARM64, sys.S390X),
  2664  
  2665  		intrinsicKey{"runtime/internal/atomic", "And8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2666  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, args[0], args[1], s.mem())
  2667  			return nil
  2668  		}, sys.AMD64, sys.ARM64),
  2669  		intrinsicKey{"runtime/internal/atomic", "Or8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2670  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, args[0], args[1], s.mem())
  2671  			return nil
  2672  		}, sys.AMD64, sys.ARM64),
  2673  	}
  2674  
  2675  	// aliases internal to runtime/internal/atomic
  2676  	i.std[intrinsicKey{"runtime/internal/atomic", "Loadint64"}] =
  2677  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2678  	i.std[intrinsicKey{"runtime/internal/atomic", "Xaddint64"}] =
  2679  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2680  
  2681  	// intrinsics which vary depending on the size of int/ptr.
  2682  	i.intSized = map[sizedIntrinsicKey]intrinsicBuilder{
  2683  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
  2684  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
  2685  	}
  2686  	i.ptrSized = map[sizedIntrinsicKey]intrinsicBuilder{
  2687  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
  2688  		sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
  2689  		sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Store"}],
  2690  		sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}],
  2691  		sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}],
  2692  		sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}],
  2693  		sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 4}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}],
  2694  		sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 8}:  i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}],
  2695  		sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 4}:   i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
  2696  		sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 8}:   i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
  2697  		sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 4}:        i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
  2698  		sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 8}:        i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
  2699  	}
  2700  
  2701  	/******** sync/atomic ********/
  2702  	if flag_race {
  2703  		// The race detector needs to be able to intercept these calls.
  2704  		// We can't intrinsify them.
  2705  		return
  2706  	}
  2707  	// these are all aliases to runtime/internal/atomic implementations.
  2708  	i.std[intrinsicKey{"sync/atomic", "LoadInt32"}] =
  2709  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2710  	i.std[intrinsicKey{"sync/atomic", "LoadInt64"}] =
  2711  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2712  	i.std[intrinsicKey{"sync/atomic", "LoadPointer"}] =
  2713  		i.std[intrinsicKey{"runtime/internal/atomic", "Loadp"}]
  2714  	i.std[intrinsicKey{"sync/atomic", "LoadUint32"}] =
  2715  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2716  	i.std[intrinsicKey{"sync/atomic", "LoadUint64"}] =
  2717  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2718  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 4}] =
  2719  		i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
  2720  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 8}] =
  2721  		i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
  2722  
  2723  	i.std[intrinsicKey{"sync/atomic", "StoreInt32"}] =
  2724  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2725  	i.std[intrinsicKey{"sync/atomic", "StoreInt64"}] =
  2726  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2727  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  2728  	i.std[intrinsicKey{"sync/atomic", "StoreUint32"}] =
  2729  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2730  	i.std[intrinsicKey{"sync/atomic", "StoreUint64"}] =
  2731  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2732  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 4}] =
  2733  		i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
  2734  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 8}] =
  2735  		i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
  2736  
  2737  	i.std[intrinsicKey{"sync/atomic", "SwapInt32"}] =
  2738  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2739  	i.std[intrinsicKey{"sync/atomic", "SwapInt64"}] =
  2740  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2741  	i.std[intrinsicKey{"sync/atomic", "SwapUint32"}] =
  2742  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2743  	i.std[intrinsicKey{"sync/atomic", "SwapUint64"}] =
  2744  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2745  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 4}] =
  2746  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
  2747  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 8}] =
  2748  		i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
  2749  
  2750  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt32"}] =
  2751  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2752  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt64"}] =
  2753  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2754  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint32"}] =
  2755  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2756  	i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint64"}] =
  2757  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2758  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 4}] =
  2759  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
  2760  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 8}] =
  2761  		i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
  2762  
  2763  	i.std[intrinsicKey{"sync/atomic", "AddInt32"}] =
  2764  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2765  	i.std[intrinsicKey{"sync/atomic", "AddInt64"}] =
  2766  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2767  	i.std[intrinsicKey{"sync/atomic", "AddUint32"}] =
  2768  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2769  	i.std[intrinsicKey{"sync/atomic", "AddUint64"}] =
  2770  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2771  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 4}] =
  2772  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
  2773  	i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 8}] =
  2774  		i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
  2775  
  2776  	/******** math/big ********/
  2777  	i.intSized[sizedIntrinsicKey{"math/big", "mulWW", 8}] =
  2778  		enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2779  			return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1])
  2780  		}, sys.AMD64)
  2781  	i.intSized[sizedIntrinsicKey{"math/big", "divWW", 8}] =
  2782  		enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2783  			return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1], args[2])
  2784  		}, sys.AMD64)
  2785  }
  2786  
  2787  // findIntrinsic returns a function which builds the SSA equivalent of the
  2788  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  2789  func findIntrinsic(sym *Sym) intrinsicBuilder {
  2790  	if ssa.IntrinsicsDisable {
  2791  		return nil
  2792  	}
  2793  	if sym == nil || sym.Pkg == nil {
  2794  		return nil
  2795  	}
  2796  	if intrinsics == nil {
  2797  		intrinsicInit()
  2798  	}
  2799  	pkg := sym.Pkg.Path
  2800  	if sym.Pkg == localpkg {
  2801  		pkg = myimportpath
  2802  	}
  2803  	fn := sym.Name
  2804  	f := intrinsics.std[intrinsicKey{pkg, fn}]
  2805  	if f != nil {
  2806  		return f
  2807  	}
  2808  	f = intrinsics.intSized[sizedIntrinsicKey{pkg, fn, Widthint}]
  2809  	if f != nil {
  2810  		return f
  2811  	}
  2812  	return intrinsics.ptrSized[sizedIntrinsicKey{pkg, fn, Widthptr}]
  2813  }
  2814  
  2815  func isIntrinsicCall(n *Node) bool {
  2816  	if n == nil || n.Left == nil {
  2817  		return false
  2818  	}
  2819  	return findIntrinsic(n.Left.Sym) != nil
  2820  }
  2821  
  2822  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2823  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  2824  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  2825  	if ssa.IntrinsicsDebug > 0 {
  2826  		x := v
  2827  		if x == nil {
  2828  			x = s.mem()
  2829  		}
  2830  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  2831  			x = x.Args[0]
  2832  		}
  2833  		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  2834  	}
  2835  	return v
  2836  }
  2837  
  2838  type callArg struct {
  2839  	offset int64
  2840  	v      *ssa.Value
  2841  }
  2842  type byOffset []callArg
  2843  
  2844  func (x byOffset) Len() int      { return len(x) }
  2845  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  2846  func (x byOffset) Less(i, j int) bool {
  2847  	return x[i].offset < x[j].offset
  2848  }
  2849  
  2850  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  2851  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  2852  	// This code is complicated because of how walk transforms calls. For a call node,
  2853  	// each entry in n.List is either an assignment to OINDREGSP which actually
  2854  	// stores an arg, or an assignment to a temporary which computes an arg
  2855  	// which is later assigned.
  2856  	// The args can also be out of order.
  2857  	// TODO: when walk goes away someday, this code can go away also.
  2858  	var args []callArg
  2859  	temps := map[*Node]*ssa.Value{}
  2860  	for _, a := range n.List.Slice() {
  2861  		if a.Op != OAS {
  2862  			s.Fatalf("non-assignment as a function argument %s", opnames[a.Op])
  2863  		}
  2864  		l, r := a.Left, a.Right
  2865  		switch l.Op {
  2866  		case ONAME:
  2867  			// Evaluate and store to "temporary".
  2868  			// Walk ensures these temporaries are dead outside of n.
  2869  			temps[l] = s.expr(r)
  2870  		case OINDREGSP:
  2871  			// Store a value to an argument slot.
  2872  			var v *ssa.Value
  2873  			if x, ok := temps[r]; ok {
  2874  				// This is a previously computed temporary.
  2875  				v = x
  2876  			} else {
  2877  				// This is an explicit value; evaluate it.
  2878  				v = s.expr(r)
  2879  			}
  2880  			args = append(args, callArg{l.Xoffset, v})
  2881  		default:
  2882  			s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op])
  2883  		}
  2884  	}
  2885  	sort.Sort(byOffset(args))
  2886  	res := make([]*ssa.Value, len(args))
  2887  	for i, a := range args {
  2888  		res[i] = a.v
  2889  	}
  2890  	return res
  2891  }
  2892  
  2893  // Calls the function n using the specified call type.
  2894  // Returns the address of the return value (or nil if none).
  2895  func (s *state) call(n *Node, k callKind) *ssa.Value {
  2896  	var sym *Sym           // target symbol (if static)
  2897  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  2898  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  2899  	var rcvr *ssa.Value    // receiver to set
  2900  	fn := n.Left
  2901  	switch n.Op {
  2902  	case OCALLFUNC:
  2903  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  2904  			sym = fn.Sym
  2905  			break
  2906  		}
  2907  		closure = s.expr(fn)
  2908  	case OCALLMETH:
  2909  		if fn.Op != ODOTMETH {
  2910  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  2911  		}
  2912  		if k == callNormal {
  2913  			sym = fn.Sym
  2914  			break
  2915  		}
  2916  		// Make a name n2 for the function.
  2917  		// fn.Sym might be sync.(*Mutex).Unlock.
  2918  		// Make a PFUNC node out of that, then evaluate it.
  2919  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  2920  		// We can then pass that to defer or go.
  2921  		n2 := newname(fn.Sym)
  2922  		n2.Class = PFUNC
  2923  		n2.Lineno = fn.Lineno
  2924  		n2.Type = Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  2925  		closure = s.expr(n2)
  2926  		// Note: receiver is already assigned in n.List, so we don't
  2927  		// want to set it here.
  2928  	case OCALLINTER:
  2929  		if fn.Op != ODOTINTER {
  2930  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  2931  		}
  2932  		i := s.expr(fn.Left)
  2933  		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
  2934  		if k != callNormal {
  2935  			s.nilCheck(itab)
  2936  		}
  2937  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  2938  		itab = s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), itabidx, itab)
  2939  		if k == callNormal {
  2940  			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
  2941  		} else {
  2942  			closure = itab
  2943  		}
  2944  		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
  2945  	}
  2946  	dowidth(fn.Type)
  2947  	stksize := fn.Type.ArgWidth() // includes receiver
  2948  
  2949  	// Run all argument assignments. The arg slots have already
  2950  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  2951  	// +widthptr for interface calls).
  2952  	// For OCALLMETH, the receiver is set in these statements.
  2953  	s.stmtList(n.List)
  2954  
  2955  	// Set receiver (for interface calls)
  2956  	if rcvr != nil {
  2957  		argStart := Ctxt.FixedFrameSize()
  2958  		if k != callNormal {
  2959  			argStart += int64(2 * Widthptr)
  2960  		}
  2961  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart, s.sp)
  2962  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
  2963  	}
  2964  
  2965  	// Defer/go args
  2966  	if k != callNormal {
  2967  		// Write argsize and closure (args to Newproc/Deferproc).
  2968  		argStart := Ctxt.FixedFrameSize()
  2969  		argsize := s.constInt32(Types[TUINT32], int32(stksize))
  2970  		addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINT32]), argStart, s.sp)
  2971  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
  2972  		addr = s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp)
  2973  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
  2974  		stksize += 2 * int64(Widthptr)
  2975  	}
  2976  
  2977  	// call target
  2978  	var call *ssa.Value
  2979  	switch {
  2980  	case k == callDefer:
  2981  		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
  2982  	case k == callGo:
  2983  		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
  2984  	case closure != nil:
  2985  		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
  2986  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  2987  	case codeptr != nil:
  2988  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  2989  	case sym != nil:
  2990  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
  2991  	default:
  2992  		Fatalf("bad call type %v %v", n.Op, n)
  2993  	}
  2994  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  2995  	s.vars[&memVar] = call
  2996  
  2997  	// Finish block for defers
  2998  	if k == callDefer {
  2999  		b := s.endBlock()
  3000  		b.Kind = ssa.BlockDefer
  3001  		b.SetControl(call)
  3002  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3003  		b.AddEdgeTo(bNext)
  3004  		// Add recover edge to exit code.
  3005  		r := s.f.NewBlock(ssa.BlockPlain)
  3006  		s.startBlock(r)
  3007  		s.exit()
  3008  		b.AddEdgeTo(r)
  3009  		b.Likely = ssa.BranchLikely
  3010  		s.startBlock(bNext)
  3011  	}
  3012  
  3013  	res := n.Left.Type.Results()
  3014  	if res.NumFields() == 0 || k != callNormal {
  3015  		// call has no return value. Continue with the next statement.
  3016  		return nil
  3017  	}
  3018  	fp := res.Field(0)
  3019  	return s.entryNewValue1I(ssa.OpOffPtr, ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
  3020  }
  3021  
  3022  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3023  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3024  func etypesign(e EType) int8 {
  3025  	switch e {
  3026  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3027  		return -1
  3028  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3029  		return +1
  3030  	}
  3031  	return 0
  3032  }
  3033  
  3034  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  3035  // This improves the effectiveness of cse by using the same Aux values for the
  3036  // same symbols.
  3037  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  3038  	switch sym.(type) {
  3039  	default:
  3040  		s.Fatalf("sym %v is of uknown type %T", sym, sym)
  3041  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  3042  		// these are the only valid types
  3043  	}
  3044  
  3045  	if lsym, ok := s.varsyms[n]; ok {
  3046  		return lsym
  3047  	} else {
  3048  		s.varsyms[n] = sym
  3049  		return sym
  3050  	}
  3051  }
  3052  
  3053  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3054  // Also returns a bool reporting whether the returned value is "volatile", that is it
  3055  // points to the outargs section and thus the referent will be clobbered by any call.
  3056  // The value that the returned Value represents is guaranteed to be non-nil.
  3057  // If bounded is true then this address does not require a nil check for its operand
  3058  // even if that would otherwise be implied.
  3059  func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
  3060  	t := ptrto(n.Type)
  3061  	switch n.Op {
  3062  	case ONAME:
  3063  		switch n.Class {
  3064  		case PEXTERN:
  3065  			// global variable
  3066  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
  3067  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  3068  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3069  			if n.Xoffset != 0 {
  3070  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3071  			}
  3072  			return v, false
  3073  		case PPARAM:
  3074  			// parameter slot
  3075  			v := s.decladdrs[n]
  3076  			if v != nil {
  3077  				return v, false
  3078  			}
  3079  			if n == nodfp {
  3080  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3081  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  3082  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
  3083  			}
  3084  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3085  			return nil, false
  3086  		case PAUTO:
  3087  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
  3088  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  3089  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3090  			// ensure that we reuse symbols for out parameters so
  3091  			// that cse works on their addresses
  3092  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  3093  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  3094  		default:
  3095  			s.Fatalf("variable address class %v not implemented", classnames[n.Class])
  3096  			return nil, false
  3097  		}
  3098  	case OINDREGSP:
  3099  		// indirect off REGSP
  3100  		// used for storing/loading arguments/returns to/from callees
  3101  		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
  3102  	case OINDEX:
  3103  		if n.Left.Type.IsSlice() {
  3104  			a := s.expr(n.Left)
  3105  			i := s.expr(n.Right)
  3106  			i = s.extendIndex(i, panicindex)
  3107  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
  3108  			if !n.Bounded {
  3109  				s.boundsCheck(i, len)
  3110  			}
  3111  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3112  			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
  3113  		} else { // array
  3114  			a, isVolatile := s.addr(n.Left, bounded)
  3115  			i := s.expr(n.Right)
  3116  			i = s.extendIndex(i, panicindex)
  3117  			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
  3118  			if !n.Bounded {
  3119  				s.boundsCheck(i, len)
  3120  			}
  3121  			return s.newValue2(ssa.OpPtrIndex, ptrto(n.Left.Type.Elem()), a, i), isVolatile
  3122  		}
  3123  	case OIND:
  3124  		return s.exprPtr(n.Left, bounded, n.Lineno), false
  3125  	case ODOT:
  3126  		p, isVolatile := s.addr(n.Left, bounded)
  3127  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
  3128  	case ODOTPTR:
  3129  		p := s.exprPtr(n.Left, bounded, n.Lineno)
  3130  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
  3131  	case OCLOSUREVAR:
  3132  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3133  			s.entryNewValue0(ssa.OpGetClosurePtr, ptrto(Types[TUINT8]))), false
  3134  	case OCONVNOP:
  3135  		addr, isVolatile := s.addr(n.Left, bounded)
  3136  		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
  3137  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3138  		return s.call(n, callNormal), true
  3139  	case ODOTTYPE:
  3140  		v, _ := s.dottype(n, false)
  3141  		if v.Op != ssa.OpLoad {
  3142  			s.Fatalf("dottype of non-load")
  3143  		}
  3144  		if v.Args[1] != s.mem() {
  3145  			s.Fatalf("memory no longer live from dottype load")
  3146  		}
  3147  		return v.Args[0], false
  3148  	default:
  3149  		s.Fatalf("unhandled addr %v", n.Op)
  3150  		return nil, false
  3151  	}
  3152  }
  3153  
  3154  // canSSA reports whether n is SSA-able.
  3155  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3156  func (s *state) canSSA(n *Node) bool {
  3157  	if Debug['N'] != 0 {
  3158  		return false
  3159  	}
  3160  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3161  		n = n.Left
  3162  	}
  3163  	if n.Op != ONAME {
  3164  		return false
  3165  	}
  3166  	if n.Addrtaken {
  3167  		return false
  3168  	}
  3169  	if n.isParamHeapCopy() {
  3170  		return false
  3171  	}
  3172  	if n.Class == PAUTOHEAP {
  3173  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3174  	}
  3175  	switch n.Class {
  3176  	case PEXTERN:
  3177  		return false
  3178  	case PPARAMOUT:
  3179  		if hasdefer {
  3180  			// TODO: handle this case?  Named return values must be
  3181  			// in memory so that the deferred function can see them.
  3182  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3183  			return false
  3184  		}
  3185  		if s.cgoUnsafeArgs {
  3186  			// Cgo effectively takes the address of all result args,
  3187  			// but the compiler can't see that.
  3188  			return false
  3189  		}
  3190  	}
  3191  	if n.Class == PPARAM && n.String() == ".this" {
  3192  		// wrappers generated by genwrapper need to update
  3193  		// the .this pointer in place.
  3194  		// TODO: treat as a PPARMOUT?
  3195  		return false
  3196  	}
  3197  	return canSSAType(n.Type)
  3198  	// TODO: try to make more variables SSAable?
  3199  }
  3200  
  3201  // canSSA reports whether variables of type t are SSA-able.
  3202  func canSSAType(t *Type) bool {
  3203  	dowidth(t)
  3204  	if t.Width > int64(4*Widthptr) {
  3205  		// 4*Widthptr is an arbitrary constant. We want it
  3206  		// to be at least 3*Widthptr so slices can be registerized.
  3207  		// Too big and we'll introduce too much register pressure.
  3208  		return false
  3209  	}
  3210  	switch t.Etype {
  3211  	case TARRAY:
  3212  		// We can't do larger arrays because dynamic indexing is
  3213  		// not supported on SSA variables.
  3214  		// TODO: allow if all indexes are constant.
  3215  		if t.NumElem() == 0 {
  3216  			return true
  3217  		}
  3218  		if t.NumElem() == 1 {
  3219  			return canSSAType(t.Elem())
  3220  		}
  3221  		return false
  3222  	case TSTRUCT:
  3223  		if t.NumFields() > ssa.MaxStruct {
  3224  			return false
  3225  		}
  3226  		for _, t1 := range t.Fields().Slice() {
  3227  			if !canSSAType(t1.Type) {
  3228  				return false
  3229  			}
  3230  		}
  3231  		return true
  3232  	default:
  3233  		return true
  3234  	}
  3235  }
  3236  
  3237  // exprPtr evaluates n to a pointer and nil-checks it.
  3238  func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
  3239  	p := s.expr(n)
  3240  	if bounded || n.NonNil {
  3241  		if s.f.Config.Debug_checknil() && lineno > 1 {
  3242  			s.f.Config.Warnl(lineno, "removed nil check")
  3243  		}
  3244  		return p
  3245  	}
  3246  	s.nilCheck(p)
  3247  	return p
  3248  }
  3249  
  3250  // nilCheck generates nil pointer checking code.
  3251  // Used only for automatically inserted nil checks,
  3252  // not for user code like 'x != nil'.
  3253  func (s *state) nilCheck(ptr *ssa.Value) {
  3254  	if disable_checknil != 0 {
  3255  		return
  3256  	}
  3257  	s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  3258  }
  3259  
  3260  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3261  // Starts a new block on return.
  3262  // idx is already converted to full int width.
  3263  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3264  	if Debug['B'] != 0 {
  3265  		return
  3266  	}
  3267  
  3268  	// bounds check
  3269  	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
  3270  	s.check(cmp, panicindex)
  3271  }
  3272  
  3273  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3274  // Starts a new block on return.
  3275  // idx and len are already converted to full int width.
  3276  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3277  	if Debug['B'] != 0 {
  3278  		return
  3279  	}
  3280  
  3281  	// bounds check
  3282  	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
  3283  	s.check(cmp, panicslice)
  3284  }
  3285  
  3286  // If cmp (a bool) is false, panic using the given function.
  3287  func (s *state) check(cmp *ssa.Value, fn *Node) {
  3288  	b := s.endBlock()
  3289  	b.Kind = ssa.BlockIf
  3290  	b.SetControl(cmp)
  3291  	b.Likely = ssa.BranchLikely
  3292  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3293  	line := s.peekLine()
  3294  	bPanic := s.panics[funcLine{fn, line}]
  3295  	if bPanic == nil {
  3296  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3297  		s.panics[funcLine{fn, line}] = bPanic
  3298  		s.startBlock(bPanic)
  3299  		// The panic call takes/returns memory to ensure that the right
  3300  		// memory state is observed if the panic happens.
  3301  		s.rtcall(fn, false, nil)
  3302  	}
  3303  	b.AddEdgeTo(bNext)
  3304  	b.AddEdgeTo(bPanic)
  3305  	s.startBlock(bNext)
  3306  }
  3307  
  3308  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3309  	needcheck := true
  3310  	switch b.Op {
  3311  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3312  		if b.AuxInt != 0 {
  3313  			needcheck = false
  3314  		}
  3315  	}
  3316  	if needcheck {
  3317  		// do a size-appropriate check for zero
  3318  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  3319  		s.check(cmp, panicdivide)
  3320  	}
  3321  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3322  }
  3323  
  3324  // rtcall issues a call to the given runtime function fn with the listed args.
  3325  // Returns a slice of results of the given result types.
  3326  // The call is added to the end of the current block.
  3327  // If returns is false, the block is marked as an exit block.
  3328  func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
  3329  	// Write args to the stack
  3330  	off := Ctxt.FixedFrameSize()
  3331  	for _, arg := range args {
  3332  		t := arg.Type
  3333  		off = Rnd(off, t.Alignment())
  3334  		ptr := s.sp
  3335  		if off != 0 {
  3336  			ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp)
  3337  		}
  3338  		size := t.Size()
  3339  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
  3340  		off += size
  3341  	}
  3342  	off = Rnd(off, int64(Widthptr))
  3343  	if Thearch.LinkArch.Name == "amd64p32" {
  3344  		// amd64p32 wants 8-byte alignment of the start of the return values.
  3345  		off = Rnd(off, 8)
  3346  	}
  3347  
  3348  	// Issue call
  3349  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
  3350  	s.vars[&memVar] = call
  3351  
  3352  	if !returns {
  3353  		// Finish block
  3354  		b := s.endBlock()
  3355  		b.Kind = ssa.BlockExit
  3356  		b.SetControl(call)
  3357  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3358  		if len(results) > 0 {
  3359  			Fatalf("panic call can't have results")
  3360  		}
  3361  		return nil
  3362  	}
  3363  
  3364  	// Load results
  3365  	res := make([]*ssa.Value, len(results))
  3366  	for i, t := range results {
  3367  		off = Rnd(off, t.Alignment())
  3368  		ptr := s.sp
  3369  		if off != 0 {
  3370  			ptr = s.newValue1I(ssa.OpOffPtr, ptrto(t), off, s.sp)
  3371  		}
  3372  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3373  		off += t.Size()
  3374  	}
  3375  	off = Rnd(off, int64(Widthptr))
  3376  
  3377  	// Remember how much callee stack space we needed.
  3378  	call.AuxInt = off
  3379  
  3380  	return res
  3381  }
  3382  
  3383  // insertWBmove inserts the assignment *left = *right including a write barrier.
  3384  // t is the type being assigned.
  3385  // If right == nil, then we're zeroing *left.
  3386  func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
  3387  	// if writeBarrier.enabled {
  3388  	//   typedmemmove(&t, left, right)
  3389  	// } else {
  3390  	//   *left = *right
  3391  	// }
  3392  	//
  3393  	// or
  3394  	//
  3395  	// if writeBarrier.enabled {
  3396  	//   typedmemclr(&t, left)
  3397  	// } else {
  3398  	//   *left = zeroValue
  3399  	// }
  3400  
  3401  	if s.noWB {
  3402  		s.Error("write barrier prohibited")
  3403  	}
  3404  	if s.WBLineno == 0 {
  3405  		s.WBLineno = left.Line
  3406  	}
  3407  
  3408  	var val *ssa.Value
  3409  	if right == nil {
  3410  		val = s.newValue2I(ssa.OpZeroWB, ssa.TypeMem, sizeAlignAuxInt(t), left, s.mem())
  3411  	} else {
  3412  		var op ssa.Op
  3413  		if rightIsVolatile {
  3414  			op = ssa.OpMoveWBVolatile
  3415  		} else {
  3416  			op = ssa.OpMoveWB
  3417  		}
  3418  		val = s.newValue3I(op, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem())
  3419  	}
  3420  	val.Aux = &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}
  3421  	s.vars[&memVar] = val
  3422  
  3423  	// WB ops will be expanded to branches at writebarrier phase.
  3424  	// To make it easy, we put WB ops at the end of a block, so
  3425  	// that it does not need to split a block into two parts when
  3426  	// expanding WB ops.
  3427  	b := s.f.NewBlock(ssa.BlockPlain)
  3428  	s.endBlock().AddEdgeTo(b)
  3429  	s.startBlock(b)
  3430  }
  3431  
  3432  // insertWBstore inserts the assignment *left = right including a write barrier.
  3433  // t is the type being assigned.
  3434  func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
  3435  	// store scalar fields
  3436  	// if writeBarrier.enabled {
  3437  	//   writebarrierptr for pointer fields
  3438  	// } else {
  3439  	//   store pointer fields
  3440  	// }
  3441  
  3442  	if s.noWB {
  3443  		s.Error("write barrier prohibited")
  3444  	}
  3445  	if s.WBLineno == 0 {
  3446  		s.WBLineno = left.Line
  3447  	}
  3448  	s.storeTypeScalars(t, left, right, skip)
  3449  	s.storeTypePtrsWB(t, left, right)
  3450  
  3451  	// WB ops will be expanded to branches at writebarrier phase.
  3452  	// To make it easy, we put WB ops at the end of a block, so
  3453  	// that it does not need to split a block into two parts when
  3454  	// expanding WB ops.
  3455  	b := s.f.NewBlock(ssa.BlockPlain)
  3456  	s.endBlock().AddEdgeTo(b)
  3457  	s.startBlock(b)
  3458  }
  3459  
  3460  // do *left = right for all scalar (non-pointer) parts of t.
  3461  func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
  3462  	switch {
  3463  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3464  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
  3465  	case t.IsPtrShaped():
  3466  		// no scalar fields.
  3467  	case t.IsString():
  3468  		if skip&skipLen != 0 {
  3469  			return
  3470  		}
  3471  		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
  3472  		lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
  3473  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3474  	case t.IsSlice():
  3475  		if skip&skipLen == 0 {
  3476  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
  3477  			lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
  3478  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3479  		}
  3480  		if skip&skipCap == 0 {
  3481  			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
  3482  			capAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), 2*s.config.IntSize, left)
  3483  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
  3484  		}
  3485  	case t.IsInterface():
  3486  		// itab field doesn't need a write barrier (even though it is a pointer).
  3487  		itab := s.newValue1(ssa.OpITab, ptrto(Types[TUINT8]), right)
  3488  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
  3489  	case t.IsStruct():
  3490  		n := t.NumFields()
  3491  		for i := 0; i < n; i++ {
  3492  			ft := t.FieldType(i)
  3493  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3494  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3495  			s.storeTypeScalars(ft.(*Type), addr, val, 0)
  3496  		}
  3497  	case t.IsArray() && t.NumElem() == 0:
  3498  		// nothing
  3499  	case t.IsArray() && t.NumElem() == 1:
  3500  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3501  	default:
  3502  		s.Fatalf("bad write barrier type %v", t)
  3503  	}
  3504  }
  3505  
  3506  // do *left = right for all pointer parts of t.
  3507  func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
  3508  	switch {
  3509  	case t.IsPtrShaped():
  3510  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3511  	case t.IsString():
  3512  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
  3513  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3514  	case t.IsSlice():
  3515  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
  3516  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3517  	case t.IsInterface():
  3518  		// itab field is treated as a scalar.
  3519  		idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
  3520  		idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3521  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3522  	case t.IsStruct():
  3523  		n := t.NumFields()
  3524  		for i := 0; i < n; i++ {
  3525  			ft := t.FieldType(i)
  3526  			if !haspointers(ft.(*Type)) {
  3527  				continue
  3528  			}
  3529  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3530  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3531  			s.storeTypePtrs(ft.(*Type), addr, val)
  3532  		}
  3533  	case t.IsArray() && t.NumElem() == 0:
  3534  		// nothing
  3535  	case t.IsArray() && t.NumElem() == 1:
  3536  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3537  	default:
  3538  		s.Fatalf("bad write barrier type %v", t)
  3539  	}
  3540  }
  3541  
  3542  // do *left = right for all pointer parts of t, with write barriers if necessary.
  3543  func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
  3544  	switch {
  3545  	case t.IsPtrShaped():
  3546  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3547  	case t.IsString():
  3548  		ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
  3549  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3550  	case t.IsSlice():
  3551  		ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
  3552  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3553  	case t.IsInterface():
  3554  		// itab field is treated as a scalar.
  3555  		idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
  3556  		idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3557  		s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3558  	case t.IsStruct():
  3559  		n := t.NumFields()
  3560  		for i := 0; i < n; i++ {
  3561  			ft := t.FieldType(i)
  3562  			if !haspointers(ft.(*Type)) {
  3563  				continue
  3564  			}
  3565  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3566  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3567  			s.storeTypePtrsWB(ft.(*Type), addr, val)
  3568  		}
  3569  	case t.IsArray() && t.NumElem() == 0:
  3570  		// nothing
  3571  	case t.IsArray() && t.NumElem() == 1:
  3572  		s.storeTypePtrsWB(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3573  	default:
  3574  		s.Fatalf("bad write barrier type %v", t)
  3575  	}
  3576  }
  3577  
  3578  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3579  // i,j,k may be nil, in which case they are set to their default value.
  3580  // t is a slice, ptr to array, or string type.
  3581  func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3582  	var elemtype *Type
  3583  	var ptrtype *Type
  3584  	var ptr *ssa.Value
  3585  	var len *ssa.Value
  3586  	var cap *ssa.Value
  3587  	zero := s.constInt(Types[TINT], 0)
  3588  	switch {
  3589  	case t.IsSlice():
  3590  		elemtype = t.Elem()
  3591  		ptrtype = ptrto(elemtype)
  3592  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3593  		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
  3594  		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
  3595  	case t.IsString():
  3596  		elemtype = Types[TUINT8]
  3597  		ptrtype = ptrto(elemtype)
  3598  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3599  		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
  3600  		cap = len
  3601  	case t.IsPtr():
  3602  		if !t.Elem().IsArray() {
  3603  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3604  		}
  3605  		elemtype = t.Elem().Elem()
  3606  		ptrtype = ptrto(elemtype)
  3607  		s.nilCheck(v)
  3608  		ptr = v
  3609  		len = s.constInt(Types[TINT], t.Elem().NumElem())
  3610  		cap = len
  3611  	default:
  3612  		s.Fatalf("bad type in slice %v\n", t)
  3613  	}
  3614  
  3615  	// Set default values
  3616  	if i == nil {
  3617  		i = zero
  3618  	}
  3619  	if j == nil {
  3620  		j = len
  3621  	}
  3622  	if k == nil {
  3623  		k = cap
  3624  	}
  3625  
  3626  	// Panic if slice indices are not in bounds.
  3627  	s.sliceBoundsCheck(i, j)
  3628  	if j != k {
  3629  		s.sliceBoundsCheck(j, k)
  3630  	}
  3631  	if k != cap {
  3632  		s.sliceBoundsCheck(k, cap)
  3633  	}
  3634  
  3635  	// Generate the following code assuming that indexes are in bounds.
  3636  	// The masking is to make sure that we don't generate a slice
  3637  	// that points to the next object in memory.
  3638  	// rlen = j - i
  3639  	// rcap = k - i
  3640  	// delta = i * elemsize
  3641  	// rptr = p + delta&mask(rcap)
  3642  	// result = (SliceMake rptr rlen rcap)
  3643  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3644  	subOp := s.ssaOp(OSUB, Types[TINT])
  3645  	mulOp := s.ssaOp(OMUL, Types[TINT])
  3646  	andOp := s.ssaOp(OAND, Types[TINT])
  3647  	rlen := s.newValue2(subOp, Types[TINT], j, i)
  3648  	var rcap *ssa.Value
  3649  	switch {
  3650  	case t.IsString():
  3651  		// Capacity of the result is unimportant. However, we use
  3652  		// rcap to test if we've generated a zero-length slice.
  3653  		// Use length of strings for that.
  3654  		rcap = rlen
  3655  	case j == k:
  3656  		rcap = rlen
  3657  	default:
  3658  		rcap = s.newValue2(subOp, Types[TINT], k, i)
  3659  	}
  3660  
  3661  	var rptr *ssa.Value
  3662  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3663  		// No pointer arithmetic necessary.
  3664  		rptr = ptr
  3665  	} else {
  3666  		// delta = # of bytes to offset pointer by.
  3667  		delta := s.newValue2(mulOp, Types[TINT], i, s.constInt(Types[TINT], elemtype.Width))
  3668  		// If we're slicing to the point where the capacity is zero,
  3669  		// zero out the delta.
  3670  		mask := s.newValue1(ssa.OpSlicemask, Types[TINT], rcap)
  3671  		delta = s.newValue2(andOp, Types[TINT], delta, mask)
  3672  		// Compute rptr = ptr + delta
  3673  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3674  	}
  3675  
  3676  	return rptr, rlen, rcap
  3677  }
  3678  
  3679  type u2fcvtTab struct {
  3680  	geq, cvt2F, and, rsh, or, add ssa.Op
  3681  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3682  }
  3683  
  3684  var u64_f64 u2fcvtTab = u2fcvtTab{
  3685  	geq:   ssa.OpGeq64,
  3686  	cvt2F: ssa.OpCvt64to64F,
  3687  	and:   ssa.OpAnd64,
  3688  	rsh:   ssa.OpRsh64Ux64,
  3689  	or:    ssa.OpOr64,
  3690  	add:   ssa.OpAdd64F,
  3691  	one:   (*state).constInt64,
  3692  }
  3693  
  3694  var u64_f32 u2fcvtTab = u2fcvtTab{
  3695  	geq:   ssa.OpGeq64,
  3696  	cvt2F: ssa.OpCvt64to32F,
  3697  	and:   ssa.OpAnd64,
  3698  	rsh:   ssa.OpRsh64Ux64,
  3699  	or:    ssa.OpOr64,
  3700  	add:   ssa.OpAdd32F,
  3701  	one:   (*state).constInt64,
  3702  }
  3703  
  3704  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3705  	return s.uintTofloat(&u64_f64, n, x, ft, tt)
  3706  }
  3707  
  3708  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3709  	return s.uintTofloat(&u64_f32, n, x, ft, tt)
  3710  }
  3711  
  3712  func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3713  	// if x >= 0 {
  3714  	//    result = (floatY) x
  3715  	// } else {
  3716  	// 	  y = uintX(x) ; y = x & 1
  3717  	// 	  z = uintX(x) ; z = z >> 1
  3718  	// 	  z = z >> 1
  3719  	// 	  z = z | y
  3720  	// 	  result = floatY(z)
  3721  	// 	  result = result + result
  3722  	// }
  3723  	//
  3724  	// Code borrowed from old code generator.
  3725  	// What's going on: large 64-bit "unsigned" looks like
  3726  	// negative number to hardware's integer-to-float
  3727  	// conversion. However, because the mantissa is only
  3728  	// 63 bits, we don't need the LSB, so instead we do an
  3729  	// unsigned right shift (divide by two), convert, and
  3730  	// double. However, before we do that, we need to be
  3731  	// sure that we do not lose a "1" if that made the
  3732  	// difference in the resulting rounding. Therefore, we
  3733  	// preserve it, and OR (not ADD) it back in. The case
  3734  	// that matters is when the eleven discarded bits are
  3735  	// equal to 10000000001; that rounds up, and the 1 cannot
  3736  	// be lost else it would round down if the LSB of the
  3737  	// candidate mantissa is 0.
  3738  	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
  3739  	b := s.endBlock()
  3740  	b.Kind = ssa.BlockIf
  3741  	b.SetControl(cmp)
  3742  	b.Likely = ssa.BranchLikely
  3743  
  3744  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3745  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3746  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3747  
  3748  	b.AddEdgeTo(bThen)
  3749  	s.startBlock(bThen)
  3750  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3751  	s.vars[n] = a0
  3752  	s.endBlock()
  3753  	bThen.AddEdgeTo(bAfter)
  3754  
  3755  	b.AddEdgeTo(bElse)
  3756  	s.startBlock(bElse)
  3757  	one := cvttab.one(s, ft, 1)
  3758  	y := s.newValue2(cvttab.and, ft, x, one)
  3759  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3760  	z = s.newValue2(cvttab.or, ft, z, y)
  3761  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3762  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3763  	s.vars[n] = a1
  3764  	s.endBlock()
  3765  	bElse.AddEdgeTo(bAfter)
  3766  
  3767  	s.startBlock(bAfter)
  3768  	return s.variable(n, n.Type)
  3769  }
  3770  
  3771  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3772  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3773  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3774  		s.Fatalf("node must be a map or a channel")
  3775  	}
  3776  	// if n == nil {
  3777  	//   return 0
  3778  	// } else {
  3779  	//   // len
  3780  	//   return *((*int)n)
  3781  	//   // cap
  3782  	//   return *(((*int)n)+1)
  3783  	// }
  3784  	lenType := n.Type
  3785  	nilValue := s.constNil(Types[TUINTPTR])
  3786  	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
  3787  	b := s.endBlock()
  3788  	b.Kind = ssa.BlockIf
  3789  	b.SetControl(cmp)
  3790  	b.Likely = ssa.BranchUnlikely
  3791  
  3792  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3793  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3794  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3795  
  3796  	// length/capacity of a nil map/chan is zero
  3797  	b.AddEdgeTo(bThen)
  3798  	s.startBlock(bThen)
  3799  	s.vars[n] = s.zeroVal(lenType)
  3800  	s.endBlock()
  3801  	bThen.AddEdgeTo(bAfter)
  3802  
  3803  	b.AddEdgeTo(bElse)
  3804  	s.startBlock(bElse)
  3805  	if n.Op == OLEN {
  3806  		// length is stored in the first word for map/chan
  3807  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3808  	} else if n.Op == OCAP {
  3809  		// capacity is stored in the second word for chan
  3810  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3811  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3812  	} else {
  3813  		s.Fatalf("op must be OLEN or OCAP")
  3814  	}
  3815  	s.endBlock()
  3816  	bElse.AddEdgeTo(bAfter)
  3817  
  3818  	s.startBlock(bAfter)
  3819  	return s.variable(n, lenType)
  3820  }
  3821  
  3822  type f2uCvtTab struct {
  3823  	ltf, cvt2U, subf ssa.Op
  3824  	value            func(*state, ssa.Type, float64) *ssa.Value
  3825  }
  3826  
  3827  var f32_u64 f2uCvtTab = f2uCvtTab{
  3828  	ltf:   ssa.OpLess32F,
  3829  	cvt2U: ssa.OpCvt32Fto64,
  3830  	subf:  ssa.OpSub32F,
  3831  	value: (*state).constFloat32,
  3832  }
  3833  
  3834  var f64_u64 f2uCvtTab = f2uCvtTab{
  3835  	ltf:   ssa.OpLess64F,
  3836  	cvt2U: ssa.OpCvt64Fto64,
  3837  	subf:  ssa.OpSub64F,
  3838  	value: (*state).constFloat64,
  3839  }
  3840  
  3841  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3842  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3843  }
  3844  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3845  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3846  }
  3847  
  3848  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3849  	// if x < 9223372036854775808.0 {
  3850  	// 	result = uintY(x)
  3851  	// } else {
  3852  	// 	y = x - 9223372036854775808.0
  3853  	// 	z = uintY(y)
  3854  	// 	result = z | -9223372036854775808
  3855  	// }
  3856  	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
  3857  	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
  3858  	b := s.endBlock()
  3859  	b.Kind = ssa.BlockIf
  3860  	b.SetControl(cmp)
  3861  	b.Likely = ssa.BranchLikely
  3862  
  3863  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3864  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3865  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3866  
  3867  	b.AddEdgeTo(bThen)
  3868  	s.startBlock(bThen)
  3869  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  3870  	s.vars[n] = a0
  3871  	s.endBlock()
  3872  	bThen.AddEdgeTo(bAfter)
  3873  
  3874  	b.AddEdgeTo(bElse)
  3875  	s.startBlock(bElse)
  3876  	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
  3877  	y = s.newValue1(cvttab.cvt2U, tt, y)
  3878  	z := s.constInt64(tt, -9223372036854775808)
  3879  	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
  3880  	s.vars[n] = a1
  3881  	s.endBlock()
  3882  	bElse.AddEdgeTo(bAfter)
  3883  
  3884  	s.startBlock(bAfter)
  3885  	return s.variable(n, n.Type)
  3886  }
  3887  
  3888  // ifaceType returns the value for the word containing the type.
  3889  // t is the type of the interface expression.
  3890  // v is the corresponding value.
  3891  func (s *state) ifaceType(t *Type, v *ssa.Value) *ssa.Value {
  3892  	byteptr := ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
  3893  
  3894  	if t.IsEmptyInterface() {
  3895  		// Have eface. The type is the first word in the struct.
  3896  		return s.newValue1(ssa.OpITab, byteptr, v)
  3897  	}
  3898  
  3899  	// Have iface.
  3900  	// The first word in the struct is the itab.
  3901  	// If the itab is nil, return 0.
  3902  	// Otherwise, the second word in the itab is the type.
  3903  
  3904  	tab := s.newValue1(ssa.OpITab, byteptr, v)
  3905  	s.vars[&typVar] = tab
  3906  	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
  3907  	b := s.endBlock()
  3908  	b.Kind = ssa.BlockIf
  3909  	b.SetControl(isnonnil)
  3910  	b.Likely = ssa.BranchLikely
  3911  
  3912  	bLoad := s.f.NewBlock(ssa.BlockPlain)
  3913  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3914  
  3915  	b.AddEdgeTo(bLoad)
  3916  	b.AddEdgeTo(bEnd)
  3917  	bLoad.AddEdgeTo(bEnd)
  3918  
  3919  	s.startBlock(bLoad)
  3920  	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
  3921  	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3922  	s.endBlock()
  3923  
  3924  	s.startBlock(bEnd)
  3925  	typ := s.variable(&typVar, byteptr)
  3926  	delete(s.vars, &typVar)
  3927  	return typ
  3928  }
  3929  
  3930  // dottype generates SSA for a type assertion node.
  3931  // commaok indicates whether to panic or return a bool.
  3932  // If commaok is false, resok will be nil.
  3933  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  3934  	iface := s.expr(n.Left)            // input interface
  3935  	target := s.expr(typename(n.Type)) // target type
  3936  	byteptr := ptrto(Types[TUINT8])
  3937  
  3938  	if n.Type.IsInterface() {
  3939  		if n.Type.IsEmptyInterface() {
  3940  			// Converting to an empty interface.
  3941  			// Input could be an empty or nonempty interface.
  3942  			if Debug_typeassert > 0 {
  3943  				Warnl(n.Lineno, "type assertion inlined")
  3944  			}
  3945  
  3946  			// Get itab/type field from input.
  3947  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  3948  			// Conversion succeeds iff that field is not nil.
  3949  			cond := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], itab, s.constNil(byteptr))
  3950  
  3951  			if n.Left.Type.IsEmptyInterface() && commaok {
  3952  				// Converting empty interface to empty interface with ,ok is just a nil check.
  3953  				return iface, cond
  3954  			}
  3955  
  3956  			// Branch on nilness.
  3957  			b := s.endBlock()
  3958  			b.Kind = ssa.BlockIf
  3959  			b.SetControl(cond)
  3960  			b.Likely = ssa.BranchLikely
  3961  			bOk := s.f.NewBlock(ssa.BlockPlain)
  3962  			bFail := s.f.NewBlock(ssa.BlockPlain)
  3963  			b.AddEdgeTo(bOk)
  3964  			b.AddEdgeTo(bFail)
  3965  
  3966  			if !commaok {
  3967  				// On failure, panic by calling panicnildottype.
  3968  				s.startBlock(bFail)
  3969  				s.rtcall(panicnildottype, false, nil, target)
  3970  
  3971  				// On success, return (perhaps modified) input interface.
  3972  				s.startBlock(bOk)
  3973  				if n.Left.Type.IsEmptyInterface() {
  3974  					res = iface // Use input interface unchanged.
  3975  					return
  3976  				}
  3977  				// Load type out of itab, build interface with existing idata.
  3978  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  3979  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3980  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  3981  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  3982  				return
  3983  			}
  3984  
  3985  			s.startBlock(bOk)
  3986  			// nonempty -> empty
  3987  			// Need to load type from itab
  3988  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  3989  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3990  			s.endBlock()
  3991  
  3992  			// itab is nil, might as well use that as the nil result.
  3993  			s.startBlock(bFail)
  3994  			s.vars[&typVar] = itab
  3995  			s.endBlock()
  3996  
  3997  			// Merge point.
  3998  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3999  			bOk.AddEdgeTo(bEnd)
  4000  			bFail.AddEdgeTo(bEnd)
  4001  			s.startBlock(bEnd)
  4002  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4003  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4004  			resok = cond
  4005  			delete(s.vars, &typVar)
  4006  			return
  4007  		}
  4008  		// converting to a nonempty interface needs a runtime call.
  4009  		if Debug_typeassert > 0 {
  4010  			Warnl(n.Lineno, "type assertion not inlined")
  4011  		}
  4012  		if n.Left.Type.IsEmptyInterface() {
  4013  			if commaok {
  4014  				call := s.rtcall(assertE2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface)
  4015  				return call[0], call[1]
  4016  			}
  4017  			return s.rtcall(assertE2I, true, []*Type{n.Type}, target, iface)[0], nil
  4018  		}
  4019  		if commaok {
  4020  			call := s.rtcall(assertI2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface)
  4021  			return call[0], call[1]
  4022  		}
  4023  		return s.rtcall(assertI2I, true, []*Type{n.Type}, target, iface)[0], nil
  4024  	}
  4025  
  4026  	if Debug_typeassert > 0 {
  4027  		Warnl(n.Lineno, "type assertion inlined")
  4028  	}
  4029  
  4030  	// Converting to a concrete type.
  4031  	direct := isdirectiface(n.Type)
  4032  	typ := s.ifaceType(n.Left.Type, iface) // actual concrete type of input interface
  4033  
  4034  	if Debug_typeassert > 0 {
  4035  		Warnl(n.Lineno, "type assertion inlined")
  4036  	}
  4037  
  4038  	var tmp *Node       // temporary for use with large types
  4039  	var addr *ssa.Value // address of tmp
  4040  	if commaok && !canSSAType(n.Type) {
  4041  		// unSSAable type, use temporary.
  4042  		// TODO: get rid of some of these temporaries.
  4043  		tmp = temp(n.Type)
  4044  		addr, _ = s.addr(tmp, false)
  4045  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  4046  	}
  4047  
  4048  	// TODO:  If we have a nonempty interface and its itab field is nil,
  4049  	// then this test is redundant and ifaceType should just branch directly to bFail.
  4050  	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
  4051  	b := s.endBlock()
  4052  	b.Kind = ssa.BlockIf
  4053  	b.SetControl(cond)
  4054  	b.Likely = ssa.BranchLikely
  4055  
  4056  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4057  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4058  	b.AddEdgeTo(bOk)
  4059  	b.AddEdgeTo(bFail)
  4060  
  4061  	if !commaok {
  4062  		// on failure, panic by calling panicdottype
  4063  		s.startBlock(bFail)
  4064  		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
  4065  		s.rtcall(panicdottype, false, nil, typ, target, taddr)
  4066  
  4067  		// on success, return data from interface
  4068  		s.startBlock(bOk)
  4069  		if direct {
  4070  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4071  		}
  4072  		p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
  4073  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4074  	}
  4075  
  4076  	// commaok is the more complicated case because we have
  4077  	// a control flow merge point.
  4078  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4079  	// Note that we need a new valVar each time (unlike okVar where we can
  4080  	// reuse the variable) because it might have a different type every time.
  4081  	valVar := &Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "val"}}
  4082  
  4083  	// type assertion succeeded
  4084  	s.startBlock(bOk)
  4085  	if tmp == nil {
  4086  		if direct {
  4087  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4088  		} else {
  4089  			p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
  4090  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4091  		}
  4092  	} else {
  4093  		p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
  4094  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, p, s.mem())
  4095  	}
  4096  	s.vars[&okVar] = s.constBool(true)
  4097  	s.endBlock()
  4098  	bOk.AddEdgeTo(bEnd)
  4099  
  4100  	// type assertion failed
  4101  	s.startBlock(bFail)
  4102  	if tmp == nil {
  4103  		s.vars[valVar] = s.zeroVal(n.Type)
  4104  	} else {
  4105  		s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, s.mem())
  4106  	}
  4107  	s.vars[&okVar] = s.constBool(false)
  4108  	s.endBlock()
  4109  	bFail.AddEdgeTo(bEnd)
  4110  
  4111  	// merge point
  4112  	s.startBlock(bEnd)
  4113  	if tmp == nil {
  4114  		res = s.variable(valVar, n.Type)
  4115  		delete(s.vars, valVar)
  4116  	} else {
  4117  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4118  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  4119  	}
  4120  	resok = s.variable(&okVar, Types[TBOOL])
  4121  	delete(s.vars, &okVar)
  4122  	return res, resok
  4123  }
  4124  
  4125  // checkgoto checks that a goto from from to to does not
  4126  // jump into a block or jump over variable declarations.
  4127  // It is a copy of checkgoto in the pre-SSA backend,
  4128  // modified only for line number handling.
  4129  // TODO: document how this works and why it is designed the way it is.
  4130  func (s *state) checkgoto(from *Node, to *Node) {
  4131  	if from.Sym == to.Sym {
  4132  		return
  4133  	}
  4134  
  4135  	nf := 0
  4136  	for fs := from.Sym; fs != nil; fs = fs.Link {
  4137  		nf++
  4138  	}
  4139  	nt := 0
  4140  	for fs := to.Sym; fs != nil; fs = fs.Link {
  4141  		nt++
  4142  	}
  4143  	fs := from.Sym
  4144  	for ; nf > nt; nf-- {
  4145  		fs = fs.Link
  4146  	}
  4147  	if fs != to.Sym {
  4148  		// decide what to complain about.
  4149  		// prefer to complain about 'into block' over declarations,
  4150  		// so scan backward to find most recent block or else dcl.
  4151  		var block *Sym
  4152  
  4153  		var dcl *Sym
  4154  		ts := to.Sym
  4155  		for ; nt > nf; nt-- {
  4156  			if ts.Pkg == nil {
  4157  				block = ts
  4158  			} else {
  4159  				dcl = ts
  4160  			}
  4161  			ts = ts.Link
  4162  		}
  4163  
  4164  		for ts != fs {
  4165  			if ts.Pkg == nil {
  4166  				block = ts
  4167  			} else {
  4168  				dcl = ts
  4169  			}
  4170  			ts = ts.Link
  4171  			fs = fs.Link
  4172  		}
  4173  
  4174  		lno := from.Left.Lineno
  4175  		if block != nil {
  4176  			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
  4177  		} else {
  4178  			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
  4179  		}
  4180  	}
  4181  }
  4182  
  4183  // variable returns the value of a variable at the current location.
  4184  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  4185  	v := s.vars[name]
  4186  	if v != nil {
  4187  		return v
  4188  	}
  4189  	v = s.fwdVars[name]
  4190  	if v != nil {
  4191  		return v
  4192  	}
  4193  
  4194  	if s.curBlock == s.f.Entry {
  4195  		// No variable should be live at entry.
  4196  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4197  	}
  4198  	// Make a FwdRef, which records a value that's live on block input.
  4199  	// We'll find the matching definition as part of insertPhis.
  4200  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4201  	s.fwdVars[name] = v
  4202  	s.addNamedValue(name, v)
  4203  	return v
  4204  }
  4205  
  4206  func (s *state) mem() *ssa.Value {
  4207  	return s.variable(&memVar, ssa.TypeMem)
  4208  }
  4209  
  4210  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4211  	if n.Class == Pxxx {
  4212  		// Don't track our dummy nodes (&memVar etc.).
  4213  		return
  4214  	}
  4215  	if n.IsAutoTmp() {
  4216  		// Don't track temporary variables.
  4217  		return
  4218  	}
  4219  	if n.Class == PPARAMOUT {
  4220  		// Don't track named output values.  This prevents return values
  4221  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4222  		return
  4223  	}
  4224  	if n.Class == PAUTO && n.Xoffset != 0 {
  4225  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4226  	}
  4227  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4228  	values, ok := s.f.NamedValues[loc]
  4229  	if !ok {
  4230  		s.f.Names = append(s.f.Names, loc)
  4231  	}
  4232  	s.f.NamedValues[loc] = append(values, v)
  4233  }
  4234  
  4235  // Branch is an unresolved branch.
  4236  type Branch struct {
  4237  	P *obj.Prog  // branch instruction
  4238  	B *ssa.Block // target
  4239  }
  4240  
  4241  // SSAGenState contains state needed during Prog generation.
  4242  type SSAGenState struct {
  4243  	// Branches remembers all the branch instructions we've seen
  4244  	// and where they would like to go.
  4245  	Branches []Branch
  4246  
  4247  	// bstart remembers where each block starts (indexed by block ID)
  4248  	bstart []*obj.Prog
  4249  
  4250  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4251  	SSEto387 map[int16]int16
  4252  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4253  	ScratchFpMem *Node
  4254  }
  4255  
  4256  // Pc returns the current Prog.
  4257  func (s *SSAGenState) Pc() *obj.Prog {
  4258  	return pc
  4259  }
  4260  
  4261  // SetLineno sets the current source line number.
  4262  func (s *SSAGenState) SetLineno(l int32) {
  4263  	lineno = l
  4264  }
  4265  
  4266  // genssa appends entries to ptxt for each instruction in f.
  4267  // gcargs and gclocals are filled in with pointer maps for the frame.
  4268  func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
  4269  	var s SSAGenState
  4270  
  4271  	e := f.Config.Frontend().(*ssaExport)
  4272  
  4273  	// Remember where each block starts.
  4274  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4275  
  4276  	var valueProgs map[*obj.Prog]*ssa.Value
  4277  	var blockProgs map[*obj.Prog]*ssa.Block
  4278  	var logProgs = e.log
  4279  	if logProgs {
  4280  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4281  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4282  		f.Logf("genssa %s\n", f.Name)
  4283  		blockProgs[pc] = f.Blocks[0]
  4284  	}
  4285  
  4286  	if Thearch.Use387 {
  4287  		s.SSEto387 = map[int16]int16{}
  4288  	}
  4289  
  4290  	s.ScratchFpMem = scratchFpMem
  4291  	scratchFpMem = nil
  4292  
  4293  	// Emit basic blocks
  4294  	for i, b := range f.Blocks {
  4295  		s.bstart[b.ID] = pc
  4296  		// Emit values in block
  4297  		Thearch.SSAMarkMoves(&s, b)
  4298  		for _, v := range b.Values {
  4299  			x := pc
  4300  			Thearch.SSAGenValue(&s, v)
  4301  			if logProgs {
  4302  				for ; x != pc; x = x.Link {
  4303  					valueProgs[x] = v
  4304  				}
  4305  			}
  4306  		}
  4307  		// Emit control flow instructions for block
  4308  		var next *ssa.Block
  4309  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4310  			// If -N, leave next==nil so every block with successors
  4311  			// ends in a JMP (except call blocks - plive doesn't like
  4312  			// select{send,recv} followed by a JMP call).  Helps keep
  4313  			// line numbers for otherwise empty blocks.
  4314  			next = f.Blocks[i+1]
  4315  		}
  4316  		x := pc
  4317  		Thearch.SSAGenBlock(&s, b, next)
  4318  		if logProgs {
  4319  			for ; x != pc; x = x.Link {
  4320  				blockProgs[x] = b
  4321  			}
  4322  		}
  4323  	}
  4324  
  4325  	// Resolve branches
  4326  	for _, br := range s.Branches {
  4327  		br.P.To.Val = s.bstart[br.B.ID]
  4328  	}
  4329  
  4330  	if logProgs {
  4331  		for p := ptxt; p != nil; p = p.Link {
  4332  			var s string
  4333  			if v, ok := valueProgs[p]; ok {
  4334  				s = v.String()
  4335  			} else if b, ok := blockProgs[p]; ok {
  4336  				s = b.String()
  4337  			} else {
  4338  				s = "   " // most value and branch strings are 2-3 characters long
  4339  			}
  4340  			f.Logf("%s\t%s\n", s, p)
  4341  		}
  4342  		if f.Config.HTML != nil {
  4343  			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
  4344  			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
  4345  			var buf bytes.Buffer
  4346  			buf.WriteString("<code>")
  4347  			buf.WriteString("<dl class=\"ssa-gen\">")
  4348  			for p := ptxt; p != nil; p = p.Link {
  4349  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4350  				if v, ok := valueProgs[p]; ok {
  4351  					buf.WriteString(v.HTML())
  4352  				} else if b, ok := blockProgs[p]; ok {
  4353  					buf.WriteString(b.HTML())
  4354  				}
  4355  				buf.WriteString("</dt>")
  4356  				buf.WriteString("<dd class=\"ssa-prog\">")
  4357  				buf.WriteString(html.EscapeString(p.String()))
  4358  				buf.WriteString("</dd>")
  4359  				buf.WriteString("</li>")
  4360  			}
  4361  			buf.WriteString("</dl>")
  4362  			buf.WriteString("</code>")
  4363  			f.Config.HTML.WriteColumn("genssa", buf.String())
  4364  			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
  4365  		}
  4366  	}
  4367  
  4368  	// Emit static data
  4369  	if f.StaticData != nil {
  4370  		for _, n := range f.StaticData.([]*Node) {
  4371  			if !gen_as_init(n, false) {
  4372  				Fatalf("non-static data marked as static: %v\n\n", n)
  4373  			}
  4374  		}
  4375  	}
  4376  
  4377  	// Generate gc bitmaps.
  4378  	liveness(Curfn, ptxt, gcargs, gclocals)
  4379  
  4380  	// Add frame prologue. Zero ambiguously live variables.
  4381  	Thearch.Defframe(ptxt)
  4382  	if Debug['f'] != 0 {
  4383  		frame(0)
  4384  	}
  4385  
  4386  	// Remove leftover instrumentation from the instruction stream.
  4387  	removevardef(ptxt)
  4388  
  4389  	f.Config.HTML.Close()
  4390  	f.Config.HTML = nil
  4391  }
  4392  
  4393  type FloatingEQNEJump struct {
  4394  	Jump  obj.As
  4395  	Index int
  4396  }
  4397  
  4398  func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
  4399  	p := Prog(jumps.Jump)
  4400  	p.To.Type = obj.TYPE_BRANCH
  4401  	to := jumps.Index
  4402  	branches = append(branches, Branch{p, b.Succs[to].Block()})
  4403  	if to == 1 {
  4404  		likely = -likely
  4405  	}
  4406  	// liblink reorders the instruction stream as it sees fit.
  4407  	// Pass along what we know so liblink can make use of it.
  4408  	// TODO: Once we've fully switched to SSA,
  4409  	// make liblink leave our output alone.
  4410  	switch likely {
  4411  	case ssa.BranchUnlikely:
  4412  		p.From.Type = obj.TYPE_CONST
  4413  		p.From.Offset = 0
  4414  	case ssa.BranchLikely:
  4415  		p.From.Type = obj.TYPE_CONST
  4416  		p.From.Offset = 1
  4417  	}
  4418  	return branches
  4419  }
  4420  
  4421  func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4422  	likely := b.Likely
  4423  	switch next {
  4424  	case b.Succs[0].Block():
  4425  		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
  4426  		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
  4427  	case b.Succs[1].Block():
  4428  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4429  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4430  	default:
  4431  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4432  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4433  		q := Prog(obj.AJMP)
  4434  		q.To.Type = obj.TYPE_BRANCH
  4435  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4436  	}
  4437  }
  4438  
  4439  func AuxOffset(v *ssa.Value) (offset int64) {
  4440  	if v.Aux == nil {
  4441  		return 0
  4442  	}
  4443  	switch sym := v.Aux.(type) {
  4444  
  4445  	case *ssa.AutoSymbol:
  4446  		n := sym.Node.(*Node)
  4447  		return n.Xoffset
  4448  	}
  4449  	return 0
  4450  }
  4451  
  4452  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4453  func AddAux(a *obj.Addr, v *ssa.Value) {
  4454  	AddAux2(a, v, v.AuxInt)
  4455  }
  4456  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4457  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4458  		v.Fatalf("bad AddAux addr %v", a)
  4459  	}
  4460  	// add integer offset
  4461  	a.Offset += offset
  4462  
  4463  	// If no additional symbol offset, we're done.
  4464  	if v.Aux == nil {
  4465  		return
  4466  	}
  4467  	// Add symbol's offset from its base register.
  4468  	switch sym := v.Aux.(type) {
  4469  	case *ssa.ExternSymbol:
  4470  		a.Name = obj.NAME_EXTERN
  4471  		switch s := sym.Sym.(type) {
  4472  		case *Sym:
  4473  			a.Sym = Linksym(s)
  4474  		case *obj.LSym:
  4475  			a.Sym = s
  4476  		default:
  4477  			v.Fatalf("ExternSymbol.Sym is %T", s)
  4478  		}
  4479  	case *ssa.ArgSymbol:
  4480  		n := sym.Node.(*Node)
  4481  		a.Name = obj.NAME_PARAM
  4482  		a.Node = n
  4483  		a.Sym = Linksym(n.Orig.Sym)
  4484  		a.Offset += n.Xoffset
  4485  	case *ssa.AutoSymbol:
  4486  		n := sym.Node.(*Node)
  4487  		a.Name = obj.NAME_AUTO
  4488  		a.Node = n
  4489  		a.Sym = Linksym(n.Sym)
  4490  		a.Offset += n.Xoffset
  4491  	default:
  4492  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4493  	}
  4494  }
  4495  
  4496  // sizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
  4497  func sizeAlignAuxInt(t *Type) int64 {
  4498  	return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
  4499  }
  4500  
  4501  // extendIndex extends v to a full int width.
  4502  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4503  func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value {
  4504  	size := v.Type.Size()
  4505  	if size == s.config.IntSize {
  4506  		return v
  4507  	}
  4508  	if size > s.config.IntSize {
  4509  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4510  		// high word and branch to out-of-bounds failure if it is not 0.
  4511  		if Debug['B'] == 0 {
  4512  			hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
  4513  			cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
  4514  			s.check(cmp, panicfn)
  4515  		}
  4516  		return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
  4517  	}
  4518  
  4519  	// Extend value to the required size
  4520  	var op ssa.Op
  4521  	if v.Type.IsSigned() {
  4522  		switch 10*size + s.config.IntSize {
  4523  		case 14:
  4524  			op = ssa.OpSignExt8to32
  4525  		case 18:
  4526  			op = ssa.OpSignExt8to64
  4527  		case 24:
  4528  			op = ssa.OpSignExt16to32
  4529  		case 28:
  4530  			op = ssa.OpSignExt16to64
  4531  		case 48:
  4532  			op = ssa.OpSignExt32to64
  4533  		default:
  4534  			s.Fatalf("bad signed index extension %s", v.Type)
  4535  		}
  4536  	} else {
  4537  		switch 10*size + s.config.IntSize {
  4538  		case 14:
  4539  			op = ssa.OpZeroExt8to32
  4540  		case 18:
  4541  			op = ssa.OpZeroExt8to64
  4542  		case 24:
  4543  			op = ssa.OpZeroExt16to32
  4544  		case 28:
  4545  			op = ssa.OpZeroExt16to64
  4546  		case 48:
  4547  			op = ssa.OpZeroExt32to64
  4548  		default:
  4549  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4550  		}
  4551  	}
  4552  	return s.newValue1(op, Types[TINT], v)
  4553  }
  4554  
  4555  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4556  // Called during ssaGenValue.
  4557  func CheckLoweredPhi(v *ssa.Value) {
  4558  	if v.Op != ssa.OpPhi {
  4559  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4560  	}
  4561  	if v.Type.IsMemory() {
  4562  		return
  4563  	}
  4564  	f := v.Block.Func
  4565  	loc := f.RegAlloc[v.ID]
  4566  	for _, a := range v.Args {
  4567  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4568  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4569  		}
  4570  	}
  4571  }
  4572  
  4573  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4574  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4575  // That register contains the closure pointer on closure entry.
  4576  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4577  	entry := v.Block.Func.Entry
  4578  	if entry != v.Block || entry.Values[0] != v {
  4579  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4580  	}
  4581  }
  4582  
  4583  // KeepAlive marks the variable referenced by OpKeepAlive as live.
  4584  // Called during ssaGenValue.
  4585  func KeepAlive(v *ssa.Value) {
  4586  	if v.Op != ssa.OpKeepAlive {
  4587  		v.Fatalf("KeepAlive called with non-KeepAlive value: %v", v.LongString())
  4588  	}
  4589  	if !v.Args[0].Type.IsPtrShaped() {
  4590  		v.Fatalf("keeping non-pointer alive %v", v.Args[0])
  4591  	}
  4592  	n, _ := AutoVar(v.Args[0])
  4593  	if n == nil {
  4594  		v.Fatalf("KeepAlive with non-spilled value %s %s", v, v.Args[0])
  4595  	}
  4596  	// Note: KeepAlive arg may be a small part of a larger variable n.  We keep the
  4597  	// whole variable n alive at this point. (Typically, this happens when
  4598  	// we are requested to keep the idata portion of an interface{} alive, and
  4599  	// we end up keeping the whole interface{} alive.  That's ok.)
  4600  	Gvarlive(n)
  4601  }
  4602  
  4603  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4604  // where v should be spilled.
  4605  func AutoVar(v *ssa.Value) (*Node, int64) {
  4606  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4607  	if v.Type.Size() > loc.Type.Size() {
  4608  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4609  	}
  4610  	return loc.N.(*Node), loc.Off
  4611  }
  4612  
  4613  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4614  	n, off := AutoVar(v)
  4615  	a.Type = obj.TYPE_MEM
  4616  	a.Node = n
  4617  	a.Sym = Linksym(n.Sym)
  4618  	a.Offset = n.Xoffset + off
  4619  	if n.Class == PPARAM || n.Class == PPARAMOUT {
  4620  		a.Name = obj.NAME_PARAM
  4621  	} else {
  4622  		a.Name = obj.NAME_AUTO
  4623  	}
  4624  }
  4625  
  4626  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4627  	if s.ScratchFpMem == nil {
  4628  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4629  	}
  4630  	a.Type = obj.TYPE_MEM
  4631  	a.Name = obj.NAME_AUTO
  4632  	a.Node = s.ScratchFpMem
  4633  	a.Sym = Linksym(s.ScratchFpMem.Sym)
  4634  	a.Reg = int16(Thearch.REGSP)
  4635  	a.Offset = s.ScratchFpMem.Xoffset
  4636  }
  4637  
  4638  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4639  func fieldIdx(n *Node) int {
  4640  	t := n.Left.Type
  4641  	f := n.Sym
  4642  	if !t.IsStruct() {
  4643  		panic("ODOT's LHS is not a struct")
  4644  	}
  4645  
  4646  	var i int
  4647  	for _, t1 := range t.Fields().Slice() {
  4648  		if t1.Sym != f {
  4649  			i++
  4650  			continue
  4651  		}
  4652  		if t1.Offset != n.Xoffset {
  4653  			panic("field offset doesn't match")
  4654  		}
  4655  		return i
  4656  	}
  4657  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  4658  
  4659  	// TODO: keep the result of this function somewhere in the ODOT Node
  4660  	// so we don't have to recompute it each time we need it.
  4661  }
  4662  
  4663  // ssaExport exports a bunch of compiler services for the ssa backend.
  4664  type ssaExport struct {
  4665  	log bool
  4666  }
  4667  
  4668  func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
  4669  func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
  4670  func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
  4671  func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
  4672  func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
  4673  func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
  4674  func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
  4675  func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
  4676  func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
  4677  func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
  4678  func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
  4679  func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
  4680  func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
  4681  func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
  4682  func (s *ssaExport) TypeBytePtr() ssa.Type { return ptrto(Types[TUINT8]) }
  4683  
  4684  // StringData returns a symbol (a *Sym wrapped in an interface) which
  4685  // is the data component of a global string constant containing s.
  4686  func (*ssaExport) StringData(s string) interface{} {
  4687  	// TODO: is idealstring correct?  It might not matter...
  4688  	data := stringsym(s)
  4689  	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
  4690  }
  4691  
  4692  func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
  4693  	n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list
  4694  	return n
  4695  }
  4696  
  4697  func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4698  	n := name.N.(*Node)
  4699  	ptrType := ptrto(Types[TUINT8])
  4700  	lenType := Types[TINT]
  4701  	if n.Class == PAUTO && !n.Addrtaken {
  4702  		// Split this string up into two separate variables.
  4703  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4704  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4705  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4706  	}
  4707  	// Return the two parts of the larger variable.
  4708  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4709  }
  4710  
  4711  func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4712  	n := name.N.(*Node)
  4713  	t := ptrto(Types[TUINT8])
  4714  	if n.Class == PAUTO && !n.Addrtaken {
  4715  		// Split this interface up into two separate variables.
  4716  		f := ".itab"
  4717  		if n.Type.IsEmptyInterface() {
  4718  			f = ".type"
  4719  		}
  4720  		c := e.namedAuto(n.Sym.Name+f, t)
  4721  		d := e.namedAuto(n.Sym.Name+".data", t)
  4722  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4723  	}
  4724  	// Return the two parts of the larger variable.
  4725  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4726  }
  4727  
  4728  func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4729  	n := name.N.(*Node)
  4730  	ptrType := ptrto(name.Type.ElemType().(*Type))
  4731  	lenType := Types[TINT]
  4732  	if n.Class == PAUTO && !n.Addrtaken {
  4733  		// Split this slice up into three separate variables.
  4734  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4735  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4736  		c := e.namedAuto(n.Sym.Name+".cap", lenType)
  4737  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4738  	}
  4739  	// Return the three parts of the larger variable.
  4740  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4741  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4742  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4743  }
  4744  
  4745  func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4746  	n := name.N.(*Node)
  4747  	s := name.Type.Size() / 2
  4748  	var t *Type
  4749  	if s == 8 {
  4750  		t = Types[TFLOAT64]
  4751  	} else {
  4752  		t = Types[TFLOAT32]
  4753  	}
  4754  	if n.Class == PAUTO && !n.Addrtaken {
  4755  		// Split this complex up into two separate variables.
  4756  		c := e.namedAuto(n.Sym.Name+".real", t)
  4757  		d := e.namedAuto(n.Sym.Name+".imag", t)
  4758  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4759  	}
  4760  	// Return the two parts of the larger variable.
  4761  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4762  }
  4763  
  4764  func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4765  	n := name.N.(*Node)
  4766  	var t *Type
  4767  	if name.Type.IsSigned() {
  4768  		t = Types[TINT32]
  4769  	} else {
  4770  		t = Types[TUINT32]
  4771  	}
  4772  	if n.Class == PAUTO && !n.Addrtaken {
  4773  		// Split this int64 up into two separate variables.
  4774  		h := e.namedAuto(n.Sym.Name+".hi", t)
  4775  		l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
  4776  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
  4777  	}
  4778  	// Return the two parts of the larger variable.
  4779  	// Assuming little endian (we don't support big endian 32-bit architecture yet)
  4780  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
  4781  }
  4782  
  4783  func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4784  	n := name.N.(*Node)
  4785  	st := name.Type
  4786  	ft := st.FieldType(i)
  4787  	if n.Class == PAUTO && !n.Addrtaken {
  4788  		// Note: the _ field may appear several times.  But
  4789  		// have no fear, identically-named but distinct Autos are
  4790  		// ok, albeit maybe confusing for a debugger.
  4791  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
  4792  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4793  	}
  4794  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4795  }
  4796  
  4797  func (e *ssaExport) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  4798  	n := name.N.(*Node)
  4799  	at := name.Type
  4800  	if at.NumElem() != 1 {
  4801  		Fatalf("bad array size")
  4802  	}
  4803  	et := at.ElemType()
  4804  	if n.Class == PAUTO && !n.Addrtaken {
  4805  		x := e.namedAuto(n.Sym.Name+"[0]", et)
  4806  		return ssa.LocalSlot{N: x, Type: et, Off: 0}
  4807  	}
  4808  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  4809  }
  4810  
  4811  // namedAuto returns a new AUTO variable with the given name and type.
  4812  // These are exposed to the debugger.
  4813  func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
  4814  	t := typ.(*Type)
  4815  	s := &Sym{Name: name, Pkg: localpkg}
  4816  	n := nod(ONAME, nil, nil)
  4817  	s.Def = n
  4818  	s.Def.Used = true
  4819  	n.Sym = s
  4820  	n.Type = t
  4821  	n.Class = PAUTO
  4822  	n.Addable = true
  4823  	n.Ullman = 1
  4824  	n.Esc = EscNever
  4825  	n.Xoffset = 0
  4826  	n.Name.Curfn = Curfn
  4827  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  4828  
  4829  	dowidth(t)
  4830  	return n
  4831  }
  4832  
  4833  func (e *ssaExport) CanSSA(t ssa.Type) bool {
  4834  	return canSSAType(t.(*Type))
  4835  }
  4836  
  4837  func (e *ssaExport) Line(line int32) string {
  4838  	return linestr(line)
  4839  }
  4840  
  4841  // Log logs a message from the compiler.
  4842  func (e *ssaExport) Logf(msg string, args ...interface{}) {
  4843  	if e.log {
  4844  		fmt.Printf(msg, args...)
  4845  	}
  4846  }
  4847  
  4848  func (e *ssaExport) Log() bool {
  4849  	return e.log
  4850  }
  4851  
  4852  // Fatal reports a compiler error and exits.
  4853  func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
  4854  	lineno = line
  4855  	Fatalf(msg, args...)
  4856  }
  4857  
  4858  // Warnl reports a "warning", which is usually flag-triggered
  4859  // logging output for the benefit of tests.
  4860  func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
  4861  	Warnl(line, fmt_, args...)
  4862  }
  4863  
  4864  func (e *ssaExport) Debug_checknil() bool {
  4865  	return Debug_checknil != 0
  4866  }
  4867  
  4868  func (e *ssaExport) Debug_wb() bool {
  4869  	return Debug_wb != 0
  4870  }
  4871  
  4872  func (e *ssaExport) Syslook(name string) interface{} {
  4873  	return syslook(name).Sym
  4874  }
  4875  
  4876  func (n *Node) Typ() ssa.Type {
  4877  	return n.Type
  4878  }