github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/crypto/rsa/rsa.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rsa implements RSA encryption as specified in PKCS#1.
     6  //
     7  // RSA is a single, fundamental operation that is used in this package to
     8  // implement either public-key encryption or public-key signatures.
     9  //
    10  // The original specification for encryption and signatures with RSA is PKCS#1
    11  // and the terms "RSA encryption" and "RSA signatures" by default refer to
    12  // PKCS#1 version 1.5. However, that specification has flaws and new designs
    13  // should use version two, usually called by just OAEP and PSS, where
    14  // possible.
    15  //
    16  // Two sets of interfaces are included in this package. When a more abstract
    17  // interface isn't necessary, there are functions for encrypting/decrypting
    18  // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
    19  // over the public-key primitive, the PrivateKey struct implements the
    20  // Decrypter and Signer interfaces from the crypto package.
    21  package rsa
    22  
    23  import (
    24  	"crypto"
    25  	"crypto/rand"
    26  	"crypto/subtle"
    27  	"errors"
    28  	"hash"
    29  	"io"
    30  	"math"
    31  	"math/big"
    32  )
    33  
    34  var bigZero = big.NewInt(0)
    35  var bigOne = big.NewInt(1)
    36  
    37  // A PublicKey represents the public part of an RSA key.
    38  type PublicKey struct {
    39  	N *big.Int // modulus
    40  	E int      // public exponent
    41  }
    42  
    43  // OAEPOptions is an interface for passing options to OAEP decryption using the
    44  // crypto.Decrypter interface.
    45  type OAEPOptions struct {
    46  	// Hash is the hash function that will be used when generating the mask.
    47  	Hash crypto.Hash
    48  	// Label is an arbitrary byte string that must be equal to the value
    49  	// used when encrypting.
    50  	Label []byte
    51  }
    52  
    53  var (
    54  	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    55  	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    56  	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    57  )
    58  
    59  // checkPub sanity checks the public key before we use it.
    60  // We require pub.E to fit into a 32-bit integer so that we
    61  // do not have different behavior depending on whether
    62  // int is 32 or 64 bits. See also
    63  // http://www.imperialviolet.org/2012/03/16/rsae.html.
    64  func checkPub(pub *PublicKey) error {
    65  	if pub.N == nil {
    66  		return errPublicModulus
    67  	}
    68  	if pub.E < 2 {
    69  		return errPublicExponentSmall
    70  	}
    71  	if pub.E > 1<<31-1 {
    72  		return errPublicExponentLarge
    73  	}
    74  	return nil
    75  }
    76  
    77  // A PrivateKey represents an RSA key
    78  type PrivateKey struct {
    79  	PublicKey            // public part.
    80  	D         *big.Int   // private exponent
    81  	Primes    []*big.Int // prime factors of N, has >= 2 elements.
    82  
    83  	// Precomputed contains precomputed values that speed up private
    84  	// operations, if available.
    85  	Precomputed PrecomputedValues
    86  }
    87  
    88  // Public returns the public key corresponding to priv.
    89  func (priv *PrivateKey) Public() crypto.PublicKey {
    90  	return &priv.PublicKey
    91  }
    92  
    93  // Sign signs msg with priv, reading randomness from rand. If opts is a
    94  // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
    95  // be used. This method is intended to support keys where the private part is
    96  // kept in, for example, a hardware module. Common uses should use the Sign*
    97  // functions in this package.
    98  func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
    99  	if pssOpts, ok := opts.(*PSSOptions); ok {
   100  		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
   101  	}
   102  
   103  	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
   104  }
   105  
   106  // Decrypt decrypts ciphertext with priv. If opts is nil or of type
   107  // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
   108  // opts must have type *OAEPOptions and OAEP decryption is done.
   109  func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
   110  	if opts == nil {
   111  		return DecryptPKCS1v15(rand, priv, ciphertext)
   112  	}
   113  
   114  	switch opts := opts.(type) {
   115  	case *OAEPOptions:
   116  		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
   117  
   118  	case *PKCS1v15DecryptOptions:
   119  		if l := opts.SessionKeyLen; l > 0 {
   120  			plaintext = make([]byte, l)
   121  			if _, err := io.ReadFull(rand, plaintext); err != nil {
   122  				return nil, err
   123  			}
   124  			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
   125  				return nil, err
   126  			}
   127  			return plaintext, nil
   128  		} else {
   129  			return DecryptPKCS1v15(rand, priv, ciphertext)
   130  		}
   131  
   132  	default:
   133  		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
   134  	}
   135  }
   136  
   137  type PrecomputedValues struct {
   138  	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
   139  	Qinv   *big.Int // Q^-1 mod P
   140  
   141  	// CRTValues is used for the 3rd and subsequent primes. Due to a
   142  	// historical accident, the CRT for the first two primes is handled
   143  	// differently in PKCS#1 and interoperability is sufficiently
   144  	// important that we mirror this.
   145  	CRTValues []CRTValue
   146  }
   147  
   148  // CRTValue contains the precomputed Chinese remainder theorem values.
   149  type CRTValue struct {
   150  	Exp   *big.Int // D mod (prime-1).
   151  	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
   152  	R     *big.Int // product of primes prior to this (inc p and q).
   153  }
   154  
   155  // Validate performs basic sanity checks on the key.
   156  // It returns nil if the key is valid, or else an error describing a problem.
   157  func (priv *PrivateKey) Validate() error {
   158  	if err := checkPub(&priv.PublicKey); err != nil {
   159  		return err
   160  	}
   161  
   162  	// Check that Πprimes == n.
   163  	modulus := new(big.Int).Set(bigOne)
   164  	for _, prime := range priv.Primes {
   165  		// Any primes ≤ 1 will cause divide-by-zero panics later.
   166  		if prime.Cmp(bigOne) <= 0 {
   167  			return errors.New("crypto/rsa: invalid prime value")
   168  		}
   169  		modulus.Mul(modulus, prime)
   170  	}
   171  	if modulus.Cmp(priv.N) != 0 {
   172  		return errors.New("crypto/rsa: invalid modulus")
   173  	}
   174  
   175  	// Check that de ≡ 1 mod p-1, for each prime.
   176  	// This implies that e is coprime to each p-1 as e has a multiplicative
   177  	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   178  	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   179  	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   180  	congruence := new(big.Int)
   181  	de := new(big.Int).SetInt64(int64(priv.E))
   182  	de.Mul(de, priv.D)
   183  	for _, prime := range priv.Primes {
   184  		pminus1 := new(big.Int).Sub(prime, bigOne)
   185  		congruence.Mod(de, pminus1)
   186  		if congruence.Cmp(bigOne) != 0 {
   187  			return errors.New("crypto/rsa: invalid exponents")
   188  		}
   189  	}
   190  	return nil
   191  }
   192  
   193  // GenerateKey generates an RSA keypair of the given bit size using the
   194  // random source random (for example, crypto/rand.Reader).
   195  func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
   196  	return GenerateMultiPrimeKey(random, 2, bits)
   197  }
   198  
   199  // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   200  // size and the given random source, as suggested in [1]. Although the public
   201  // keys are compatible (actually, indistinguishable) from the 2-prime case,
   202  // the private keys are not. Thus it may not be possible to export multi-prime
   203  // private keys in certain formats or to subsequently import them into other
   204  // code.
   205  //
   206  // Table 1 in [2] suggests maximum numbers of primes for a given size.
   207  //
   208  // [1] US patent 4405829 (1972, expired)
   209  // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   210  func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
   211  	priv := new(PrivateKey)
   212  	priv.E = 65537
   213  
   214  	if nprimes < 2 {
   215  		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   216  	}
   217  
   218  	if bits < 64 {
   219  		primeLimit := float64(uint64(1) << uint(bits/nprimes))
   220  		// pi approximates the number of primes less than primeLimit
   221  		pi := primeLimit / (math.Log(primeLimit) - 1)
   222  		// Generated primes start with 11 (in binary) so we can only
   223  		// use a quarter of them.
   224  		pi /= 4
   225  		// Use a factor of two to ensure that key generation terminates
   226  		// in a reasonable amount of time.
   227  		pi /= 2
   228  		if pi <= float64(nprimes) {
   229  			return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
   230  		}
   231  	}
   232  
   233  	primes := make([]*big.Int, nprimes)
   234  
   235  NextSetOfPrimes:
   236  	for {
   237  		todo := bits
   238  		// crypto/rand should set the top two bits in each prime.
   239  		// Thus each prime has the form
   240  		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   241  		// And the product is:
   242  		//   P = 2^todo × α
   243  		// where α is the product of nprimes numbers of the form 0.11...
   244  		//
   245  		// If α < 1/2 (which can happen for nprimes > 2), we need to
   246  		// shift todo to compensate for lost bits: the mean value of 0.11...
   247  		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   248  		// will give good results.
   249  		if nprimes >= 7 {
   250  			todo += (nprimes - 2) / 5
   251  		}
   252  		for i := 0; i < nprimes; i++ {
   253  			var err error
   254  			primes[i], err = rand.Prime(random, todo/(nprimes-i))
   255  			if err != nil {
   256  				return nil, err
   257  			}
   258  			todo -= primes[i].BitLen()
   259  		}
   260  
   261  		// Make sure that primes is pairwise unequal.
   262  		for i, prime := range primes {
   263  			for j := 0; j < i; j++ {
   264  				if prime.Cmp(primes[j]) == 0 {
   265  					continue NextSetOfPrimes
   266  				}
   267  			}
   268  		}
   269  
   270  		n := new(big.Int).Set(bigOne)
   271  		totient := new(big.Int).Set(bigOne)
   272  		pminus1 := new(big.Int)
   273  		for _, prime := range primes {
   274  			n.Mul(n, prime)
   275  			pminus1.Sub(prime, bigOne)
   276  			totient.Mul(totient, pminus1)
   277  		}
   278  		if n.BitLen() != bits {
   279  			// This should never happen for nprimes == 2 because
   280  			// crypto/rand should set the top two bits in each prime.
   281  			// For nprimes > 2 we hope it does not happen often.
   282  			continue NextSetOfPrimes
   283  		}
   284  
   285  		g := new(big.Int)
   286  		priv.D = new(big.Int)
   287  		e := big.NewInt(int64(priv.E))
   288  		g.GCD(priv.D, nil, e, totient)
   289  
   290  		if g.Cmp(bigOne) == 0 {
   291  			if priv.D.Sign() < 0 {
   292  				priv.D.Add(priv.D, totient)
   293  			}
   294  			priv.Primes = primes
   295  			priv.N = n
   296  
   297  			break
   298  		}
   299  	}
   300  
   301  	priv.Precompute()
   302  	return priv, nil
   303  }
   304  
   305  // incCounter increments a four byte, big-endian counter.
   306  func incCounter(c *[4]byte) {
   307  	if c[3]++; c[3] != 0 {
   308  		return
   309  	}
   310  	if c[2]++; c[2] != 0 {
   311  		return
   312  	}
   313  	if c[1]++; c[1] != 0 {
   314  		return
   315  	}
   316  	c[0]++
   317  }
   318  
   319  // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   320  // specified in PKCS#1 v2.1.
   321  func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   322  	var counter [4]byte
   323  	var digest []byte
   324  
   325  	done := 0
   326  	for done < len(out) {
   327  		hash.Write(seed)
   328  		hash.Write(counter[0:4])
   329  		digest = hash.Sum(digest[:0])
   330  		hash.Reset()
   331  
   332  		for i := 0; i < len(digest) && done < len(out); i++ {
   333  			out[done] ^= digest[i]
   334  			done++
   335  		}
   336  		incCounter(&counter)
   337  	}
   338  }
   339  
   340  // ErrMessageTooLong is returned when attempting to encrypt a message which is
   341  // too large for the size of the public key.
   342  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   343  
   344  func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   345  	e := big.NewInt(int64(pub.E))
   346  	c.Exp(m, e, pub.N)
   347  	return c
   348  }
   349  
   350  // EncryptOAEP encrypts the given message with RSA-OAEP.
   351  //
   352  // OAEP is parameterised by a hash function that is used as a random oracle.
   353  // Encryption and decryption of a given message must use the same hash function
   354  // and sha256.New() is a reasonable choice.
   355  //
   356  // The random parameter is used as a source of entropy to ensure that
   357  // encrypting the same message twice doesn't result in the same ciphertext.
   358  //
   359  // The label parameter may contain arbitrary data that will not be encrypted,
   360  // but which gives important context to the message. For example, if a given
   361  // public key is used to decrypt two types of messages then distinct label
   362  // values could be used to ensure that a ciphertext for one purpose cannot be
   363  // used for another by an attacker. If not required it can be empty.
   364  //
   365  // The message must be no longer than the length of the public modulus minus
   366  // twice the hash length, minus a further 2.
   367  func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
   368  	if err := checkPub(pub); err != nil {
   369  		return nil, err
   370  	}
   371  	hash.Reset()
   372  	k := (pub.N.BitLen() + 7) / 8
   373  	if len(msg) > k-2*hash.Size()-2 {
   374  		return nil, ErrMessageTooLong
   375  	}
   376  
   377  	hash.Write(label)
   378  	lHash := hash.Sum(nil)
   379  	hash.Reset()
   380  
   381  	em := make([]byte, k)
   382  	seed := em[1 : 1+hash.Size()]
   383  	db := em[1+hash.Size():]
   384  
   385  	copy(db[0:hash.Size()], lHash)
   386  	db[len(db)-len(msg)-1] = 1
   387  	copy(db[len(db)-len(msg):], msg)
   388  
   389  	_, err := io.ReadFull(random, seed)
   390  	if err != nil {
   391  		return nil, err
   392  	}
   393  
   394  	mgf1XOR(db, hash, seed)
   395  	mgf1XOR(seed, hash, db)
   396  
   397  	m := new(big.Int)
   398  	m.SetBytes(em)
   399  	c := encrypt(new(big.Int), pub, m)
   400  	out := c.Bytes()
   401  
   402  	if len(out) < k {
   403  		// If the output is too small, we need to left-pad with zeros.
   404  		t := make([]byte, k)
   405  		copy(t[k-len(out):], out)
   406  		out = t
   407  	}
   408  
   409  	return out, nil
   410  }
   411  
   412  // ErrDecryption represents a failure to decrypt a message.
   413  // It is deliberately vague to avoid adaptive attacks.
   414  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   415  
   416  // ErrVerification represents a failure to verify a signature.
   417  // It is deliberately vague to avoid adaptive attacks.
   418  var ErrVerification = errors.New("crypto/rsa: verification error")
   419  
   420  // modInverse returns ia, the inverse of a in the multiplicative group of prime
   421  // order n. It requires that a be a member of the group (i.e. less than n).
   422  func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
   423  	g := new(big.Int)
   424  	x := new(big.Int)
   425  	y := new(big.Int)
   426  	g.GCD(x, y, a, n)
   427  	if g.Cmp(bigOne) != 0 {
   428  		// In this case, a and n aren't coprime and we cannot calculate
   429  		// the inverse. This happens because the values of n are nearly
   430  		// prime (being the product of two primes) rather than truly
   431  		// prime.
   432  		return
   433  	}
   434  
   435  	if x.Cmp(bigOne) < 0 {
   436  		// 0 is not the multiplicative inverse of any element so, if x
   437  		// < 1, then x is negative.
   438  		x.Add(x, n)
   439  	}
   440  
   441  	return x, true
   442  }
   443  
   444  // Precompute performs some calculations that speed up private key operations
   445  // in the future.
   446  func (priv *PrivateKey) Precompute() {
   447  	if priv.Precomputed.Dp != nil {
   448  		return
   449  	}
   450  
   451  	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   452  	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   453  
   454  	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   455  	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   456  
   457  	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   458  
   459  	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   460  	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   461  	for i := 2; i < len(priv.Primes); i++ {
   462  		prime := priv.Primes[i]
   463  		values := &priv.Precomputed.CRTValues[i-2]
   464  
   465  		values.Exp = new(big.Int).Sub(prime, bigOne)
   466  		values.Exp.Mod(priv.D, values.Exp)
   467  
   468  		values.R = new(big.Int).Set(r)
   469  		values.Coeff = new(big.Int).ModInverse(r, prime)
   470  
   471  		r.Mul(r, prime)
   472  	}
   473  }
   474  
   475  // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   476  // random source is given, RSA blinding is used.
   477  func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   478  	// TODO(agl): can we get away with reusing blinds?
   479  	if c.Cmp(priv.N) > 0 {
   480  		err = ErrDecryption
   481  		return
   482  	}
   483  	if priv.N.Sign() == 0 {
   484  		return nil, ErrDecryption
   485  	}
   486  
   487  	var ir *big.Int
   488  	if random != nil {
   489  		// Blinding enabled. Blinding involves multiplying c by r^e.
   490  		// Then the decryption operation performs (m^e * r^e)^d mod n
   491  		// which equals mr mod n. The factor of r can then be removed
   492  		// by multiplying by the multiplicative inverse of r.
   493  
   494  		var r *big.Int
   495  
   496  		for {
   497  			r, err = rand.Int(random, priv.N)
   498  			if err != nil {
   499  				return
   500  			}
   501  			if r.Cmp(bigZero) == 0 {
   502  				r = bigOne
   503  			}
   504  			var ok bool
   505  			ir, ok = modInverse(r, priv.N)
   506  			if ok {
   507  				break
   508  			}
   509  		}
   510  		bigE := big.NewInt(int64(priv.E))
   511  		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
   512  		cCopy := new(big.Int).Set(c)
   513  		cCopy.Mul(cCopy, rpowe)
   514  		cCopy.Mod(cCopy, priv.N)
   515  		c = cCopy
   516  	}
   517  
   518  	if priv.Precomputed.Dp == nil {
   519  		m = new(big.Int).Exp(c, priv.D, priv.N)
   520  	} else {
   521  		// We have the precalculated values needed for the CRT.
   522  		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   523  		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   524  		m.Sub(m, m2)
   525  		if m.Sign() < 0 {
   526  			m.Add(m, priv.Primes[0])
   527  		}
   528  		m.Mul(m, priv.Precomputed.Qinv)
   529  		m.Mod(m, priv.Primes[0])
   530  		m.Mul(m, priv.Primes[1])
   531  		m.Add(m, m2)
   532  
   533  		for i, values := range priv.Precomputed.CRTValues {
   534  			prime := priv.Primes[2+i]
   535  			m2.Exp(c, values.Exp, prime)
   536  			m2.Sub(m2, m)
   537  			m2.Mul(m2, values.Coeff)
   538  			m2.Mod(m2, prime)
   539  			if m2.Sign() < 0 {
   540  				m2.Add(m2, prime)
   541  			}
   542  			m2.Mul(m2, values.R)
   543  			m.Add(m, m2)
   544  		}
   545  	}
   546  
   547  	if ir != nil {
   548  		// Unblind.
   549  		m.Mul(m, ir)
   550  		m.Mod(m, priv.N)
   551  	}
   552  
   553  	return
   554  }
   555  
   556  func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   557  	m, err = decrypt(random, priv, c)
   558  	if err != nil {
   559  		return nil, err
   560  	}
   561  
   562  	// In order to defend against errors in the CRT computation, m^e is
   563  	// calculated, which should match the original ciphertext.
   564  	check := encrypt(new(big.Int), &priv.PublicKey, m)
   565  	if c.Cmp(check) != 0 {
   566  		return nil, errors.New("rsa: internal error")
   567  	}
   568  	return m, nil
   569  }
   570  
   571  // DecryptOAEP decrypts ciphertext using RSA-OAEP.
   572  
   573  // OAEP is parameterised by a hash function that is used as a random oracle.
   574  // Encryption and decryption of a given message must use the same hash function
   575  // and sha256.New() is a reasonable choice.
   576  //
   577  // The random parameter, if not nil, is used to blind the private-key operation
   578  // and avoid timing side-channel attacks. Blinding is purely internal to this
   579  // function – the random data need not match that used when encrypting.
   580  //
   581  // The label parameter must match the value given when encrypting. See
   582  // EncryptOAEP for details.
   583  func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
   584  	if err := checkPub(&priv.PublicKey); err != nil {
   585  		return nil, err
   586  	}
   587  	k := (priv.N.BitLen() + 7) / 8
   588  	if len(ciphertext) > k ||
   589  		k < hash.Size()*2+2 {
   590  		return nil, ErrDecryption
   591  	}
   592  
   593  	c := new(big.Int).SetBytes(ciphertext)
   594  
   595  	m, err := decrypt(random, priv, c)
   596  	if err != nil {
   597  		return nil, err
   598  	}
   599  
   600  	hash.Write(label)
   601  	lHash := hash.Sum(nil)
   602  	hash.Reset()
   603  
   604  	// Converting the plaintext number to bytes will strip any
   605  	// leading zeros so we may have to left pad. We do this unconditionally
   606  	// to avoid leaking timing information. (Although we still probably
   607  	// leak the number of leading zeros. It's not clear that we can do
   608  	// anything about this.)
   609  	em := leftPad(m.Bytes(), k)
   610  
   611  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   612  
   613  	seed := em[1 : hash.Size()+1]
   614  	db := em[hash.Size()+1:]
   615  
   616  	mgf1XOR(seed, hash, db)
   617  	mgf1XOR(db, hash, seed)
   618  
   619  	lHash2 := db[0:hash.Size()]
   620  
   621  	// We have to validate the plaintext in constant time in order to avoid
   622  	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   623  	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   624  	// v2.0. In J. Kilian, editor, Advances in Cryptology.
   625  	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   626  
   627  	// The remainder of the plaintext must be zero or more 0x00, followed
   628  	// by 0x01, followed by the message.
   629  	//   lookingForIndex: 1 iff we are still looking for the 0x01
   630  	//   index: the offset of the first 0x01 byte
   631  	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   632  	var lookingForIndex, index, invalid int
   633  	lookingForIndex = 1
   634  	rest := db[hash.Size():]
   635  
   636  	for i := 0; i < len(rest); i++ {
   637  		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   638  		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   639  		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   640  		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   641  		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   642  	}
   643  
   644  	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   645  		return nil, ErrDecryption
   646  	}
   647  
   648  	return rest[index+1:], nil
   649  }
   650  
   651  // leftPad returns a new slice of length size. The contents of input are right
   652  // aligned in the new slice.
   653  func leftPad(input []byte, size int) (out []byte) {
   654  	n := len(input)
   655  	if n > size {
   656  		n = size
   657  	}
   658  	out = make([]byte, size)
   659  	copy(out[len(out)-n:], input)
   660  	return
   661  }