github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/compress/flate/deflate.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "fmt" 9 "io" 10 "math" 11 ) 12 13 const ( 14 NoCompression = 0 15 BestSpeed = 1 16 BestCompression = 9 17 DefaultCompression = -1 18 19 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman 20 // entropy encoding. This mode is useful in compressing data that has 21 // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) 22 // that lacks an entropy encoder. Compression gains are achieved when 23 // certain bytes in the input stream occur more frequently than others. 24 // 25 // Note that HuffmanOnly produces a compressed output that is 26 // RFC 1951 compliant. That is, any valid DEFLATE decompressor will 27 // continue to be able to decompress this output. 28 HuffmanOnly = -2 29 ) 30 31 const ( 32 logWindowSize = 15 33 windowSize = 1 << logWindowSize 34 windowMask = windowSize - 1 35 36 // The LZ77 step produces a sequence of literal tokens and <length, offset> 37 // pair tokens. The offset is also known as distance. The underlying wire 38 // format limits the range of lengths and offsets. For example, there are 39 // 256 legitimate lengths: those in the range [3, 258]. This package's 40 // compressor uses a higher minimum match length, enabling optimizations 41 // such as finding matches via 32-bit loads and compares. 42 baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 43 minMatchLength = 4 // The smallest match length that the compressor actually emits 44 maxMatchLength = 258 // The largest match length 45 baseMatchOffset = 1 // The smallest match offset 46 maxMatchOffset = 1 << 15 // The largest match offset 47 48 // The maximum number of tokens we put into a single flate block, just to 49 // stop things from getting too large. 50 maxFlateBlockTokens = 1 << 14 51 maxStoreBlockSize = 65535 52 hashBits = 17 // After 17 performance degrades 53 hashSize = 1 << hashBits 54 hashMask = (1 << hashBits) - 1 55 maxHashOffset = 1 << 24 56 57 skipNever = math.MaxInt32 58 ) 59 60 type compressionLevel struct { 61 level, good, lazy, nice, chain, fastSkipHashing int 62 } 63 64 var levels = []compressionLevel{ 65 {0, 0, 0, 0, 0, 0}, // NoCompression. 66 {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. 67 // For levels 2-3 we don't bother trying with lazy matches. 68 {2, 4, 0, 16, 8, 5}, 69 {3, 4, 0, 32, 32, 6}, 70 // Levels 4-9 use increasingly more lazy matching 71 // and increasingly stringent conditions for "good enough". 72 {4, 4, 4, 16, 16, skipNever}, 73 {5, 8, 16, 32, 32, skipNever}, 74 {6, 8, 16, 128, 128, skipNever}, 75 {7, 8, 32, 128, 256, skipNever}, 76 {8, 32, 128, 258, 1024, skipNever}, 77 {9, 32, 258, 258, 4096, skipNever}, 78 } 79 80 type compressor struct { 81 compressionLevel 82 83 w *huffmanBitWriter 84 bulkHasher func([]byte, []uint32) 85 86 // compression algorithm 87 fill func(*compressor, []byte) int // copy data to window 88 step func(*compressor) // process window 89 sync bool // requesting flush 90 bestSpeed *deflateFast // Encoder for BestSpeed 91 92 // Input hash chains 93 // hashHead[hashValue] contains the largest inputIndex with the specified hash value 94 // If hashHead[hashValue] is within the current window, then 95 // hashPrev[hashHead[hashValue] & windowMask] contains the previous index 96 // with the same hash value. 97 chainHead int 98 hashHead [hashSize]uint32 99 hashPrev [windowSize]uint32 100 hashOffset int 101 102 // input window: unprocessed data is window[index:windowEnd] 103 index int 104 window []byte 105 windowEnd int 106 blockStart int // window index where current tokens start 107 byteAvailable bool // if true, still need to process window[index-1]. 108 109 // queued output tokens 110 tokens []token 111 112 // deflate state 113 length int 114 offset int 115 hash uint32 116 maxInsertIndex int 117 err error 118 119 // hashMatch must be able to contain hashes for the maximum match length. 120 hashMatch [maxMatchLength - 1]uint32 121 } 122 123 func (d *compressor) fillDeflate(b []byte) int { 124 if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { 125 // shift the window by windowSize 126 copy(d.window, d.window[windowSize:2*windowSize]) 127 d.index -= windowSize 128 d.windowEnd -= windowSize 129 if d.blockStart >= windowSize { 130 d.blockStart -= windowSize 131 } else { 132 d.blockStart = math.MaxInt32 133 } 134 d.hashOffset += windowSize 135 if d.hashOffset > maxHashOffset { 136 delta := d.hashOffset - 1 137 d.hashOffset -= delta 138 d.chainHead -= delta 139 for i, v := range d.hashPrev { 140 if int(v) > delta { 141 d.hashPrev[i] = uint32(int(v) - delta) 142 } else { 143 d.hashPrev[i] = 0 144 } 145 } 146 for i, v := range d.hashHead { 147 if int(v) > delta { 148 d.hashHead[i] = uint32(int(v) - delta) 149 } else { 150 d.hashHead[i] = 0 151 } 152 } 153 } 154 } 155 n := copy(d.window[d.windowEnd:], b) 156 d.windowEnd += n 157 return n 158 } 159 160 func (d *compressor) writeBlock(tokens []token, index int) error { 161 if index > 0 { 162 var window []byte 163 if d.blockStart <= index { 164 window = d.window[d.blockStart:index] 165 } 166 d.blockStart = index 167 d.w.writeBlock(tokens, false, window) 168 return d.w.err 169 } 170 return nil 171 } 172 173 // fillWindow will fill the current window with the supplied 174 // dictionary and calculate all hashes. 175 // This is much faster than doing a full encode. 176 // Should only be used after a reset. 177 func (d *compressor) fillWindow(b []byte) { 178 // Do not fill window if we are in store-only mode. 179 if d.compressionLevel.level < 2 { 180 return 181 } 182 if d.index != 0 || d.windowEnd != 0 { 183 panic("internal error: fillWindow called with stale data") 184 } 185 186 // If we are given too much, cut it. 187 if len(b) > windowSize { 188 b = b[len(b)-windowSize:] 189 } 190 // Add all to window. 191 n := copy(d.window, b) 192 193 // Calculate 256 hashes at the time (more L1 cache hits) 194 loops := (n + 256 - minMatchLength) / 256 195 for j := 0; j < loops; j++ { 196 index := j * 256 197 end := index + 256 + minMatchLength - 1 198 if end > n { 199 end = n 200 } 201 toCheck := d.window[index:end] 202 dstSize := len(toCheck) - minMatchLength + 1 203 204 if dstSize <= 0 { 205 continue 206 } 207 208 dst := d.hashMatch[:dstSize] 209 d.bulkHasher(toCheck, dst) 210 var newH uint32 211 for i, val := range dst { 212 di := i + index 213 newH = val 214 hh := &d.hashHead[newH&hashMask] 215 // Get previous value with the same hash. 216 // Our chain should point to the previous value. 217 d.hashPrev[di&windowMask] = *hh 218 // Set the head of the hash chain to us. 219 *hh = uint32(di + d.hashOffset) 220 } 221 d.hash = newH 222 } 223 // Update window information. 224 d.windowEnd = n 225 d.index = n 226 } 227 228 // Try to find a match starting at index whose length is greater than prevSize. 229 // We only look at chainCount possibilities before giving up. 230 func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { 231 minMatchLook := maxMatchLength 232 if lookahead < minMatchLook { 233 minMatchLook = lookahead 234 } 235 236 win := d.window[0 : pos+minMatchLook] 237 238 // We quit when we get a match that's at least nice long 239 nice := len(win) - pos 240 if d.nice < nice { 241 nice = d.nice 242 } 243 244 // If we've got a match that's good enough, only look in 1/4 the chain. 245 tries := d.chain 246 length = prevLength 247 if length >= d.good { 248 tries >>= 2 249 } 250 251 wEnd := win[pos+length] 252 wPos := win[pos:] 253 minIndex := pos - windowSize 254 255 for i := prevHead; tries > 0; tries-- { 256 if wEnd == win[i+length] { 257 n := matchLen(win[i:], wPos, minMatchLook) 258 259 if n > length && (n > minMatchLength || pos-i <= 4096) { 260 length = n 261 offset = pos - i 262 ok = true 263 if n >= nice { 264 // The match is good enough that we don't try to find a better one. 265 break 266 } 267 wEnd = win[pos+n] 268 } 269 } 270 if i == minIndex { 271 // hashPrev[i & windowMask] has already been overwritten, so stop now. 272 break 273 } 274 i = int(d.hashPrev[i&windowMask]) - d.hashOffset 275 if i < minIndex || i < 0 { 276 break 277 } 278 } 279 return 280 } 281 282 func (d *compressor) writeStoredBlock(buf []byte) error { 283 if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { 284 return d.w.err 285 } 286 d.w.writeBytes(buf) 287 return d.w.err 288 } 289 290 const hashmul = 0x1e35a7bd 291 292 // hash4 returns a hash representation of the first 4 bytes 293 // of the supplied slice. 294 // The caller must ensure that len(b) >= 4. 295 func hash4(b []byte) uint32 { 296 return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) 297 } 298 299 // bulkHash4 will compute hashes using the same 300 // algorithm as hash4 301 func bulkHash4(b []byte, dst []uint32) { 302 if len(b) < minMatchLength { 303 return 304 } 305 hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 306 dst[0] = (hb * hashmul) >> (32 - hashBits) 307 end := len(b) - minMatchLength + 1 308 for i := 1; i < end; i++ { 309 hb = (hb << 8) | uint32(b[i+3]) 310 dst[i] = (hb * hashmul) >> (32 - hashBits) 311 } 312 } 313 314 // matchLen returns the number of matching bytes in a and b 315 // up to length 'max'. Both slices must be at least 'max' 316 // bytes in size. 317 func matchLen(a, b []byte, max int) int { 318 a = a[:max] 319 b = b[:len(a)] 320 for i, av := range a { 321 if b[i] != av { 322 return i 323 } 324 } 325 return max 326 } 327 328 // encSpeed will compress and store the currently added data, 329 // if enough has been accumulated or we at the end of the stream. 330 // Any error that occurred will be in d.err 331 func (d *compressor) encSpeed() { 332 // We only compress if we have maxStoreBlockSize. 333 if d.windowEnd < maxStoreBlockSize { 334 if !d.sync { 335 return 336 } 337 338 // Handle small sizes. 339 if d.windowEnd < 128 { 340 switch { 341 case d.windowEnd == 0: 342 return 343 case d.windowEnd <= 16: 344 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 345 default: 346 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 347 d.err = d.w.err 348 } 349 d.windowEnd = 0 350 d.bestSpeed.reset() 351 return 352 } 353 354 } 355 // Encode the block. 356 d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) 357 358 // If we removed less than 1/16th, Huffman compress the block. 359 if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { 360 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 361 } else { 362 d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) 363 } 364 d.err = d.w.err 365 d.windowEnd = 0 366 } 367 368 func (d *compressor) initDeflate() { 369 d.window = make([]byte, 2*windowSize) 370 d.hashOffset = 1 371 d.tokens = make([]token, 0, maxFlateBlockTokens+1) 372 d.length = minMatchLength - 1 373 d.offset = 0 374 d.byteAvailable = false 375 d.index = 0 376 d.hash = 0 377 d.chainHead = -1 378 d.bulkHasher = bulkHash4 379 } 380 381 func (d *compressor) deflate() { 382 if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { 383 return 384 } 385 386 d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) 387 if d.index < d.maxInsertIndex { 388 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 389 } 390 391 Loop: 392 for { 393 if d.index > d.windowEnd { 394 panic("index > windowEnd") 395 } 396 lookahead := d.windowEnd - d.index 397 if lookahead < minMatchLength+maxMatchLength { 398 if !d.sync { 399 break Loop 400 } 401 if d.index > d.windowEnd { 402 panic("index > windowEnd") 403 } 404 if lookahead == 0 { 405 // Flush current output block if any. 406 if d.byteAvailable { 407 // There is still one pending token that needs to be flushed 408 d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) 409 d.byteAvailable = false 410 } 411 if len(d.tokens) > 0 { 412 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 413 return 414 } 415 d.tokens = d.tokens[:0] 416 } 417 break Loop 418 } 419 } 420 if d.index < d.maxInsertIndex { 421 // Update the hash 422 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 423 hh := &d.hashHead[d.hash&hashMask] 424 d.chainHead = int(*hh) 425 d.hashPrev[d.index&windowMask] = uint32(d.chainHead) 426 *hh = uint32(d.index + d.hashOffset) 427 } 428 prevLength := d.length 429 prevOffset := d.offset 430 d.length = minMatchLength - 1 431 d.offset = 0 432 minIndex := d.index - windowSize 433 if minIndex < 0 { 434 minIndex = 0 435 } 436 437 if d.chainHead-d.hashOffset >= minIndex && 438 (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || 439 d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { 440 if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { 441 d.length = newLength 442 d.offset = newOffset 443 } 444 } 445 if d.fastSkipHashing != skipNever && d.length >= minMatchLength || 446 d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { 447 // There was a match at the previous step, and the current match is 448 // not better. Output the previous match. 449 if d.fastSkipHashing != skipNever { 450 d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) 451 } else { 452 d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) 453 } 454 // Insert in the hash table all strings up to the end of the match. 455 // index and index-1 are already inserted. If there is not enough 456 // lookahead, the last two strings are not inserted into the hash 457 // table. 458 if d.length <= d.fastSkipHashing { 459 var newIndex int 460 if d.fastSkipHashing != skipNever { 461 newIndex = d.index + d.length 462 } else { 463 newIndex = d.index + prevLength - 1 464 } 465 for d.index++; d.index < newIndex; d.index++ { 466 if d.index < d.maxInsertIndex { 467 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 468 // Get previous value with the same hash. 469 // Our chain should point to the previous value. 470 hh := &d.hashHead[d.hash&hashMask] 471 d.hashPrev[d.index&windowMask] = *hh 472 // Set the head of the hash chain to us. 473 *hh = uint32(d.index + d.hashOffset) 474 } 475 } 476 if d.fastSkipHashing == skipNever { 477 d.byteAvailable = false 478 d.length = minMatchLength - 1 479 } 480 } else { 481 // For matches this long, we don't bother inserting each individual 482 // item into the table. 483 d.index += d.length 484 if d.index < d.maxInsertIndex { 485 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 486 } 487 } 488 if len(d.tokens) == maxFlateBlockTokens { 489 // The block includes the current character 490 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 491 return 492 } 493 d.tokens = d.tokens[:0] 494 } 495 } else { 496 if d.fastSkipHashing != skipNever || d.byteAvailable { 497 i := d.index - 1 498 if d.fastSkipHashing != skipNever { 499 i = d.index 500 } 501 d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) 502 if len(d.tokens) == maxFlateBlockTokens { 503 if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { 504 return 505 } 506 d.tokens = d.tokens[:0] 507 } 508 } 509 d.index++ 510 if d.fastSkipHashing == skipNever { 511 d.byteAvailable = true 512 } 513 } 514 } 515 } 516 517 func (d *compressor) fillStore(b []byte) int { 518 n := copy(d.window[d.windowEnd:], b) 519 d.windowEnd += n 520 return n 521 } 522 523 func (d *compressor) store() { 524 if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { 525 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 526 d.windowEnd = 0 527 } 528 } 529 530 // storeHuff compresses and stores the currently added data 531 // when the d.window is full or we are at the end of the stream. 532 // Any error that occurred will be in d.err 533 func (d *compressor) storeHuff() { 534 if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { 535 return 536 } 537 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 538 d.err = d.w.err 539 d.windowEnd = 0 540 } 541 542 func (d *compressor) write(b []byte) (n int, err error) { 543 if d.err != nil { 544 return 0, d.err 545 } 546 n = len(b) 547 for len(b) > 0 { 548 d.step(d) 549 b = b[d.fill(d, b):] 550 if d.err != nil { 551 return 0, d.err 552 } 553 } 554 return n, nil 555 } 556 557 func (d *compressor) syncFlush() error { 558 if d.err != nil { 559 return d.err 560 } 561 d.sync = true 562 d.step(d) 563 if d.err == nil { 564 d.w.writeStoredHeader(0, false) 565 d.w.flush() 566 d.err = d.w.err 567 } 568 d.sync = false 569 return d.err 570 } 571 572 func (d *compressor) init(w io.Writer, level int) (err error) { 573 d.w = newHuffmanBitWriter(w) 574 575 switch { 576 case level == NoCompression: 577 d.window = make([]byte, maxStoreBlockSize) 578 d.fill = (*compressor).fillStore 579 d.step = (*compressor).store 580 case level == HuffmanOnly: 581 d.window = make([]byte, maxStoreBlockSize) 582 d.fill = (*compressor).fillStore 583 d.step = (*compressor).storeHuff 584 case level == BestSpeed: 585 d.compressionLevel = levels[level] 586 d.window = make([]byte, maxStoreBlockSize) 587 d.fill = (*compressor).fillStore 588 d.step = (*compressor).encSpeed 589 d.bestSpeed = newDeflateFast() 590 d.tokens = make([]token, maxStoreBlockSize) 591 case level == DefaultCompression: 592 level = 6 593 fallthrough 594 case 2 <= level && level <= 9: 595 d.compressionLevel = levels[level] 596 d.initDeflate() 597 d.fill = (*compressor).fillDeflate 598 d.step = (*compressor).deflate 599 default: 600 return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) 601 } 602 return nil 603 } 604 605 func (d *compressor) reset(w io.Writer) { 606 d.w.reset(w) 607 d.sync = false 608 d.err = nil 609 switch d.compressionLevel.level { 610 case NoCompression: 611 d.windowEnd = 0 612 case BestSpeed: 613 d.windowEnd = 0 614 d.tokens = d.tokens[:0] 615 d.bestSpeed.reset() 616 default: 617 d.chainHead = -1 618 for i := range d.hashHead { 619 d.hashHead[i] = 0 620 } 621 for i := range d.hashPrev { 622 d.hashPrev[i] = 0 623 } 624 d.hashOffset = 1 625 d.index, d.windowEnd = 0, 0 626 d.blockStart, d.byteAvailable = 0, false 627 d.tokens = d.tokens[:0] 628 d.length = minMatchLength - 1 629 d.offset = 0 630 d.hash = 0 631 d.maxInsertIndex = 0 632 } 633 } 634 635 func (d *compressor) close() error { 636 if d.err != nil { 637 return d.err 638 } 639 d.sync = true 640 d.step(d) 641 if d.err != nil { 642 return d.err 643 } 644 if d.w.writeStoredHeader(0, true); d.w.err != nil { 645 return d.w.err 646 } 647 d.w.flush() 648 return d.w.err 649 } 650 651 // NewWriter returns a new Writer compressing data at the given level. 652 // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); 653 // higher levels typically run slower but compress more. Level 0 654 // (NoCompression) does not attempt any compression; it only adds the 655 // necessary DEFLATE framing. 656 // Level -1 (DefaultCompression) uses the default compression level. 657 // Level -2 (HuffmanOnly) will use Huffman compression only, giving 658 // a very fast compression for all types of input, but sacrificing considerable 659 // compression efficiency. 660 // 661 // If level is in the range [-2, 9] then the error returned will be nil. 662 // Otherwise the error returned will be non-nil. 663 func NewWriter(w io.Writer, level int) (*Writer, error) { 664 var dw Writer 665 if err := dw.d.init(w, level); err != nil { 666 return nil, err 667 } 668 return &dw, nil 669 } 670 671 // NewWriterDict is like NewWriter but initializes the new 672 // Writer with a preset dictionary. The returned Writer behaves 673 // as if the dictionary had been written to it without producing 674 // any compressed output. The compressed data written to w 675 // can only be decompressed by a Reader initialized with the 676 // same dictionary. 677 func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { 678 dw := &dictWriter{w} 679 zw, err := NewWriter(dw, level) 680 if err != nil { 681 return nil, err 682 } 683 zw.d.fillWindow(dict) 684 zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. 685 return zw, err 686 } 687 688 type dictWriter struct { 689 w io.Writer 690 } 691 692 func (w *dictWriter) Write(b []byte) (n int, err error) { 693 return w.w.Write(b) 694 } 695 696 // A Writer takes data written to it and writes the compressed 697 // form of that data to an underlying writer (see NewWriter). 698 type Writer struct { 699 d compressor 700 dict []byte 701 } 702 703 // Write writes data to w, which will eventually write the 704 // compressed form of data to its underlying writer. 705 func (w *Writer) Write(data []byte) (n int, err error) { 706 return w.d.write(data) 707 } 708 709 // Flush flushes any pending data to the underlying writer. 710 // It is useful mainly in compressed network protocols, to ensure that 711 // a remote reader has enough data to reconstruct a packet. 712 // Flush does not return until the data has been written. 713 // Calling Flush when there is no pending data still causes the Writer 714 // to emit a sync marker of at least 4 bytes. 715 // If the underlying writer returns an error, Flush returns that error. 716 // 717 // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. 718 func (w *Writer) Flush() error { 719 // For more about flushing: 720 // http://www.bolet.org/~pornin/deflate-flush.html 721 return w.d.syncFlush() 722 } 723 724 // Close flushes and closes the writer. 725 func (w *Writer) Close() error { 726 return w.d.close() 727 } 728 729 // Reset discards the writer's state and makes it equivalent to 730 // the result of NewWriter or NewWriterDict called with dst 731 // and w's level and dictionary. 732 func (w *Writer) Reset(dst io.Writer) { 733 if dw, ok := w.d.w.writer.(*dictWriter); ok { 734 // w was created with NewWriterDict 735 dw.w = dst 736 w.d.reset(dw) 737 w.d.fillWindow(w.dict) 738 } else { 739 // w was created with NewWriter 740 w.d.reset(dst) 741 } 742 }