github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 4627. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"runtime"
    21  	"sort"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"sync/atomic"
    26  	"unicode"
    27  	"unicode/utf8"
    28  )
    29  
    30  // Marshal returns the JSON encoding of v.
    31  //
    32  // Marshal traverses the value v recursively.
    33  // If an encountered value implements the Marshaler interface
    34  // and is not a nil pointer, Marshal calls its MarshalJSON method
    35  // to produce JSON. If no MarshalJSON method is present but the
    36  // value implements encoding.TextMarshaler instead, Marshal calls
    37  // its MarshalText method.
    38  // The nil pointer exception is not strictly necessary
    39  // but mimics a similar, necessary exception in the behavior of
    40  // UnmarshalJSON.
    41  //
    42  // Otherwise, Marshal uses the following type-dependent default encodings:
    43  //
    44  // Boolean values encode as JSON booleans.
    45  //
    46  // Floating point, integer, and Number values encode as JSON numbers.
    47  //
    48  // String values encode as JSON strings coerced to valid UTF-8,
    49  // replacing invalid bytes with the Unicode replacement rune.
    50  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    51  // to keep some browsers from misinterpreting JSON output as HTML.
    52  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    53  // This escaping can be disabled using an Encoder that had SetEscapeHTML(false)
    54  // called on it.
    55  //
    56  // Array and slice values encode as JSON arrays, except that
    57  // []byte encodes as a base64-encoded string, and a nil slice
    58  // encodes as the null JSON value.
    59  //
    60  // Struct values encode as JSON objects.
    61  // Each exported struct field becomes a member of the object, using the
    62  // field name as the object key, unless the field is omitted for one of the
    63  // reasons given below.
    64  //
    65  // The encoding of each struct field can be customized by the format string
    66  // stored under the "json" key in the struct field's tag.
    67  // The format string gives the name of the field, possibly followed by a
    68  // comma-separated list of options. The name may be empty in order to
    69  // specify options without overriding the default field name.
    70  //
    71  // The "omitempty" option specifies that the field should be omitted
    72  // from the encoding if the field has an empty value, defined as
    73  // false, 0, a nil pointer, a nil interface value, and any empty array,
    74  // slice, map, or string.
    75  //
    76  // As a special case, if the field tag is "-", the field is always omitted.
    77  // Note that a field with name "-" can still be generated using the tag "-,".
    78  //
    79  // Examples of struct field tags and their meanings:
    80  //
    81  //   // Field appears in JSON as key "myName".
    82  //   Field int `json:"myName"`
    83  //
    84  //   // Field appears in JSON as key "myName" and
    85  //   // the field is omitted from the object if its value is empty,
    86  //   // as defined above.
    87  //   Field int `json:"myName,omitempty"`
    88  //
    89  //   // Field appears in JSON as key "Field" (the default), but
    90  //   // the field is skipped if empty.
    91  //   // Note the leading comma.
    92  //   Field int `json:",omitempty"`
    93  //
    94  //   // Field is ignored by this package.
    95  //   Field int `json:"-"`
    96  //
    97  //   // Field appears in JSON as key "-".
    98  //   Field int `json:"-,"`
    99  //
   100  // The "string" option signals that a field is stored as JSON inside a
   101  // JSON-encoded string. It applies only to fields of string, floating point,
   102  // integer, or boolean types. This extra level of encoding is sometimes used
   103  // when communicating with JavaScript programs:
   104  //
   105  //    Int64String int64 `json:",string"`
   106  //
   107  // The key name will be used if it's a non-empty string consisting of
   108  // only Unicode letters, digits, and ASCII punctuation except quotation
   109  // marks, backslash, and comma.
   110  //
   111  // Anonymous struct fields are usually marshaled as if their inner exported fields
   112  // were fields in the outer struct, subject to the usual Go visibility rules amended
   113  // as described in the next paragraph.
   114  // An anonymous struct field with a name given in its JSON tag is treated as
   115  // having that name, rather than being anonymous.
   116  // An anonymous struct field of interface type is treated the same as having
   117  // that type as its name, rather than being anonymous.
   118  //
   119  // The Go visibility rules for struct fields are amended for JSON when
   120  // deciding which field to marshal or unmarshal. If there are
   121  // multiple fields at the same level, and that level is the least
   122  // nested (and would therefore be the nesting level selected by the
   123  // usual Go rules), the following extra rules apply:
   124  //
   125  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   126  // even if there are multiple untagged fields that would otherwise conflict.
   127  //
   128  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   129  //
   130  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   131  //
   132  // Handling of anonymous struct fields is new in Go 1.1.
   133  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   134  // an anonymous struct field in both current and earlier versions, give the field
   135  // a JSON tag of "-".
   136  //
   137  // Map values encode as JSON objects. The map's key type must either be a
   138  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   139  // are sorted and used as JSON object keys by applying the following rules,
   140  // subject to the UTF-8 coercion described for string values above:
   141  //   - string keys are used directly
   142  //   - encoding.TextMarshalers are marshaled
   143  //   - integer keys are converted to strings
   144  //
   145  // Pointer values encode as the value pointed to.
   146  // A nil pointer encodes as the null JSON value.
   147  //
   148  // Interface values encode as the value contained in the interface.
   149  // A nil interface value encodes as the null JSON value.
   150  //
   151  // Channel, complex, and function values cannot be encoded in JSON.
   152  // Attempting to encode such a value causes Marshal to return
   153  // an UnsupportedTypeError.
   154  //
   155  // JSON cannot represent cyclic data structures and Marshal does not
   156  // handle them. Passing cyclic structures to Marshal will result in
   157  // an infinite recursion.
   158  //
   159  func Marshal(v interface{}) ([]byte, error) {
   160  	e := &encodeState{}
   161  	err := e.marshal(v, encOpts{escapeHTML: true})
   162  	if err != nil {
   163  		return nil, err
   164  	}
   165  	return e.Bytes(), nil
   166  }
   167  
   168  // MarshalIndent is like Marshal but applies Indent to format the output.
   169  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   170  	b, err := Marshal(v)
   171  	if err != nil {
   172  		return nil, err
   173  	}
   174  	var buf bytes.Buffer
   175  	err = Indent(&buf, b, prefix, indent)
   176  	if err != nil {
   177  		return nil, err
   178  	}
   179  	return buf.Bytes(), nil
   180  }
   181  
   182  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   183  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   184  // so that the JSON will be safe to embed inside HTML <script> tags.
   185  // For historical reasons, web browsers don't honor standard HTML
   186  // escaping within <script> tags, so an alternative JSON encoding must
   187  // be used.
   188  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   189  	// The characters can only appear in string literals,
   190  	// so just scan the string one byte at a time.
   191  	start := 0
   192  	for i, c := range src {
   193  		if c == '<' || c == '>' || c == '&' {
   194  			if start < i {
   195  				dst.Write(src[start:i])
   196  			}
   197  			dst.WriteString(`\u00`)
   198  			dst.WriteByte(hex[c>>4])
   199  			dst.WriteByte(hex[c&0xF])
   200  			start = i + 1
   201  		}
   202  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   203  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   204  			if start < i {
   205  				dst.Write(src[start:i])
   206  			}
   207  			dst.WriteString(`\u202`)
   208  			dst.WriteByte(hex[src[i+2]&0xF])
   209  			start = i + 3
   210  		}
   211  	}
   212  	if start < len(src) {
   213  		dst.Write(src[start:])
   214  	}
   215  }
   216  
   217  // Marshaler is the interface implemented by types that
   218  // can marshal themselves into valid JSON.
   219  type Marshaler interface {
   220  	MarshalJSON() ([]byte, error)
   221  }
   222  
   223  // An UnsupportedTypeError is returned by Marshal when attempting
   224  // to encode an unsupported value type.
   225  type UnsupportedTypeError struct {
   226  	Type reflect.Type
   227  }
   228  
   229  func (e *UnsupportedTypeError) Error() string {
   230  	return "json: unsupported type: " + e.Type.String()
   231  }
   232  
   233  type UnsupportedValueError struct {
   234  	Value reflect.Value
   235  	Str   string
   236  }
   237  
   238  func (e *UnsupportedValueError) Error() string {
   239  	return "json: unsupported value: " + e.Str
   240  }
   241  
   242  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   243  // attempting to encode a string value with invalid UTF-8 sequences.
   244  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   245  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   246  // This error is no longer generated but is kept for backwards compatibility
   247  // with programs that might mention it.
   248  type InvalidUTF8Error struct {
   249  	S string // the whole string value that caused the error
   250  }
   251  
   252  func (e *InvalidUTF8Error) Error() string {
   253  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   254  }
   255  
   256  type MarshalerError struct {
   257  	Type reflect.Type
   258  	Err  error
   259  }
   260  
   261  func (e *MarshalerError) Error() string {
   262  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   263  }
   264  
   265  var hex = "0123456789abcdef"
   266  
   267  // An encodeState encodes JSON into a bytes.Buffer.
   268  type encodeState struct {
   269  	bytes.Buffer // accumulated output
   270  	scratch      [64]byte
   271  }
   272  
   273  var encodeStatePool sync.Pool
   274  
   275  func newEncodeState() *encodeState {
   276  	if v := encodeStatePool.Get(); v != nil {
   277  		e := v.(*encodeState)
   278  		e.Reset()
   279  		return e
   280  	}
   281  	return new(encodeState)
   282  }
   283  
   284  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   285  	defer func() {
   286  		if r := recover(); r != nil {
   287  			if _, ok := r.(runtime.Error); ok {
   288  				panic(r)
   289  			}
   290  			if s, ok := r.(string); ok {
   291  				panic(s)
   292  			}
   293  			err = r.(error)
   294  		}
   295  	}()
   296  	e.reflectValue(reflect.ValueOf(v), opts)
   297  	return nil
   298  }
   299  
   300  func (e *encodeState) error(err error) {
   301  	panic(err)
   302  }
   303  
   304  func isEmptyValue(v reflect.Value) bool {
   305  	switch v.Kind() {
   306  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   307  		return v.Len() == 0
   308  	case reflect.Bool:
   309  		return !v.Bool()
   310  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   311  		return v.Int() == 0
   312  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   313  		return v.Uint() == 0
   314  	case reflect.Float32, reflect.Float64:
   315  		return v.Float() == 0
   316  	case reflect.Interface, reflect.Ptr:
   317  		return v.IsNil()
   318  	}
   319  	return false
   320  }
   321  
   322  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   323  	valueEncoder(v)(e, v, opts)
   324  }
   325  
   326  type encOpts struct {
   327  	// quoted causes primitive fields to be encoded inside JSON strings.
   328  	quoted bool
   329  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   330  	escapeHTML bool
   331  }
   332  
   333  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   334  
   335  var encoderCache struct {
   336  	sync.RWMutex
   337  	m map[reflect.Type]encoderFunc
   338  }
   339  
   340  func valueEncoder(v reflect.Value) encoderFunc {
   341  	if !v.IsValid() {
   342  		return invalidValueEncoder
   343  	}
   344  	return typeEncoder(v.Type())
   345  }
   346  
   347  func typeEncoder(t reflect.Type) encoderFunc {
   348  	encoderCache.RLock()
   349  	f := encoderCache.m[t]
   350  	encoderCache.RUnlock()
   351  	if f != nil {
   352  		return f
   353  	}
   354  
   355  	// To deal with recursive types, populate the map with an
   356  	// indirect func before we build it. This type waits on the
   357  	// real func (f) to be ready and then calls it. This indirect
   358  	// func is only used for recursive types.
   359  	encoderCache.Lock()
   360  	if encoderCache.m == nil {
   361  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   362  	}
   363  	var wg sync.WaitGroup
   364  	wg.Add(1)
   365  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, opts encOpts) {
   366  		wg.Wait()
   367  		f(e, v, opts)
   368  	}
   369  	encoderCache.Unlock()
   370  
   371  	// Compute fields without lock.
   372  	// Might duplicate effort but won't hold other computations back.
   373  	f = newTypeEncoder(t, true)
   374  	wg.Done()
   375  	encoderCache.Lock()
   376  	encoderCache.m[t] = f
   377  	encoderCache.Unlock()
   378  	return f
   379  }
   380  
   381  var (
   382  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   383  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   384  )
   385  
   386  // newTypeEncoder constructs an encoderFunc for a type.
   387  // The returned encoder only checks CanAddr when allowAddr is true.
   388  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   389  	if t.Implements(marshalerType) {
   390  		return marshalerEncoder
   391  	}
   392  	if t.Kind() != reflect.Ptr && allowAddr {
   393  		if reflect.PtrTo(t).Implements(marshalerType) {
   394  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   395  		}
   396  	}
   397  
   398  	if t.Implements(textMarshalerType) {
   399  		return textMarshalerEncoder
   400  	}
   401  	if t.Kind() != reflect.Ptr && allowAddr {
   402  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   403  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   404  		}
   405  	}
   406  
   407  	switch t.Kind() {
   408  	case reflect.Bool:
   409  		return boolEncoder
   410  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   411  		return intEncoder
   412  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   413  		return uintEncoder
   414  	case reflect.Float32:
   415  		return float32Encoder
   416  	case reflect.Float64:
   417  		return float64Encoder
   418  	case reflect.String:
   419  		return stringEncoder
   420  	case reflect.Interface:
   421  		return interfaceEncoder
   422  	case reflect.Struct:
   423  		return newStructEncoder(t)
   424  	case reflect.Map:
   425  		return newMapEncoder(t)
   426  	case reflect.Slice:
   427  		return newSliceEncoder(t)
   428  	case reflect.Array:
   429  		return newArrayEncoder(t)
   430  	case reflect.Ptr:
   431  		return newPtrEncoder(t)
   432  	default:
   433  		return unsupportedTypeEncoder
   434  	}
   435  }
   436  
   437  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   438  	e.WriteString("null")
   439  }
   440  
   441  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   442  	if v.Kind() == reflect.Ptr && v.IsNil() {
   443  		e.WriteString("null")
   444  		return
   445  	}
   446  	m := v.Interface().(Marshaler)
   447  	b, err := m.MarshalJSON()
   448  	if err == nil {
   449  		// copy JSON into buffer, checking validity.
   450  		err = compact(&e.Buffer, b, opts.escapeHTML)
   451  	}
   452  	if err != nil {
   453  		e.error(&MarshalerError{v.Type(), err})
   454  	}
   455  }
   456  
   457  func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   458  	va := v.Addr()
   459  	if va.IsNil() {
   460  		e.WriteString("null")
   461  		return
   462  	}
   463  	m := va.Interface().(Marshaler)
   464  	b, err := m.MarshalJSON()
   465  	if err == nil {
   466  		// copy JSON into buffer, checking validity.
   467  		err = compact(&e.Buffer, b, true)
   468  	}
   469  	if err != nil {
   470  		e.error(&MarshalerError{v.Type(), err})
   471  	}
   472  }
   473  
   474  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   475  	if v.Kind() == reflect.Ptr && v.IsNil() {
   476  		e.WriteString("null")
   477  		return
   478  	}
   479  	m := v.Interface().(encoding.TextMarshaler)
   480  	b, err := m.MarshalText()
   481  	if err != nil {
   482  		e.error(&MarshalerError{v.Type(), err})
   483  	}
   484  	e.stringBytes(b, opts.escapeHTML)
   485  }
   486  
   487  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   488  	va := v.Addr()
   489  	if va.IsNil() {
   490  		e.WriteString("null")
   491  		return
   492  	}
   493  	m := va.Interface().(encoding.TextMarshaler)
   494  	b, err := m.MarshalText()
   495  	if err != nil {
   496  		e.error(&MarshalerError{v.Type(), err})
   497  	}
   498  	e.stringBytes(b, opts.escapeHTML)
   499  }
   500  
   501  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   502  	if opts.quoted {
   503  		e.WriteByte('"')
   504  	}
   505  	if v.Bool() {
   506  		e.WriteString("true")
   507  	} else {
   508  		e.WriteString("false")
   509  	}
   510  	if opts.quoted {
   511  		e.WriteByte('"')
   512  	}
   513  }
   514  
   515  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   516  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   517  	if opts.quoted {
   518  		e.WriteByte('"')
   519  	}
   520  	e.Write(b)
   521  	if opts.quoted {
   522  		e.WriteByte('"')
   523  	}
   524  }
   525  
   526  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   527  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   528  	if opts.quoted {
   529  		e.WriteByte('"')
   530  	}
   531  	e.Write(b)
   532  	if opts.quoted {
   533  		e.WriteByte('"')
   534  	}
   535  }
   536  
   537  type floatEncoder int // number of bits
   538  
   539  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   540  	f := v.Float()
   541  	if math.IsInf(f, 0) || math.IsNaN(f) {
   542  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   543  	}
   544  
   545  	// Convert as if by ES6 number to string conversion.
   546  	// This matches most other JSON generators.
   547  	// See golang.org/issue/6384 and golang.org/issue/14135.
   548  	// Like fmt %g, but the exponent cutoffs are different
   549  	// and exponents themselves are not padded to two digits.
   550  	b := e.scratch[:0]
   551  	abs := math.Abs(f)
   552  	fmt := byte('f')
   553  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   554  	if abs != 0 {
   555  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   556  			fmt = 'e'
   557  		}
   558  	}
   559  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   560  	if fmt == 'e' {
   561  		// clean up e-09 to e-9
   562  		n := len(b)
   563  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   564  			b[n-2] = b[n-1]
   565  			b = b[:n-1]
   566  		}
   567  	}
   568  
   569  	if opts.quoted {
   570  		e.WriteByte('"')
   571  	}
   572  	e.Write(b)
   573  	if opts.quoted {
   574  		e.WriteByte('"')
   575  	}
   576  }
   577  
   578  var (
   579  	float32Encoder = (floatEncoder(32)).encode
   580  	float64Encoder = (floatEncoder(64)).encode
   581  )
   582  
   583  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   584  	if v.Type() == numberType {
   585  		numStr := v.String()
   586  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   587  		// we keep compatibility so check validity after this.
   588  		if numStr == "" {
   589  			numStr = "0" // Number's zero-val
   590  		}
   591  		if !isValidNumber(numStr) {
   592  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   593  		}
   594  		e.WriteString(numStr)
   595  		return
   596  	}
   597  	if opts.quoted {
   598  		sb, err := Marshal(v.String())
   599  		if err != nil {
   600  			e.error(err)
   601  		}
   602  		e.string(string(sb), opts.escapeHTML)
   603  	} else {
   604  		e.string(v.String(), opts.escapeHTML)
   605  	}
   606  }
   607  
   608  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   609  	if v.IsNil() {
   610  		e.WriteString("null")
   611  		return
   612  	}
   613  	e.reflectValue(v.Elem(), opts)
   614  }
   615  
   616  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   617  	e.error(&UnsupportedTypeError{v.Type()})
   618  }
   619  
   620  type structEncoder struct {
   621  	fields    []field
   622  	fieldEncs []encoderFunc
   623  }
   624  
   625  func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   626  	e.WriteByte('{')
   627  	first := true
   628  	for i, f := range se.fields {
   629  		fv := fieldByIndex(v, f.index)
   630  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   631  			continue
   632  		}
   633  		if first {
   634  			first = false
   635  		} else {
   636  			e.WriteByte(',')
   637  		}
   638  		e.string(f.name, opts.escapeHTML)
   639  		e.WriteByte(':')
   640  		opts.quoted = f.quoted
   641  		se.fieldEncs[i](e, fv, opts)
   642  	}
   643  	e.WriteByte('}')
   644  }
   645  
   646  func newStructEncoder(t reflect.Type) encoderFunc {
   647  	fields := cachedTypeFields(t)
   648  	se := &structEncoder{
   649  		fields:    fields,
   650  		fieldEncs: make([]encoderFunc, len(fields)),
   651  	}
   652  	for i, f := range fields {
   653  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   654  	}
   655  	return se.encode
   656  }
   657  
   658  type mapEncoder struct {
   659  	elemEnc encoderFunc
   660  }
   661  
   662  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   663  	if v.IsNil() {
   664  		e.WriteString("null")
   665  		return
   666  	}
   667  	e.WriteByte('{')
   668  
   669  	// Extract and sort the keys.
   670  	keys := v.MapKeys()
   671  	sv := make([]reflectWithString, len(keys))
   672  	for i, v := range keys {
   673  		sv[i].v = v
   674  		if err := sv[i].resolve(); err != nil {
   675  			e.error(&MarshalerError{v.Type(), err})
   676  		}
   677  	}
   678  	sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s })
   679  
   680  	for i, kv := range sv {
   681  		if i > 0 {
   682  			e.WriteByte(',')
   683  		}
   684  		e.string(kv.s, opts.escapeHTML)
   685  		e.WriteByte(':')
   686  		me.elemEnc(e, v.MapIndex(kv.v), opts)
   687  	}
   688  	e.WriteByte('}')
   689  }
   690  
   691  func newMapEncoder(t reflect.Type) encoderFunc {
   692  	switch t.Key().Kind() {
   693  	case reflect.String,
   694  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   695  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   696  	default:
   697  		if !t.Key().Implements(textMarshalerType) {
   698  			return unsupportedTypeEncoder
   699  		}
   700  	}
   701  	me := &mapEncoder{typeEncoder(t.Elem())}
   702  	return me.encode
   703  }
   704  
   705  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   706  	if v.IsNil() {
   707  		e.WriteString("null")
   708  		return
   709  	}
   710  	s := v.Bytes()
   711  	e.WriteByte('"')
   712  	if len(s) < 1024 {
   713  		// for small buffers, using Encode directly is much faster.
   714  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   715  		base64.StdEncoding.Encode(dst, s)
   716  		e.Write(dst)
   717  	} else {
   718  		// for large buffers, avoid unnecessary extra temporary
   719  		// buffer space.
   720  		enc := base64.NewEncoder(base64.StdEncoding, e)
   721  		enc.Write(s)
   722  		enc.Close()
   723  	}
   724  	e.WriteByte('"')
   725  }
   726  
   727  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   728  type sliceEncoder struct {
   729  	arrayEnc encoderFunc
   730  }
   731  
   732  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   733  	if v.IsNil() {
   734  		e.WriteString("null")
   735  		return
   736  	}
   737  	se.arrayEnc(e, v, opts)
   738  }
   739  
   740  func newSliceEncoder(t reflect.Type) encoderFunc {
   741  	// Byte slices get special treatment; arrays don't.
   742  	if t.Elem().Kind() == reflect.Uint8 {
   743  		p := reflect.PtrTo(t.Elem())
   744  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   745  			return encodeByteSlice
   746  		}
   747  	}
   748  	enc := &sliceEncoder{newArrayEncoder(t)}
   749  	return enc.encode
   750  }
   751  
   752  type arrayEncoder struct {
   753  	elemEnc encoderFunc
   754  }
   755  
   756  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   757  	e.WriteByte('[')
   758  	n := v.Len()
   759  	for i := 0; i < n; i++ {
   760  		if i > 0 {
   761  			e.WriteByte(',')
   762  		}
   763  		ae.elemEnc(e, v.Index(i), opts)
   764  	}
   765  	e.WriteByte(']')
   766  }
   767  
   768  func newArrayEncoder(t reflect.Type) encoderFunc {
   769  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   770  	return enc.encode
   771  }
   772  
   773  type ptrEncoder struct {
   774  	elemEnc encoderFunc
   775  }
   776  
   777  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   778  	if v.IsNil() {
   779  		e.WriteString("null")
   780  		return
   781  	}
   782  	pe.elemEnc(e, v.Elem(), opts)
   783  }
   784  
   785  func newPtrEncoder(t reflect.Type) encoderFunc {
   786  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   787  	return enc.encode
   788  }
   789  
   790  type condAddrEncoder struct {
   791  	canAddrEnc, elseEnc encoderFunc
   792  }
   793  
   794  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   795  	if v.CanAddr() {
   796  		ce.canAddrEnc(e, v, opts)
   797  	} else {
   798  		ce.elseEnc(e, v, opts)
   799  	}
   800  }
   801  
   802  // newCondAddrEncoder returns an encoder that checks whether its value
   803  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   804  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   805  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   806  	return enc.encode
   807  }
   808  
   809  func isValidTag(s string) bool {
   810  	if s == "" {
   811  		return false
   812  	}
   813  	for _, c := range s {
   814  		switch {
   815  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   816  			// Backslash and quote chars are reserved, but
   817  			// otherwise any punctuation chars are allowed
   818  			// in a tag name.
   819  		default:
   820  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   821  				return false
   822  			}
   823  		}
   824  	}
   825  	return true
   826  }
   827  
   828  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   829  	for _, i := range index {
   830  		if v.Kind() == reflect.Ptr {
   831  			if v.IsNil() {
   832  				return reflect.Value{}
   833  			}
   834  			v = v.Elem()
   835  		}
   836  		v = v.Field(i)
   837  	}
   838  	return v
   839  }
   840  
   841  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   842  	for _, i := range index {
   843  		if t.Kind() == reflect.Ptr {
   844  			t = t.Elem()
   845  		}
   846  		t = t.Field(i).Type
   847  	}
   848  	return t
   849  }
   850  
   851  type reflectWithString struct {
   852  	v reflect.Value
   853  	s string
   854  }
   855  
   856  func (w *reflectWithString) resolve() error {
   857  	if w.v.Kind() == reflect.String {
   858  		w.s = w.v.String()
   859  		return nil
   860  	}
   861  	if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
   862  		buf, err := tm.MarshalText()
   863  		w.s = string(buf)
   864  		return err
   865  	}
   866  	switch w.v.Kind() {
   867  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   868  		w.s = strconv.FormatInt(w.v.Int(), 10)
   869  		return nil
   870  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   871  		w.s = strconv.FormatUint(w.v.Uint(), 10)
   872  		return nil
   873  	}
   874  	panic("unexpected map key type")
   875  }
   876  
   877  // NOTE: keep in sync with stringBytes below.
   878  func (e *encodeState) string(s string, escapeHTML bool) int {
   879  	len0 := e.Len()
   880  	e.WriteByte('"')
   881  	start := 0
   882  	for i := 0; i < len(s); {
   883  		if b := s[i]; b < utf8.RuneSelf {
   884  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   885  				i++
   886  				continue
   887  			}
   888  			if start < i {
   889  				e.WriteString(s[start:i])
   890  			}
   891  			switch b {
   892  			case '\\', '"':
   893  				e.WriteByte('\\')
   894  				e.WriteByte(b)
   895  			case '\n':
   896  				e.WriteByte('\\')
   897  				e.WriteByte('n')
   898  			case '\r':
   899  				e.WriteByte('\\')
   900  				e.WriteByte('r')
   901  			case '\t':
   902  				e.WriteByte('\\')
   903  				e.WriteByte('t')
   904  			default:
   905  				// This encodes bytes < 0x20 except for \t, \n and \r.
   906  				// If escapeHTML is set, it also escapes <, >, and &
   907  				// because they can lead to security holes when
   908  				// user-controlled strings are rendered into JSON
   909  				// and served to some browsers.
   910  				e.WriteString(`\u00`)
   911  				e.WriteByte(hex[b>>4])
   912  				e.WriteByte(hex[b&0xF])
   913  			}
   914  			i++
   915  			start = i
   916  			continue
   917  		}
   918  		c, size := utf8.DecodeRuneInString(s[i:])
   919  		if c == utf8.RuneError && size == 1 {
   920  			if start < i {
   921  				e.WriteString(s[start:i])
   922  			}
   923  			e.WriteString(`\ufffd`)
   924  			i += size
   925  			start = i
   926  			continue
   927  		}
   928  		// U+2028 is LINE SEPARATOR.
   929  		// U+2029 is PARAGRAPH SEPARATOR.
   930  		// They are both technically valid characters in JSON strings,
   931  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   932  		// and can lead to security holes there. It is valid JSON to
   933  		// escape them, so we do so unconditionally.
   934  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   935  		if c == '\u2028' || c == '\u2029' {
   936  			if start < i {
   937  				e.WriteString(s[start:i])
   938  			}
   939  			e.WriteString(`\u202`)
   940  			e.WriteByte(hex[c&0xF])
   941  			i += size
   942  			start = i
   943  			continue
   944  		}
   945  		i += size
   946  	}
   947  	if start < len(s) {
   948  		e.WriteString(s[start:])
   949  	}
   950  	e.WriteByte('"')
   951  	return e.Len() - len0
   952  }
   953  
   954  // NOTE: keep in sync with string above.
   955  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int {
   956  	len0 := e.Len()
   957  	e.WriteByte('"')
   958  	start := 0
   959  	for i := 0; i < len(s); {
   960  		if b := s[i]; b < utf8.RuneSelf {
   961  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   962  				i++
   963  				continue
   964  			}
   965  			if start < i {
   966  				e.Write(s[start:i])
   967  			}
   968  			switch b {
   969  			case '\\', '"':
   970  				e.WriteByte('\\')
   971  				e.WriteByte(b)
   972  			case '\n':
   973  				e.WriteByte('\\')
   974  				e.WriteByte('n')
   975  			case '\r':
   976  				e.WriteByte('\\')
   977  				e.WriteByte('r')
   978  			case '\t':
   979  				e.WriteByte('\\')
   980  				e.WriteByte('t')
   981  			default:
   982  				// This encodes bytes < 0x20 except for \t, \n and \r.
   983  				// If escapeHTML is set, it also escapes <, >, and &
   984  				// because they can lead to security holes when
   985  				// user-controlled strings are rendered into JSON
   986  				// and served to some browsers.
   987  				e.WriteString(`\u00`)
   988  				e.WriteByte(hex[b>>4])
   989  				e.WriteByte(hex[b&0xF])
   990  			}
   991  			i++
   992  			start = i
   993  			continue
   994  		}
   995  		c, size := utf8.DecodeRune(s[i:])
   996  		if c == utf8.RuneError && size == 1 {
   997  			if start < i {
   998  				e.Write(s[start:i])
   999  			}
  1000  			e.WriteString(`\ufffd`)
  1001  			i += size
  1002  			start = i
  1003  			continue
  1004  		}
  1005  		// U+2028 is LINE SEPARATOR.
  1006  		// U+2029 is PARAGRAPH SEPARATOR.
  1007  		// They are both technically valid characters in JSON strings,
  1008  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1009  		// and can lead to security holes there. It is valid JSON to
  1010  		// escape them, so we do so unconditionally.
  1011  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1012  		if c == '\u2028' || c == '\u2029' {
  1013  			if start < i {
  1014  				e.Write(s[start:i])
  1015  			}
  1016  			e.WriteString(`\u202`)
  1017  			e.WriteByte(hex[c&0xF])
  1018  			i += size
  1019  			start = i
  1020  			continue
  1021  		}
  1022  		i += size
  1023  	}
  1024  	if start < len(s) {
  1025  		e.Write(s[start:])
  1026  	}
  1027  	e.WriteByte('"')
  1028  	return e.Len() - len0
  1029  }
  1030  
  1031  // A field represents a single field found in a struct.
  1032  type field struct {
  1033  	name      string
  1034  	nameBytes []byte                 // []byte(name)
  1035  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1036  
  1037  	tag       bool
  1038  	index     []int
  1039  	typ       reflect.Type
  1040  	omitEmpty bool
  1041  	quoted    bool
  1042  }
  1043  
  1044  func fillField(f field) field {
  1045  	f.nameBytes = []byte(f.name)
  1046  	f.equalFold = foldFunc(f.nameBytes)
  1047  	return f
  1048  }
  1049  
  1050  // byIndex sorts field by index sequence.
  1051  type byIndex []field
  1052  
  1053  func (x byIndex) Len() int { return len(x) }
  1054  
  1055  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1056  
  1057  func (x byIndex) Less(i, j int) bool {
  1058  	for k, xik := range x[i].index {
  1059  		if k >= len(x[j].index) {
  1060  			return false
  1061  		}
  1062  		if xik != x[j].index[k] {
  1063  			return xik < x[j].index[k]
  1064  		}
  1065  	}
  1066  	return len(x[i].index) < len(x[j].index)
  1067  }
  1068  
  1069  // typeFields returns a list of fields that JSON should recognize for the given type.
  1070  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1071  // and then any reachable anonymous structs.
  1072  func typeFields(t reflect.Type) []field {
  1073  	// Anonymous fields to explore at the current level and the next.
  1074  	current := []field{}
  1075  	next := []field{{typ: t}}
  1076  
  1077  	// Count of queued names for current level and the next.
  1078  	count := map[reflect.Type]int{}
  1079  	nextCount := map[reflect.Type]int{}
  1080  
  1081  	// Types already visited at an earlier level.
  1082  	visited := map[reflect.Type]bool{}
  1083  
  1084  	// Fields found.
  1085  	var fields []field
  1086  
  1087  	for len(next) > 0 {
  1088  		current, next = next, current[:0]
  1089  		count, nextCount = nextCount, map[reflect.Type]int{}
  1090  
  1091  		for _, f := range current {
  1092  			if visited[f.typ] {
  1093  				continue
  1094  			}
  1095  			visited[f.typ] = true
  1096  
  1097  			// Scan f.typ for fields to include.
  1098  			for i := 0; i < f.typ.NumField(); i++ {
  1099  				sf := f.typ.Field(i)
  1100  				if sf.PkgPath != "" && !sf.Anonymous { // unexported
  1101  					continue
  1102  				}
  1103  				tag := sf.Tag.Get("json")
  1104  				if tag == "-" {
  1105  					continue
  1106  				}
  1107  				name, opts := parseTag(tag)
  1108  				if !isValidTag(name) {
  1109  					name = ""
  1110  				}
  1111  				index := make([]int, len(f.index)+1)
  1112  				copy(index, f.index)
  1113  				index[len(f.index)] = i
  1114  
  1115  				ft := sf.Type
  1116  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1117  					// Follow pointer.
  1118  					ft = ft.Elem()
  1119  				}
  1120  
  1121  				// Only strings, floats, integers, and booleans can be quoted.
  1122  				quoted := false
  1123  				if opts.Contains("string") {
  1124  					switch ft.Kind() {
  1125  					case reflect.Bool,
  1126  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1127  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
  1128  						reflect.Float32, reflect.Float64,
  1129  						reflect.String:
  1130  						quoted = true
  1131  					}
  1132  				}
  1133  
  1134  				// Record found field and index sequence.
  1135  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1136  					tagged := name != ""
  1137  					if name == "" {
  1138  						name = sf.Name
  1139  					}
  1140  					fields = append(fields, fillField(field{
  1141  						name:      name,
  1142  						tag:       tagged,
  1143  						index:     index,
  1144  						typ:       ft,
  1145  						omitEmpty: opts.Contains("omitempty"),
  1146  						quoted:    quoted,
  1147  					}))
  1148  					if count[f.typ] > 1 {
  1149  						// If there were multiple instances, add a second,
  1150  						// so that the annihilation code will see a duplicate.
  1151  						// It only cares about the distinction between 1 or 2,
  1152  						// so don't bother generating any more copies.
  1153  						fields = append(fields, fields[len(fields)-1])
  1154  					}
  1155  					continue
  1156  				}
  1157  
  1158  				// Record new anonymous struct to explore in next round.
  1159  				nextCount[ft]++
  1160  				if nextCount[ft] == 1 {
  1161  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1162  				}
  1163  			}
  1164  		}
  1165  	}
  1166  
  1167  	sort.Slice(fields, func(i, j int) bool {
  1168  		x := fields
  1169  		// sort field by name, breaking ties with depth, then
  1170  		// breaking ties with "name came from json tag", then
  1171  		// breaking ties with index sequence.
  1172  		if x[i].name != x[j].name {
  1173  			return x[i].name < x[j].name
  1174  		}
  1175  		if len(x[i].index) != len(x[j].index) {
  1176  			return len(x[i].index) < len(x[j].index)
  1177  		}
  1178  		if x[i].tag != x[j].tag {
  1179  			return x[i].tag
  1180  		}
  1181  		return byIndex(x).Less(i, j)
  1182  	})
  1183  
  1184  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1185  	// except that fields with JSON tags are promoted.
  1186  
  1187  	// The fields are sorted in primary order of name, secondary order
  1188  	// of field index length. Loop over names; for each name, delete
  1189  	// hidden fields by choosing the one dominant field that survives.
  1190  	out := fields[:0]
  1191  	for advance, i := 0, 0; i < len(fields); i += advance {
  1192  		// One iteration per name.
  1193  		// Find the sequence of fields with the name of this first field.
  1194  		fi := fields[i]
  1195  		name := fi.name
  1196  		for advance = 1; i+advance < len(fields); advance++ {
  1197  			fj := fields[i+advance]
  1198  			if fj.name != name {
  1199  				break
  1200  			}
  1201  		}
  1202  		if advance == 1 { // Only one field with this name
  1203  			out = append(out, fi)
  1204  			continue
  1205  		}
  1206  		dominant, ok := dominantField(fields[i : i+advance])
  1207  		if ok {
  1208  			out = append(out, dominant)
  1209  		}
  1210  	}
  1211  
  1212  	fields = out
  1213  	sort.Sort(byIndex(fields))
  1214  
  1215  	return fields
  1216  }
  1217  
  1218  // dominantField looks through the fields, all of which are known to
  1219  // have the same name, to find the single field that dominates the
  1220  // others using Go's embedding rules, modified by the presence of
  1221  // JSON tags. If there are multiple top-level fields, the boolean
  1222  // will be false: This condition is an error in Go and we skip all
  1223  // the fields.
  1224  func dominantField(fields []field) (field, bool) {
  1225  	// The fields are sorted in increasing index-length order. The winner
  1226  	// must therefore be one with the shortest index length. Drop all
  1227  	// longer entries, which is easy: just truncate the slice.
  1228  	length := len(fields[0].index)
  1229  	tagged := -1 // Index of first tagged field.
  1230  	for i, f := range fields {
  1231  		if len(f.index) > length {
  1232  			fields = fields[:i]
  1233  			break
  1234  		}
  1235  		if f.tag {
  1236  			if tagged >= 0 {
  1237  				// Multiple tagged fields at the same level: conflict.
  1238  				// Return no field.
  1239  				return field{}, false
  1240  			}
  1241  			tagged = i
  1242  		}
  1243  	}
  1244  	if tagged >= 0 {
  1245  		return fields[tagged], true
  1246  	}
  1247  	// All remaining fields have the same length. If there's more than one,
  1248  	// we have a conflict (two fields named "X" at the same level) and we
  1249  	// return no field.
  1250  	if len(fields) > 1 {
  1251  		return field{}, false
  1252  	}
  1253  	return fields[0], true
  1254  }
  1255  
  1256  var fieldCache struct {
  1257  	value atomic.Value // map[reflect.Type][]field
  1258  	mu    sync.Mutex   // used only by writers
  1259  }
  1260  
  1261  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1262  func cachedTypeFields(t reflect.Type) []field {
  1263  	m, _ := fieldCache.value.Load().(map[reflect.Type][]field)
  1264  	f := m[t]
  1265  	if f != nil {
  1266  		return f
  1267  	}
  1268  
  1269  	// Compute fields without lock.
  1270  	// Might duplicate effort but won't hold other computations back.
  1271  	f = typeFields(t)
  1272  	if f == nil {
  1273  		f = []field{}
  1274  	}
  1275  
  1276  	fieldCache.mu.Lock()
  1277  	m, _ = fieldCache.value.Load().(map[reflect.Type][]field)
  1278  	newM := make(map[reflect.Type][]field, len(m)+1)
  1279  	for k, v := range m {
  1280  		newM[k] = v
  1281  	}
  1282  	newM[t] = f
  1283  	fieldCache.value.Store(newM)
  1284  	fieldCache.mu.Unlock()
  1285  	return f
  1286  }