github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/runtime/mbitmap.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: type and heap bitmaps. 6 // 7 // Stack, data, and bss bitmaps 8 // 9 // Stack frames and global variables in the data and bss sections are described 10 // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer 11 // to be visited during GC. The bits in each byte are consumed starting with 12 // the low bit: 1<<0, 1<<1, and so on. 13 // 14 // Heap bitmap 15 // 16 // The allocated heap comes from a subset of the memory in the range [start, used), 17 // where start == mheap_.arena_start and used == mheap_.arena_used. 18 // The heap bitmap comprises 2 bits for each pointer-sized word in that range, 19 // stored in bytes indexed backward in memory from start. 20 // That is, the byte at address start-1 holds the 2-bit entries for the four words 21 // start through start+3*ptrSize, the byte at start-2 holds the entries for 22 // start+4*ptrSize through start+7*ptrSize, and so on. 23 // 24 // In each 2-bit entry, the lower bit holds the same information as in the 1-bit 25 // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC. 26 // The meaning of the high bit depends on the position of the word being described 27 // in its allocated object. In all words *except* the second word, the 28 // high bit indicates that the object is still being described. In 29 // these words, if a bit pair with a high bit 0 is encountered, the 30 // low bit can also be assumed to be 0, and the object description is 31 // over. This 00 is called the ``dead'' encoding: it signals that the 32 // rest of the words in the object are uninteresting to the garbage 33 // collector. 34 // 35 // In the second word, the high bit is the GC ``checkmarked'' bit (see below). 36 // 37 // The 2-bit entries are split when written into the byte, so that the top half 38 // of the byte contains 4 high bits and the bottom half contains 4 low (pointer) 39 // bits. 40 // This form allows a copy from the 1-bit to the 4-bit form to keep the 41 // pointer bits contiguous, instead of having to space them out. 42 // 43 // The code makes use of the fact that the zero value for a heap bitmap 44 // has no live pointer bit set and is (depending on position), not used, 45 // not checkmarked, and is the dead encoding. 46 // These properties must be preserved when modifying the encoding. 47 // 48 // Checkmarks 49 // 50 // In a concurrent garbage collector, one worries about failing to mark 51 // a live object due to mutations without write barriers or bugs in the 52 // collector implementation. As a sanity check, the GC has a 'checkmark' 53 // mode that retraverses the object graph with the world stopped, to make 54 // sure that everything that should be marked is marked. 55 // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry 56 // for the second word of the object holds the checkmark bit. 57 // When not in checkmark mode, this bit is set to 1. 58 // 59 // The smallest possible allocation is 8 bytes. On a 32-bit machine, that 60 // means every allocated object has two words, so there is room for the 61 // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is 62 // just one word, so the second bit pair is not available for encoding the 63 // checkmark. However, because non-pointer allocations are combined 64 // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation 65 // must be a pointer, so the type bit in the first word is not actually needed. 66 // It is still used in general, except in checkmark the type bit is repurposed 67 // as the checkmark bit and then reinitialized (to 1) as the type bit when 68 // finished. 69 // 70 71 package runtime 72 73 import ( 74 "runtime/internal/atomic" 75 "runtime/internal/sys" 76 "unsafe" 77 ) 78 79 const ( 80 bitPointer = 1 << 0 81 bitScan = 1 << 4 82 83 heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries 84 heapBitmapScale = sys.PtrSize * (8 / 2) // number of data bytes described by one heap bitmap byte 85 86 // all scan/pointer bits in a byte 87 bitScanAll = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 88 bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift) 89 ) 90 91 // addb returns the byte pointer p+n. 92 //go:nowritebarrier 93 //go:nosplit 94 func addb(p *byte, n uintptr) *byte { 95 // Note: wrote out full expression instead of calling add(p, n) 96 // to reduce the number of temporaries generated by the 97 // compiler for this trivial expression during inlining. 98 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) 99 } 100 101 // subtractb returns the byte pointer p-n. 102 // subtractb is typically used when traversing the pointer tables referred to by hbits 103 // which are arranged in reverse order. 104 //go:nowritebarrier 105 //go:nosplit 106 func subtractb(p *byte, n uintptr) *byte { 107 // Note: wrote out full expression instead of calling add(p, -n) 108 // to reduce the number of temporaries generated by the 109 // compiler for this trivial expression during inlining. 110 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) 111 } 112 113 // add1 returns the byte pointer p+1. 114 //go:nowritebarrier 115 //go:nosplit 116 func add1(p *byte) *byte { 117 // Note: wrote out full expression instead of calling addb(p, 1) 118 // to reduce the number of temporaries generated by the 119 // compiler for this trivial expression during inlining. 120 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) 121 } 122 123 // subtract1 returns the byte pointer p-1. 124 // subtract1 is typically used when traversing the pointer tables referred to by hbits 125 // which are arranged in reverse order. 126 //go:nowritebarrier 127 // 128 // nosplit because it is used during write barriers and must not be preempted. 129 //go:nosplit 130 func subtract1(p *byte) *byte { 131 // Note: wrote out full expression instead of calling subtractb(p, 1) 132 // to reduce the number of temporaries generated by the 133 // compiler for this trivial expression during inlining. 134 return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) 135 } 136 137 // mHeap_MapBits is called each time arena_used is extended. 138 // It maps any additional bitmap memory needed for the new arena memory. 139 // It must be called with the expected new value of arena_used, 140 // *before* h.arena_used has been updated. 141 // Waiting to update arena_used until after the memory has been mapped 142 // avoids faults when other threads try access the bitmap immediately 143 // after observing the change to arena_used. 144 // 145 //go:nowritebarrier 146 func (h *mheap) mapBits(arena_used uintptr) { 147 // Caller has added extra mappings to the arena. 148 // Add extra mappings of bitmap words as needed. 149 // We allocate extra bitmap pieces in chunks of bitmapChunk. 150 const bitmapChunk = 8192 151 152 n := (arena_used - mheap_.arena_start) / heapBitmapScale 153 n = round(n, bitmapChunk) 154 n = round(n, physPageSize) 155 if h.bitmap_mapped >= n { 156 return 157 } 158 159 sysMap(unsafe.Pointer(h.bitmap-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys) 160 h.bitmap_mapped = n 161 } 162 163 // heapBits provides access to the bitmap bits for a single heap word. 164 // The methods on heapBits take value receivers so that the compiler 165 // can more easily inline calls to those methods and registerize the 166 // struct fields independently. 167 type heapBits struct { 168 bitp *uint8 169 shift uint32 170 } 171 172 // markBits provides access to the mark bit for an object in the heap. 173 // bytep points to the byte holding the mark bit. 174 // mask is a byte with a single bit set that can be &ed with *bytep 175 // to see if the bit has been set. 176 // *m.byte&m.mask != 0 indicates the mark bit is set. 177 // index can be used along with span information to generate 178 // the address of the object in the heap. 179 // We maintain one set of mark bits for allocation and one for 180 // marking purposes. 181 type markBits struct { 182 bytep *uint8 183 mask uint8 184 index uintptr 185 } 186 187 //go:nosplit 188 func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { 189 whichByte := allocBitIndex / 8 190 whichBit := allocBitIndex % 8 191 bytePtr := addb(s.allocBits, whichByte) 192 return markBits{bytePtr, uint8(1 << whichBit), allocBitIndex} 193 } 194 195 // refillaCache takes 8 bytes s.allocBits starting at whichByte 196 // and negates them so that ctz (count trailing zeros) instructions 197 // can be used. It then places these 8 bytes into the cached 64 bit 198 // s.allocCache. 199 func (s *mspan) refillAllocCache(whichByte uintptr) { 200 bytes := (*[8]uint8)(unsafe.Pointer(addb(s.allocBits, whichByte))) 201 aCache := uint64(0) 202 aCache |= uint64(bytes[0]) 203 aCache |= uint64(bytes[1]) << (1 * 8) 204 aCache |= uint64(bytes[2]) << (2 * 8) 205 aCache |= uint64(bytes[3]) << (3 * 8) 206 aCache |= uint64(bytes[4]) << (4 * 8) 207 aCache |= uint64(bytes[5]) << (5 * 8) 208 aCache |= uint64(bytes[6]) << (6 * 8) 209 aCache |= uint64(bytes[7]) << (7 * 8) 210 s.allocCache = ^aCache 211 } 212 213 // nextFreeIndex returns the index of the next free object in s at 214 // or after s.freeindex. 215 // There are hardware instructions that can be used to make this 216 // faster if profiling warrants it. 217 func (s *mspan) nextFreeIndex() uintptr { 218 sfreeindex := s.freeindex 219 snelems := s.nelems 220 if sfreeindex == snelems { 221 return sfreeindex 222 } 223 if sfreeindex > snelems { 224 throw("s.freeindex > s.nelems") 225 } 226 227 aCache := s.allocCache 228 229 bitIndex := sys.Ctz64(aCache) 230 for bitIndex == 64 { 231 // Move index to start of next cached bits. 232 sfreeindex = (sfreeindex + 64) &^ (64 - 1) 233 if sfreeindex >= snelems { 234 s.freeindex = snelems 235 return snelems 236 } 237 whichByte := sfreeindex / 8 238 // Refill s.allocCache with the next 64 alloc bits. 239 s.refillAllocCache(whichByte) 240 aCache = s.allocCache 241 bitIndex = sys.Ctz64(aCache) 242 // nothing available in cached bits 243 // grab the next 8 bytes and try again. 244 } 245 result := sfreeindex + uintptr(bitIndex) 246 if result >= snelems { 247 s.freeindex = snelems 248 return snelems 249 } 250 251 s.allocCache >>= (bitIndex + 1) 252 sfreeindex = result + 1 253 254 if sfreeindex%64 == 0 && sfreeindex != snelems { 255 // We just incremented s.freeindex so it isn't 0. 256 // As each 1 in s.allocCache was encountered and used for allocation 257 // it was shifted away. At this point s.allocCache contains all 0s. 258 // Refill s.allocCache so that it corresponds 259 // to the bits at s.allocBits starting at s.freeindex. 260 whichByte := sfreeindex / 8 261 s.refillAllocCache(whichByte) 262 } 263 s.freeindex = sfreeindex 264 return result 265 } 266 267 // isFree returns whether the index'th object in s is unallocated. 268 func (s *mspan) isFree(index uintptr) bool { 269 if index < s.freeindex { 270 return false 271 } 272 whichByte := index / 8 273 whichBit := index % 8 274 byteVal := *addb(s.allocBits, whichByte) 275 return byteVal&uint8(1<<whichBit) == 0 276 } 277 278 func (s *mspan) objIndex(p uintptr) uintptr { 279 byteOffset := p - s.base() 280 if byteOffset == 0 { 281 return 0 282 } 283 if s.baseMask != 0 { 284 // s.baseMask is 0, elemsize is a power of two, so shift by s.divShift 285 return byteOffset >> s.divShift 286 } 287 return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2) 288 } 289 290 func markBitsForAddr(p uintptr) markBits { 291 s := spanOf(p) 292 objIndex := s.objIndex(p) 293 return s.markBitsForIndex(objIndex) 294 } 295 296 func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { 297 whichByte := objIndex / 8 298 bitMask := uint8(1 << (objIndex % 8)) // low 3 bits hold the bit index 299 bytePtr := addb(s.gcmarkBits, whichByte) 300 return markBits{bytePtr, bitMask, objIndex} 301 } 302 303 func (s *mspan) markBitsForBase() markBits { 304 return markBits{s.gcmarkBits, uint8(1), 0} 305 } 306 307 // isMarked reports whether mark bit m is set. 308 func (m markBits) isMarked() bool { 309 return *m.bytep&m.mask != 0 310 } 311 312 // setMarked sets the marked bit in the markbits, atomically. Some compilers 313 // are not able to inline atomic.Or8 function so if it appears as a hot spot consider 314 // inlining it manually. 315 func (m markBits) setMarked() { 316 // Might be racing with other updates, so use atomic update always. 317 // We used to be clever here and use a non-atomic update in certain 318 // cases, but it's not worth the risk. 319 atomic.Or8(m.bytep, m.mask) 320 } 321 322 // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. 323 func (m markBits) setMarkedNonAtomic() { 324 *m.bytep |= m.mask 325 } 326 327 // clearMarked clears the marked bit in the markbits, atomically. 328 func (m markBits) clearMarked() { 329 // Might be racing with other updates, so use atomic update always. 330 // We used to be clever here and use a non-atomic update in certain 331 // cases, but it's not worth the risk. 332 atomic.And8(m.bytep, ^m.mask) 333 } 334 335 // clearMarkedNonAtomic clears the marked bit non-atomically. 336 func (m markBits) clearMarkedNonAtomic() { 337 *m.bytep ^= m.mask 338 } 339 340 // markBitsForSpan returns the markBits for the span base address base. 341 func markBitsForSpan(base uintptr) (mbits markBits) { 342 if base < mheap_.arena_start || base >= mheap_.arena_used { 343 throw("markBitsForSpan: base out of range") 344 } 345 mbits = markBitsForAddr(base) 346 if mbits.mask != 1 { 347 throw("markBitsForSpan: unaligned start") 348 } 349 return mbits 350 } 351 352 // advance advances the markBits to the next object in the span. 353 func (m *markBits) advance() { 354 if m.mask == 1<<7 { 355 m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) 356 m.mask = 1 357 } else { 358 m.mask = m.mask << 1 359 } 360 m.index++ 361 } 362 363 // heapBitsForAddr returns the heapBits for the address addr. 364 // The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used). 365 // 366 // nosplit because it is used during write barriers and must not be preempted. 367 //go:nosplit 368 func heapBitsForAddr(addr uintptr) heapBits { 369 // 2 bits per work, 4 pairs per byte, and a mask is hard coded. 370 off := (addr - mheap_.arena_start) / sys.PtrSize 371 return heapBits{(*uint8)(unsafe.Pointer(mheap_.bitmap - off/4 - 1)), uint32(off & 3)} 372 } 373 374 // heapBitsForSpan returns the heapBits for the span base address base. 375 func heapBitsForSpan(base uintptr) (hbits heapBits) { 376 if base < mheap_.arena_start || base >= mheap_.arena_used { 377 throw("heapBitsForSpan: base out of range") 378 } 379 return heapBitsForAddr(base) 380 } 381 382 // heapBitsForObject returns the base address for the heap object 383 // containing the address p, the heapBits for base, 384 // the object's span, and of the index of the object in s. 385 // If p does not point into a heap object, 386 // return base == 0 387 // otherwise return the base of the object. 388 // 389 // refBase and refOff optionally give the base address of the object 390 // in which the pointer p was found and the byte offset at which it 391 // was found. These are used for error reporting. 392 func heapBitsForObject(p, refBase, refOff uintptr) (base uintptr, hbits heapBits, s *mspan, objIndex uintptr) { 393 arenaStart := mheap_.arena_start 394 if p < arenaStart || p >= mheap_.arena_used { 395 return 396 } 397 off := p - arenaStart 398 idx := off >> _PageShift 399 // p points into the heap, but possibly to the middle of an object. 400 // Consult the span table to find the block beginning. 401 s = mheap_.spans[idx] 402 if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse { 403 if s == nil || s.state == _MSpanStack { 404 // If s is nil, the virtual address has never been part of the heap. 405 // This pointer may be to some mmap'd region, so we allow it. 406 // Pointers into stacks are also ok, the runtime manages these explicitly. 407 return 408 } 409 410 // The following ensures that we are rigorous about what data 411 // structures hold valid pointers. 412 if debug.invalidptr != 0 { 413 // Typically this indicates an incorrect use 414 // of unsafe or cgo to store a bad pointer in 415 // the Go heap. It may also indicate a runtime 416 // bug. 417 // 418 // TODO(austin): We could be more aggressive 419 // and detect pointers to unallocated objects 420 // in allocated spans. 421 printlock() 422 print("runtime: pointer ", hex(p)) 423 if s.state != mSpanInUse { 424 print(" to unallocated span") 425 } else { 426 print(" to unused region of span") 427 } 428 print(" idx=", hex(idx), " span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", s.state, "\n") 429 if refBase != 0 { 430 print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") 431 gcDumpObject("object", refBase, refOff) 432 } 433 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") 434 } 435 return 436 } 437 // If this span holds object of a power of 2 size, just mask off the bits to 438 // the interior of the object. Otherwise use the size to get the base. 439 if s.baseMask != 0 { 440 // optimize for power of 2 sized objects. 441 base = s.base() 442 base = base + (p-base)&uintptr(s.baseMask) 443 objIndex = (base - s.base()) >> s.divShift 444 // base = p & s.baseMask is faster for small spans, 445 // but doesn't work for large spans. 446 // Overall, it's faster to use the more general computation above. 447 } else { 448 base = s.base() 449 if p-base >= s.elemsize { 450 // n := (p - base) / s.elemsize, using division by multiplication 451 objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2 452 base += objIndex * s.elemsize 453 } 454 } 455 // Now that we know the actual base, compute heapBits to return to caller. 456 hbits = heapBitsForAddr(base) 457 return 458 } 459 460 // prefetch the bits. 461 func (h heapBits) prefetch() { 462 prefetchnta(uintptr(unsafe.Pointer((h.bitp)))) 463 } 464 465 // next returns the heapBits describing the next pointer-sized word in memory. 466 // That is, if h describes address p, h.next() describes p+ptrSize. 467 // Note that next does not modify h. The caller must record the result. 468 // 469 // nosplit because it is used during write barriers and must not be preempted. 470 //go:nosplit 471 func (h heapBits) next() heapBits { 472 if h.shift < 3*heapBitsShift { 473 return heapBits{h.bitp, h.shift + heapBitsShift} 474 } 475 return heapBits{subtract1(h.bitp), 0} 476 } 477 478 // forward returns the heapBits describing n pointer-sized words ahead of h in memory. 479 // That is, if h describes address p, h.forward(n) describes p+n*ptrSize. 480 // h.forward(1) is equivalent to h.next(), just slower. 481 // Note that forward does not modify h. The caller must record the result. 482 // bits returns the heap bits for the current word. 483 func (h heapBits) forward(n uintptr) heapBits { 484 n += uintptr(h.shift) / heapBitsShift 485 return heapBits{subtractb(h.bitp, n/4), uint32(n%4) * heapBitsShift} 486 } 487 488 // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer. 489 // The result includes in its higher bits the bits for subsequent words 490 // described by the same bitmap byte. 491 func (h heapBits) bits() uint32 { 492 // The (shift & 31) eliminates a test and conditional branch 493 // from the generated code. 494 return uint32(*h.bitp) >> (h.shift & 31) 495 } 496 497 // morePointers returns true if this word and all remaining words in this object 498 // are scalars. 499 // h must not describe the second word of the object. 500 func (h heapBits) morePointers() bool { 501 return h.bits()&bitScan != 0 502 } 503 504 // isPointer reports whether the heap bits describe a pointer word. 505 // 506 // nosplit because it is used during write barriers and must not be preempted. 507 //go:nosplit 508 func (h heapBits) isPointer() bool { 509 return h.bits()&bitPointer != 0 510 } 511 512 // hasPointers reports whether the given object has any pointers. 513 // It must be told how large the object at h is for efficiency. 514 // h must describe the initial word of the object. 515 func (h heapBits) hasPointers(size uintptr) bool { 516 if size == sys.PtrSize { // 1-word objects are always pointers 517 return true 518 } 519 return (*h.bitp>>h.shift)&bitScan != 0 520 } 521 522 // isCheckmarked reports whether the heap bits have the checkmarked bit set. 523 // It must be told how large the object at h is, because the encoding of the 524 // checkmark bit varies by size. 525 // h must describe the initial word of the object. 526 func (h heapBits) isCheckmarked(size uintptr) bool { 527 if size == sys.PtrSize { 528 return (*h.bitp>>h.shift)&bitPointer != 0 529 } 530 // All multiword objects are 2-word aligned, 531 // so we know that the initial word's 2-bit pair 532 // and the second word's 2-bit pair are in the 533 // same heap bitmap byte, *h.bitp. 534 return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0 535 } 536 537 // setCheckmarked sets the checkmarked bit. 538 // It must be told how large the object at h is, because the encoding of the 539 // checkmark bit varies by size. 540 // h must describe the initial word of the object. 541 func (h heapBits) setCheckmarked(size uintptr) { 542 if size == sys.PtrSize { 543 atomic.Or8(h.bitp, bitPointer<<h.shift) 544 return 545 } 546 atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift)) 547 } 548 549 // bulkBarrierPreWrite executes writebarrierptr_prewrite1 550 // for every pointer slot in the memory range [src, src+size), 551 // using pointer/scalar information from [dst, dst+size). 552 // This executes the write barriers necessary before a memmove. 553 // src, dst, and size must be pointer-aligned. 554 // The range [dst, dst+size) must lie within a single object. 555 // 556 // As a special case, src == 0 indicates that this is being used for a 557 // memclr. bulkBarrierPreWrite will pass 0 for the src of each write 558 // barrier. 559 // 560 // Callers should call bulkBarrierPreWrite immediately before 561 // calling memmove(dst, src, size). This function is marked nosplit 562 // to avoid being preempted; the GC must not stop the goroutine 563 // between the memmove and the execution of the barriers. 564 // The caller is also responsible for cgo pointer checks if this 565 // may be writing Go pointers into non-Go memory. 566 // 567 // The pointer bitmap is not maintained for allocations containing 568 // no pointers at all; any caller of bulkBarrierPreWrite must first 569 // make sure the underlying allocation contains pointers, usually 570 // by checking typ.kind&kindNoPointers. 571 // 572 //go:nosplit 573 func bulkBarrierPreWrite(dst, src, size uintptr) { 574 if (dst|src|size)&(sys.PtrSize-1) != 0 { 575 throw("bulkBarrierPreWrite: unaligned arguments") 576 } 577 if !writeBarrier.needed { 578 return 579 } 580 if !inheap(dst) { 581 // If dst is on the stack and in a higher frame than the 582 // caller, we either need to execute write barriers on 583 // it (which is what happens for normal stack writes 584 // through pointers to higher frames), or we need to 585 // force the mark termination stack scan to scan the 586 // frame containing dst. 587 // 588 // Executing write barriers on dst is complicated in the 589 // general case because we either need to unwind the 590 // stack to get the stack map, or we need the type's 591 // bitmap, which may be a GC program. 592 // 593 // Hence, we opt for forcing the re-scan to scan the 594 // frame containing dst, which we can do by simply 595 // unwinding the stack barriers between the current SP 596 // and dst's frame. 597 gp := getg().m.curg 598 if gp != nil && gp.stack.lo <= dst && dst < gp.stack.hi { 599 // Run on the system stack to give it more 600 // stack space. 601 systemstack(func() { 602 gcUnwindBarriers(gp, dst) 603 }) 604 return 605 } 606 607 // If dst is a global, use the data or BSS bitmaps to 608 // execute write barriers. 609 for _, datap := range activeModules() { 610 if datap.data <= dst && dst < datap.edata { 611 bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) 612 return 613 } 614 } 615 for _, datap := range activeModules() { 616 if datap.bss <= dst && dst < datap.ebss { 617 bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) 618 return 619 } 620 } 621 return 622 } 623 624 h := heapBitsForAddr(dst) 625 if src == 0 { 626 for i := uintptr(0); i < size; i += sys.PtrSize { 627 if h.isPointer() { 628 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 629 writebarrierptr_prewrite1(dstx, 0) 630 } 631 h = h.next() 632 } 633 } else { 634 for i := uintptr(0); i < size; i += sys.PtrSize { 635 if h.isPointer() { 636 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 637 srcx := (*uintptr)(unsafe.Pointer(src + i)) 638 writebarrierptr_prewrite1(dstx, *srcx) 639 } 640 h = h.next() 641 } 642 } 643 } 644 645 // bulkBarrierBitmap executes write barriers for copying from [src, 646 // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is 647 // assumed to start maskOffset bytes into the data covered by the 648 // bitmap in bits (which may not be a multiple of 8). 649 // 650 // This is used by bulkBarrierPreWrite for writes to data and BSS. 651 // 652 //go:nosplit 653 func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { 654 word := maskOffset / sys.PtrSize 655 bits = addb(bits, word/8) 656 mask := uint8(1) << (word % 8) 657 658 for i := uintptr(0); i < size; i += sys.PtrSize { 659 if mask == 0 { 660 bits = addb(bits, 1) 661 if *bits == 0 { 662 // Skip 8 words. 663 i += 7 * sys.PtrSize 664 continue 665 } 666 mask = 1 667 } 668 if *bits&mask != 0 { 669 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 670 if src == 0 { 671 writebarrierptr_prewrite1(dstx, 0) 672 } else { 673 srcx := (*uintptr)(unsafe.Pointer(src + i)) 674 writebarrierptr_prewrite1(dstx, *srcx) 675 } 676 } 677 mask <<= 1 678 } 679 } 680 681 // typeBitsBulkBarrier executes writebarrierptr_prewrite for every 682 // pointer that would be copied from [src, src+size) to [dst, 683 // dst+size) by a memmove using the type bitmap to locate those 684 // pointer slots. 685 // 686 // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). 687 // dst, src, and size must be pointer-aligned. 688 // The type typ must have a plain bitmap, not a GC program. 689 // The only use of this function is in channel sends, and the 690 // 64 kB channel element limit takes care of this for us. 691 // 692 // Must not be preempted because it typically runs right before memmove, 693 // and the GC must observe them as an atomic action. 694 // 695 //go:nosplit 696 func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { 697 if typ == nil { 698 throw("runtime: typeBitsBulkBarrier without type") 699 } 700 if typ.size != size { 701 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) 702 throw("runtime: invalid typeBitsBulkBarrier") 703 } 704 if typ.kind&kindGCProg != 0 { 705 println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") 706 throw("runtime: invalid typeBitsBulkBarrier") 707 } 708 if !writeBarrier.needed { 709 return 710 } 711 ptrmask := typ.gcdata 712 var bits uint32 713 for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize { 714 if i&(sys.PtrSize*8-1) == 0 { 715 bits = uint32(*ptrmask) 716 ptrmask = addb(ptrmask, 1) 717 } else { 718 bits = bits >> 1 719 } 720 if bits&1 != 0 { 721 dstx := (*uintptr)(unsafe.Pointer(dst + i)) 722 srcx := (*uintptr)(unsafe.Pointer(src + i)) 723 writebarrierptr_prewrite(dstx, *srcx) 724 } 725 } 726 } 727 728 // The methods operating on spans all require that h has been returned 729 // by heapBitsForSpan and that size, n, total are the span layout description 730 // returned by the mspan's layout method. 731 // If total > size*n, it means that there is extra leftover memory in the span, 732 // usually due to rounding. 733 // 734 // TODO(rsc): Perhaps introduce a different heapBitsSpan type. 735 736 // initSpan initializes the heap bitmap for a span. 737 // It clears all checkmark bits. 738 // If this is a span of pointer-sized objects, it initializes all 739 // words to pointer/scan. 740 // Otherwise, it initializes all words to scalar/dead. 741 func (h heapBits) initSpan(s *mspan) { 742 size, n, total := s.layout() 743 744 // Init the markbit structures 745 s.freeindex = 0 746 s.allocCache = ^uint64(0) // all 1s indicating all free. 747 s.nelems = n 748 s.allocBits = nil 749 s.gcmarkBits = nil 750 s.gcmarkBits = newMarkBits(s.nelems) 751 s.allocBits = newAllocBits(s.nelems) 752 753 // Clear bits corresponding to objects. 754 if total%heapBitmapScale != 0 { 755 throw("initSpan: unaligned length") 756 } 757 nbyte := total / heapBitmapScale 758 if sys.PtrSize == 8 && size == sys.PtrSize { 759 end := h.bitp 760 bitp := subtractb(end, nbyte-1) 761 for { 762 *bitp = bitPointerAll | bitScanAll 763 if bitp == end { 764 break 765 } 766 bitp = add1(bitp) 767 } 768 return 769 } 770 memclrNoHeapPointers(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte) 771 } 772 773 // initCheckmarkSpan initializes a span for being checkmarked. 774 // It clears the checkmark bits, which are set to 1 in normal operation. 775 func (h heapBits) initCheckmarkSpan(size, n, total uintptr) { 776 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 777 if sys.PtrSize == 8 && size == sys.PtrSize { 778 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 779 // Only possible on 64-bit system, since minimum size is 8. 780 // Must clear type bit (checkmark bit) of every word. 781 // The type bit is the lower of every two-bit pair. 782 bitp := h.bitp 783 for i := uintptr(0); i < n; i += 4 { 784 *bitp &^= bitPointerAll 785 bitp = subtract1(bitp) 786 } 787 return 788 } 789 for i := uintptr(0); i < n; i++ { 790 *h.bitp &^= bitScan << (heapBitsShift + h.shift) 791 h = h.forward(size / sys.PtrSize) 792 } 793 } 794 795 // clearCheckmarkSpan undoes all the checkmarking in a span. 796 // The actual checkmark bits are ignored, so the only work to do 797 // is to fix the pointer bits. (Pointer bits are ignored by scanobject 798 // but consulted by typedmemmove.) 799 func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) { 800 // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. 801 if sys.PtrSize == 8 && size == sys.PtrSize { 802 // Checkmark bit is type bit, bottom bit of every 2-bit entry. 803 // Only possible on 64-bit system, since minimum size is 8. 804 // Must clear type bit (checkmark bit) of every word. 805 // The type bit is the lower of every two-bit pair. 806 bitp := h.bitp 807 for i := uintptr(0); i < n; i += 4 { 808 *bitp |= bitPointerAll 809 bitp = subtract1(bitp) 810 } 811 } 812 } 813 814 // oneBitCount is indexed by byte and produces the 815 // number of 1 bits in that byte. For example 128 has 1 bit set 816 // and oneBitCount[128] will holds 1. 817 var oneBitCount = [256]uint8{ 818 0, 1, 1, 2, 1, 2, 2, 3, 819 1, 2, 2, 3, 2, 3, 3, 4, 820 1, 2, 2, 3, 2, 3, 3, 4, 821 2, 3, 3, 4, 3, 4, 4, 5, 822 1, 2, 2, 3, 2, 3, 3, 4, 823 2, 3, 3, 4, 3, 4, 4, 5, 824 2, 3, 3, 4, 3, 4, 4, 5, 825 3, 4, 4, 5, 4, 5, 5, 6, 826 1, 2, 2, 3, 2, 3, 3, 4, 827 2, 3, 3, 4, 3, 4, 4, 5, 828 2, 3, 3, 4, 3, 4, 4, 5, 829 3, 4, 4, 5, 4, 5, 5, 6, 830 2, 3, 3, 4, 3, 4, 4, 5, 831 3, 4, 4, 5, 4, 5, 5, 6, 832 3, 4, 4, 5, 4, 5, 5, 6, 833 4, 5, 5, 6, 5, 6, 6, 7, 834 1, 2, 2, 3, 2, 3, 3, 4, 835 2, 3, 3, 4, 3, 4, 4, 5, 836 2, 3, 3, 4, 3, 4, 4, 5, 837 3, 4, 4, 5, 4, 5, 5, 6, 838 2, 3, 3, 4, 3, 4, 4, 5, 839 3, 4, 4, 5, 4, 5, 5, 6, 840 3, 4, 4, 5, 4, 5, 5, 6, 841 4, 5, 5, 6, 5, 6, 6, 7, 842 2, 3, 3, 4, 3, 4, 4, 5, 843 3, 4, 4, 5, 4, 5, 5, 6, 844 3, 4, 4, 5, 4, 5, 5, 6, 845 4, 5, 5, 6, 5, 6, 6, 7, 846 3, 4, 4, 5, 4, 5, 5, 6, 847 4, 5, 5, 6, 5, 6, 6, 7, 848 4, 5, 5, 6, 5, 6, 6, 7, 849 5, 6, 6, 7, 6, 7, 7, 8} 850 851 // countFree runs through the mark bits in a span and counts the number of free objects 852 // in the span. 853 // TODO:(rlh) Use popcount intrinsic. 854 func (s *mspan) countFree() int { 855 count := 0 856 maxIndex := s.nelems / 8 857 for i := uintptr(0); i < maxIndex; i++ { 858 mrkBits := *addb(s.gcmarkBits, i) 859 count += int(oneBitCount[mrkBits]) 860 } 861 if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 { 862 mrkBits := *addb(s.gcmarkBits, maxIndex) 863 mask := uint8((1 << bitsInLastByte) - 1) 864 bits := mrkBits & mask 865 count += int(oneBitCount[bits]) 866 } 867 return int(s.nelems) - count 868 } 869 870 // heapBitsSetType records that the new allocation [x, x+size) 871 // holds in [x, x+dataSize) one or more values of type typ. 872 // (The number of values is given by dataSize / typ.size.) 873 // If dataSize < size, the fragment [x+dataSize, x+size) is 874 // recorded as non-pointer data. 875 // It is known that the type has pointers somewhere; 876 // malloc does not call heapBitsSetType when there are no pointers, 877 // because all free objects are marked as noscan during 878 // heapBitsSweepSpan. 879 // 880 // There can only be one allocation from a given span active at a time, 881 // and the bitmap for a span always falls on byte boundaries, 882 // so there are no write-write races for access to the heap bitmap. 883 // Hence, heapBitsSetType can access the bitmap without atomics. 884 // 885 // There can be read-write races between heapBitsSetType and things 886 // that read the heap bitmap like scanobject. However, since 887 // heapBitsSetType is only used for objects that have not yet been 888 // made reachable, readers will ignore bits being modified by this 889 // function. This does mean this function cannot transiently modify 890 // bits that belong to neighboring objects. Also, on weakly-ordered 891 // machines, callers must execute a store/store (publication) barrier 892 // between calling this function and making the object reachable. 893 func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { 894 const doubleCheck = false // slow but helpful; enable to test modifications to this code 895 896 // dataSize is always size rounded up to the next malloc size class, 897 // except in the case of allocating a defer block, in which case 898 // size is sizeof(_defer{}) (at least 6 words) and dataSize may be 899 // arbitrarily larger. 900 // 901 // The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore 902 // assume that dataSize == size without checking it explicitly. 903 904 if sys.PtrSize == 8 && size == sys.PtrSize { 905 // It's one word and it has pointers, it must be a pointer. 906 // Since all allocated one-word objects are pointers 907 // (non-pointers are aggregated into tinySize allocations), 908 // initSpan sets the pointer bits for us. Nothing to do here. 909 if doubleCheck { 910 h := heapBitsForAddr(x) 911 if !h.isPointer() { 912 throw("heapBitsSetType: pointer bit missing") 913 } 914 if !h.morePointers() { 915 throw("heapBitsSetType: scan bit missing") 916 } 917 } 918 return 919 } 920 921 h := heapBitsForAddr(x) 922 ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below) 923 924 // Heap bitmap bits for 2-word object are only 4 bits, 925 // so also shared with objects next to it. 926 // This is called out as a special case primarily for 32-bit systems, 927 // so that on 32-bit systems the code below can assume all objects 928 // are 4-word aligned (because they're all 16-byte aligned). 929 if size == 2*sys.PtrSize { 930 if typ.size == sys.PtrSize { 931 // We're allocating a block big enough to hold two pointers. 932 // On 64-bit, that means the actual object must be two pointers, 933 // or else we'd have used the one-pointer-sized block. 934 // On 32-bit, however, this is the 8-byte block, the smallest one. 935 // So it could be that we're allocating one pointer and this was 936 // just the smallest block available. Distinguish by checking dataSize. 937 // (In general the number of instances of typ being allocated is 938 // dataSize/typ.size.) 939 if sys.PtrSize == 4 && dataSize == sys.PtrSize { 940 // 1 pointer object. On 32-bit machines clear the bit for the 941 // unused second word. 942 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 943 *h.bitp |= (bitPointer | bitScan) << h.shift 944 } else { 945 // 2-element slice of pointer. 946 *h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift 947 } 948 return 949 } 950 // Otherwise typ.size must be 2*sys.PtrSize, 951 // and typ.kind&kindGCProg == 0. 952 if doubleCheck { 953 if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 { 954 print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n") 955 throw("heapBitsSetType") 956 } 957 } 958 b := uint32(*ptrmask) 959 hb := (b & 3) | bitScan 960 // bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1. 961 // 110011 is shifted h.shift and complemented. 962 // This clears out the bits that are about to be 963 // ored into *h.hbitp in the next instructions. 964 *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift 965 *h.bitp |= uint8(hb << h.shift) 966 return 967 } 968 969 // Copy from 1-bit ptrmask into 2-bit bitmap. 970 // The basic approach is to use a single uintptr as a bit buffer, 971 // alternating between reloading the buffer and writing bitmap bytes. 972 // In general, one load can supply two bitmap byte writes. 973 // This is a lot of lines of code, but it compiles into relatively few 974 // machine instructions. 975 976 var ( 977 // Ptrmask input. 978 p *byte // last ptrmask byte read 979 b uintptr // ptrmask bits already loaded 980 nb uintptr // number of bits in b at next read 981 endp *byte // final ptrmask byte to read (then repeat) 982 endnb uintptr // number of valid bits in *endp 983 pbits uintptr // alternate source of bits 984 985 // Heap bitmap output. 986 w uintptr // words processed 987 nw uintptr // number of words to process 988 hbitp *byte // next heap bitmap byte to write 989 hb uintptr // bits being prepared for *hbitp 990 ) 991 992 hbitp = h.bitp 993 994 // Handle GC program. Delayed until this part of the code 995 // so that we can use the same double-checking mechanism 996 // as the 1-bit case. Nothing above could have encountered 997 // GC programs: the cases were all too small. 998 if typ.kind&kindGCProg != 0 { 999 heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4)) 1000 if doubleCheck { 1001 // Double-check the heap bits written by GC program 1002 // by running the GC program to create a 1-bit pointer mask 1003 // and then jumping to the double-check code below. 1004 // This doesn't catch bugs shared between the 1-bit and 4-bit 1005 // GC program execution, but it does catch mistakes specific 1006 // to just one of those and bugs in heapBitsSetTypeGCProg's 1007 // implementation of arrays. 1008 lock(&debugPtrmask.lock) 1009 if debugPtrmask.data == nil { 1010 debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys)) 1011 } 1012 ptrmask = debugPtrmask.data 1013 runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1) 1014 goto Phase4 1015 } 1016 return 1017 } 1018 1019 // Note about sizes: 1020 // 1021 // typ.size is the number of words in the object, 1022 // and typ.ptrdata is the number of words in the prefix 1023 // of the object that contains pointers. That is, the final 1024 // typ.size - typ.ptrdata words contain no pointers. 1025 // This allows optimization of a common pattern where 1026 // an object has a small header followed by a large scalar 1027 // buffer. If we know the pointers are over, we don't have 1028 // to scan the buffer's heap bitmap at all. 1029 // The 1-bit ptrmasks are sized to contain only bits for 1030 // the typ.ptrdata prefix, zero padded out to a full byte 1031 // of bitmap. This code sets nw (below) so that heap bitmap 1032 // bits are only written for the typ.ptrdata prefix; if there is 1033 // more room in the allocated object, the next heap bitmap 1034 // entry is a 00, indicating that there are no more pointers 1035 // to scan. So only the ptrmask for the ptrdata bytes is needed. 1036 // 1037 // Replicated copies are not as nice: if there is an array of 1038 // objects with scalar tails, all but the last tail does have to 1039 // be initialized, because there is no way to say "skip forward". 1040 // However, because of the possibility of a repeated type with 1041 // size not a multiple of 4 pointers (one heap bitmap byte), 1042 // the code already must handle the last ptrmask byte specially 1043 // by treating it as containing only the bits for endnb pointers, 1044 // where endnb <= 4. We represent large scalar tails that must 1045 // be expanded in the replication by setting endnb larger than 4. 1046 // This will have the effect of reading many bits out of b, 1047 // but once the real bits are shifted out, b will supply as many 1048 // zero bits as we try to read, which is exactly what we need. 1049 1050 p = ptrmask 1051 if typ.size < dataSize { 1052 // Filling in bits for an array of typ. 1053 // Set up for repetition of ptrmask during main loop. 1054 // Note that ptrmask describes only a prefix of 1055 const maxBits = sys.PtrSize*8 - 7 1056 if typ.ptrdata/sys.PtrSize <= maxBits { 1057 // Entire ptrmask fits in uintptr with room for a byte fragment. 1058 // Load into pbits and never read from ptrmask again. 1059 // This is especially important when the ptrmask has 1060 // fewer than 8 bits in it; otherwise the reload in the middle 1061 // of the Phase 2 loop would itself need to loop to gather 1062 // at least 8 bits. 1063 1064 // Accumulate ptrmask into b. 1065 // ptrmask is sized to describe only typ.ptrdata, but we record 1066 // it as describing typ.size bytes, since all the high bits are zero. 1067 nb = typ.ptrdata / sys.PtrSize 1068 for i := uintptr(0); i < nb; i += 8 { 1069 b |= uintptr(*p) << i 1070 p = add1(p) 1071 } 1072 nb = typ.size / sys.PtrSize 1073 1074 // Replicate ptrmask to fill entire pbits uintptr. 1075 // Doubling and truncating is fewer steps than 1076 // iterating by nb each time. (nb could be 1.) 1077 // Since we loaded typ.ptrdata/sys.PtrSize bits 1078 // but are pretending to have typ.size/sys.PtrSize, 1079 // there might be no replication necessary/possible. 1080 pbits = b 1081 endnb = nb 1082 if nb+nb <= maxBits { 1083 for endnb <= sys.PtrSize*8 { 1084 pbits |= pbits << endnb 1085 endnb += endnb 1086 } 1087 // Truncate to a multiple of original ptrmask. 1088 endnb = maxBits / nb * nb 1089 pbits &= 1<<endnb - 1 1090 b = pbits 1091 nb = endnb 1092 } 1093 1094 // Clear p and endp as sentinel for using pbits. 1095 // Checked during Phase 2 loop. 1096 p = nil 1097 endp = nil 1098 } else { 1099 // Ptrmask is larger. Read it multiple times. 1100 n := (typ.ptrdata/sys.PtrSize+7)/8 - 1 1101 endp = addb(ptrmask, n) 1102 endnb = typ.size/sys.PtrSize - n*8 1103 } 1104 } 1105 if p != nil { 1106 b = uintptr(*p) 1107 p = add1(p) 1108 nb = 8 1109 } 1110 1111 if typ.size == dataSize { 1112 // Single entry: can stop once we reach the non-pointer data. 1113 nw = typ.ptrdata / sys.PtrSize 1114 } else { 1115 // Repeated instances of typ in an array. 1116 // Have to process first N-1 entries in full, but can stop 1117 // once we reach the non-pointer data in the final entry. 1118 nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize 1119 } 1120 if nw == 0 { 1121 // No pointers! Caller was supposed to check. 1122 println("runtime: invalid type ", typ.string()) 1123 throw("heapBitsSetType: called with non-pointer type") 1124 return 1125 } 1126 if nw < 2 { 1127 // Must write at least 2 words, because the "no scan" 1128 // encoding doesn't take effect until the third word. 1129 nw = 2 1130 } 1131 1132 // Phase 1: Special case for leading byte (shift==0) or half-byte (shift==4). 1133 // The leading byte is special because it contains the bits for word 1, 1134 // which does not have the scan bit set. 1135 // The leading half-byte is special because it's a half a byte, 1136 // so we have to be careful with the bits already there. 1137 switch { 1138 default: 1139 throw("heapBitsSetType: unexpected shift") 1140 1141 case h.shift == 0: 1142 // Ptrmask and heap bitmap are aligned. 1143 // Handle first byte of bitmap specially. 1144 // 1145 // The first byte we write out covers the first four 1146 // words of the object. The scan/dead bit on the first 1147 // word must be set to scan since there are pointers 1148 // somewhere in the object. The scan/dead bit on the 1149 // second word is the checkmark, so we don't set it. 1150 // In all following words, we set the scan/dead 1151 // appropriately to indicate that the object contains 1152 // to the next 2-bit entry in the bitmap. 1153 // 1154 // TODO: It doesn't matter if we set the checkmark, so 1155 // maybe this case isn't needed any more. 1156 hb = b & bitPointerAll 1157 hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift) 1158 if w += 4; w >= nw { 1159 goto Phase3 1160 } 1161 *hbitp = uint8(hb) 1162 hbitp = subtract1(hbitp) 1163 b >>= 4 1164 nb -= 4 1165 1166 case sys.PtrSize == 8 && h.shift == 2: 1167 // Ptrmask and heap bitmap are misaligned. 1168 // The bits for the first two words are in a byte shared 1169 // with another object, so we must be careful with the bits 1170 // already there. 1171 // We took care of 1-word and 2-word objects above, 1172 // so this is at least a 6-word object. 1173 hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift) 1174 // This is not noscan, so set the scan bit in the 1175 // first word. 1176 hb |= bitScan << (2 * heapBitsShift) 1177 b >>= 2 1178 nb -= 2 1179 // Note: no bitScan for second word because that's 1180 // the checkmark. 1181 *hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift)) 1182 *hbitp |= uint8(hb) 1183 hbitp = subtract1(hbitp) 1184 if w += 2; w >= nw { 1185 // We know that there is more data, because we handled 2-word objects above. 1186 // This must be at least a 6-word object. If we're out of pointer words, 1187 // mark no scan in next bitmap byte and finish. 1188 hb = 0 1189 w += 4 1190 goto Phase3 1191 } 1192 } 1193 1194 // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. 1195 // The loop computes the bits for that last write but does not execute the write; 1196 // it leaves the bits in hb for processing by phase 3. 1197 // To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to 1198 // use in the first half of the loop right now, and then we only adjust nb explicitly 1199 // if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop. 1200 nb -= 4 1201 for { 1202 // Emit bitmap byte. 1203 // b has at least nb+4 bits, with one exception: 1204 // if w+4 >= nw, then b has only nw-w bits, 1205 // but we'll stop at the break and then truncate 1206 // appropriately in Phase 3. 1207 hb = b & bitPointerAll 1208 hb |= bitScanAll 1209 if w += 4; w >= nw { 1210 break 1211 } 1212 *hbitp = uint8(hb) 1213 hbitp = subtract1(hbitp) 1214 b >>= 4 1215 1216 // Load more bits. b has nb right now. 1217 if p != endp { 1218 // Fast path: keep reading from ptrmask. 1219 // nb unmodified: we just loaded 8 bits, 1220 // and the next iteration will consume 8 bits, 1221 // leaving us with the same nb the next time we're here. 1222 if nb < 8 { 1223 b |= uintptr(*p) << nb 1224 p = add1(p) 1225 } else { 1226 // Reduce the number of bits in b. 1227 // This is important if we skipped 1228 // over a scalar tail, since nb could 1229 // be larger than the bit width of b. 1230 nb -= 8 1231 } 1232 } else if p == nil { 1233 // Almost as fast path: track bit count and refill from pbits. 1234 // For short repetitions. 1235 if nb < 8 { 1236 b |= pbits << nb 1237 nb += endnb 1238 } 1239 nb -= 8 // for next iteration 1240 } else { 1241 // Slow path: reached end of ptrmask. 1242 // Process final partial byte and rewind to start. 1243 b |= uintptr(*p) << nb 1244 nb += endnb 1245 if nb < 8 { 1246 b |= uintptr(*ptrmask) << nb 1247 p = add1(ptrmask) 1248 } else { 1249 nb -= 8 1250 p = ptrmask 1251 } 1252 } 1253 1254 // Emit bitmap byte. 1255 hb = b & bitPointerAll 1256 hb |= bitScanAll 1257 if w += 4; w >= nw { 1258 break 1259 } 1260 *hbitp = uint8(hb) 1261 hbitp = subtract1(hbitp) 1262 b >>= 4 1263 } 1264 1265 Phase3: 1266 // Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries. 1267 if w > nw { 1268 // Counting the 4 entries in hb not yet written to memory, 1269 // there are more entries than possible pointer slots. 1270 // Discard the excess entries (can't be more than 3). 1271 mask := uintptr(1)<<(4-(w-nw)) - 1 1272 hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits 1273 } 1274 1275 // Change nw from counting possibly-pointer words to total words in allocation. 1276 nw = size / sys.PtrSize 1277 1278 // Write whole bitmap bytes. 1279 // The first is hb, the rest are zero. 1280 if w <= nw { 1281 *hbitp = uint8(hb) 1282 hbitp = subtract1(hbitp) 1283 hb = 0 // for possible final half-byte below 1284 for w += 4; w <= nw; w += 4 { 1285 *hbitp = 0 1286 hbitp = subtract1(hbitp) 1287 } 1288 } 1289 1290 // Write final partial bitmap byte if any. 1291 // We know w > nw, or else we'd still be in the loop above. 1292 // It can be bigger only due to the 4 entries in hb that it counts. 1293 // If w == nw+4 then there's nothing left to do: we wrote all nw entries 1294 // and can discard the 4 sitting in hb. 1295 // But if w == nw+2, we need to write first two in hb. 1296 // The byte is shared with the next object, so be careful with 1297 // existing bits. 1298 if w == nw+2 { 1299 *hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb) 1300 } 1301 1302 Phase4: 1303 // Phase 4: all done, but perhaps double check. 1304 if doubleCheck { 1305 end := heapBitsForAddr(x + size) 1306 if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) { 1307 println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size) 1308 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1309 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1310 h0 := heapBitsForAddr(x) 1311 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1312 print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n") 1313 throw("bad heapBitsSetType") 1314 } 1315 1316 // Double-check that bits to be written were written correctly. 1317 // Does not check that other bits were not written, unfortunately. 1318 h := heapBitsForAddr(x) 1319 nptr := typ.ptrdata / sys.PtrSize 1320 ndata := typ.size / sys.PtrSize 1321 count := dataSize / typ.size 1322 totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize 1323 for i := uintptr(0); i < size/sys.PtrSize; i++ { 1324 j := i % ndata 1325 var have, want uint8 1326 have = (*h.bitp >> h.shift) & (bitPointer | bitScan) 1327 if i >= totalptr { 1328 want = 0 // deadmarker 1329 if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 { 1330 want = bitScan 1331 } 1332 } else { 1333 if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 { 1334 want |= bitPointer 1335 } 1336 if i != 1 { 1337 want |= bitScan 1338 } else { 1339 have &^= bitScan 1340 } 1341 } 1342 if have != want { 1343 println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size) 1344 print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") 1345 print("kindGCProg=", typ.kind&kindGCProg != 0, "\n") 1346 print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") 1347 h0 := heapBitsForAddr(x) 1348 print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") 1349 print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n") 1350 print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") 1351 println("at word", i, "offset", i*sys.PtrSize, "have", have, "want", want) 1352 if typ.kind&kindGCProg != 0 { 1353 println("GC program:") 1354 dumpGCProg(addb(typ.gcdata, 4)) 1355 } 1356 throw("bad heapBitsSetType") 1357 } 1358 h = h.next() 1359 } 1360 if ptrmask == debugPtrmask.data { 1361 unlock(&debugPtrmask.lock) 1362 } 1363 } 1364 } 1365 1366 // heapBitsSetTypeNoScan marks x as noscan by setting the first word 1367 // of x in the heap bitmap to scalar/dead. 1368 func heapBitsSetTypeNoScan(x uintptr) { 1369 h := heapBitsForAddr(uintptr(x)) 1370 *h.bitp &^= (bitPointer | bitScan) << h.shift 1371 } 1372 1373 var debugPtrmask struct { 1374 lock mutex 1375 data *byte 1376 } 1377 1378 // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program. 1379 // progSize is the size of the memory described by the program. 1380 // elemSize is the size of the element that the GC program describes (a prefix of). 1381 // dataSize is the total size of the intended data, a multiple of elemSize. 1382 // allocSize is the total size of the allocated memory. 1383 // 1384 // GC programs are only used for large allocations. 1385 // heapBitsSetType requires that allocSize is a multiple of 4 words, 1386 // so that the relevant bitmap bytes are not shared with surrounding 1387 // objects. 1388 func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) { 1389 if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 { 1390 // Alignment will be wrong. 1391 throw("heapBitsSetTypeGCProg: small allocation") 1392 } 1393 var totalBits uintptr 1394 if elemSize == dataSize { 1395 totalBits = runGCProg(prog, nil, h.bitp, 2) 1396 if totalBits*sys.PtrSize != progSize { 1397 println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize) 1398 throw("heapBitsSetTypeGCProg: unexpected bit count") 1399 } 1400 } else { 1401 count := dataSize / elemSize 1402 1403 // Piece together program trailer to run after prog that does: 1404 // literal(0) 1405 // repeat(1, elemSize-progSize-1) // zeros to fill element size 1406 // repeat(elemSize, count-1) // repeat that element for count 1407 // This zero-pads the data remaining in the first element and then 1408 // repeats that first element to fill the array. 1409 var trailer [40]byte // 3 varints (max 10 each) + some bytes 1410 i := 0 1411 if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 { 1412 // literal(0) 1413 trailer[i] = 0x01 1414 i++ 1415 trailer[i] = 0 1416 i++ 1417 if n > 1 { 1418 // repeat(1, n-1) 1419 trailer[i] = 0x81 1420 i++ 1421 n-- 1422 for ; n >= 0x80; n >>= 7 { 1423 trailer[i] = byte(n | 0x80) 1424 i++ 1425 } 1426 trailer[i] = byte(n) 1427 i++ 1428 } 1429 } 1430 // repeat(elemSize/ptrSize, count-1) 1431 trailer[i] = 0x80 1432 i++ 1433 n := elemSize / sys.PtrSize 1434 for ; n >= 0x80; n >>= 7 { 1435 trailer[i] = byte(n | 0x80) 1436 i++ 1437 } 1438 trailer[i] = byte(n) 1439 i++ 1440 n = count - 1 1441 for ; n >= 0x80; n >>= 7 { 1442 trailer[i] = byte(n | 0x80) 1443 i++ 1444 } 1445 trailer[i] = byte(n) 1446 i++ 1447 trailer[i] = 0 1448 i++ 1449 1450 runGCProg(prog, &trailer[0], h.bitp, 2) 1451 1452 // Even though we filled in the full array just now, 1453 // record that we only filled in up to the ptrdata of the 1454 // last element. This will cause the code below to 1455 // memclr the dead section of the final array element, 1456 // so that scanobject can stop early in the final element. 1457 totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize 1458 } 1459 endProg := unsafe.Pointer(subtractb(h.bitp, (totalBits+3)/4)) 1460 endAlloc := unsafe.Pointer(subtractb(h.bitp, allocSize/heapBitmapScale)) 1461 memclrNoHeapPointers(add(endAlloc, 1), uintptr(endProg)-uintptr(endAlloc)) 1462 } 1463 1464 // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. 1465 // size the size of the region described by prog, in bytes. 1466 // The resulting bitvector will have no more than size/sys.PtrSize bits. 1467 func progToPointerMask(prog *byte, size uintptr) bitvector { 1468 n := (size/sys.PtrSize + 7) / 8 1469 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] 1470 x[len(x)-1] = 0xa1 // overflow check sentinel 1471 n = runGCProg(prog, nil, &x[0], 1) 1472 if x[len(x)-1] != 0xa1 { 1473 throw("progToPointerMask: overflow") 1474 } 1475 return bitvector{int32(n), &x[0]} 1476 } 1477 1478 // Packed GC pointer bitmaps, aka GC programs. 1479 // 1480 // For large types containing arrays, the type information has a 1481 // natural repetition that can be encoded to save space in the 1482 // binary and in the memory representation of the type information. 1483 // 1484 // The encoding is a simple Lempel-Ziv style bytecode machine 1485 // with the following instructions: 1486 // 1487 // 00000000: stop 1488 // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes 1489 // 10000000 n c: repeat the previous n bits c times; n, c are varints 1490 // 1nnnnnnn c: repeat the previous n bits c times; c is a varint 1491 1492 // runGCProg executes the GC program prog, and then trailer if non-nil, 1493 // writing to dst with entries of the given size. 1494 // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst. 1495 // If size == 2, dst is the 2-bit heap bitmap, and writes move backward 1496 // starting at dst (because the heap bitmap does). In this case, the caller guarantees 1497 // that only whole bytes in dst need to be written. 1498 // 1499 // runGCProg returns the number of 1- or 2-bit entries written to memory. 1500 func runGCProg(prog, trailer, dst *byte, size int) uintptr { 1501 dstStart := dst 1502 1503 // Bits waiting to be written to memory. 1504 var bits uintptr 1505 var nbits uintptr 1506 1507 p := prog 1508 Run: 1509 for { 1510 // Flush accumulated full bytes. 1511 // The rest of the loop assumes that nbits <= 7. 1512 for ; nbits >= 8; nbits -= 8 { 1513 if size == 1 { 1514 *dst = uint8(bits) 1515 dst = add1(dst) 1516 bits >>= 8 1517 } else { 1518 v := bits&bitPointerAll | bitScanAll 1519 *dst = uint8(v) 1520 dst = subtract1(dst) 1521 bits >>= 4 1522 v = bits&bitPointerAll | bitScanAll 1523 *dst = uint8(v) 1524 dst = subtract1(dst) 1525 bits >>= 4 1526 } 1527 } 1528 1529 // Process one instruction. 1530 inst := uintptr(*p) 1531 p = add1(p) 1532 n := inst & 0x7F 1533 if inst&0x80 == 0 { 1534 // Literal bits; n == 0 means end of program. 1535 if n == 0 { 1536 // Program is over; continue in trailer if present. 1537 if trailer != nil { 1538 //println("trailer") 1539 p = trailer 1540 trailer = nil 1541 continue 1542 } 1543 //println("done") 1544 break Run 1545 } 1546 //println("lit", n, dst) 1547 nbyte := n / 8 1548 for i := uintptr(0); i < nbyte; i++ { 1549 bits |= uintptr(*p) << nbits 1550 p = add1(p) 1551 if size == 1 { 1552 *dst = uint8(bits) 1553 dst = add1(dst) 1554 bits >>= 8 1555 } else { 1556 v := bits&0xf | bitScanAll 1557 *dst = uint8(v) 1558 dst = subtract1(dst) 1559 bits >>= 4 1560 v = bits&0xf | bitScanAll 1561 *dst = uint8(v) 1562 dst = subtract1(dst) 1563 bits >>= 4 1564 } 1565 } 1566 if n %= 8; n > 0 { 1567 bits |= uintptr(*p) << nbits 1568 p = add1(p) 1569 nbits += n 1570 } 1571 continue Run 1572 } 1573 1574 // Repeat. If n == 0, it is encoded in a varint in the next bytes. 1575 if n == 0 { 1576 for off := uint(0); ; off += 7 { 1577 x := uintptr(*p) 1578 p = add1(p) 1579 n |= (x & 0x7F) << off 1580 if x&0x80 == 0 { 1581 break 1582 } 1583 } 1584 } 1585 1586 // Count is encoded in a varint in the next bytes. 1587 c := uintptr(0) 1588 for off := uint(0); ; off += 7 { 1589 x := uintptr(*p) 1590 p = add1(p) 1591 c |= (x & 0x7F) << off 1592 if x&0x80 == 0 { 1593 break 1594 } 1595 } 1596 c *= n // now total number of bits to copy 1597 1598 // If the number of bits being repeated is small, load them 1599 // into a register and use that register for the entire loop 1600 // instead of repeatedly reading from memory. 1601 // Handling fewer than 8 bits here makes the general loop simpler. 1602 // The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add 1603 // the pattern to a bit buffer holding at most 7 bits (a partial byte) 1604 // it will not overflow. 1605 src := dst 1606 const maxBits = sys.PtrSize*8 - 7 1607 if n <= maxBits { 1608 // Start with bits in output buffer. 1609 pattern := bits 1610 npattern := nbits 1611 1612 // If we need more bits, fetch them from memory. 1613 if size == 1 { 1614 src = subtract1(src) 1615 for npattern < n { 1616 pattern <<= 8 1617 pattern |= uintptr(*src) 1618 src = subtract1(src) 1619 npattern += 8 1620 } 1621 } else { 1622 src = add1(src) 1623 for npattern < n { 1624 pattern <<= 4 1625 pattern |= uintptr(*src) & 0xf 1626 src = add1(src) 1627 npattern += 4 1628 } 1629 } 1630 1631 // We started with the whole bit output buffer, 1632 // and then we loaded bits from whole bytes. 1633 // Either way, we might now have too many instead of too few. 1634 // Discard the extra. 1635 if npattern > n { 1636 pattern >>= npattern - n 1637 npattern = n 1638 } 1639 1640 // Replicate pattern to at most maxBits. 1641 if npattern == 1 { 1642 // One bit being repeated. 1643 // If the bit is 1, make the pattern all 1s. 1644 // If the bit is 0, the pattern is already all 0s, 1645 // but we can claim that the number of bits 1646 // in the word is equal to the number we need (c), 1647 // because right shift of bits will zero fill. 1648 if pattern == 1 { 1649 pattern = 1<<maxBits - 1 1650 npattern = maxBits 1651 } else { 1652 npattern = c 1653 } 1654 } else { 1655 b := pattern 1656 nb := npattern 1657 if nb+nb <= maxBits { 1658 // Double pattern until the whole uintptr is filled. 1659 for nb <= sys.PtrSize*8 { 1660 b |= b << nb 1661 nb += nb 1662 } 1663 // Trim away incomplete copy of original pattern in high bits. 1664 // TODO(rsc): Replace with table lookup or loop on systems without divide? 1665 nb = maxBits / npattern * npattern 1666 b &= 1<<nb - 1 1667 pattern = b 1668 npattern = nb 1669 } 1670 } 1671 1672 // Add pattern to bit buffer and flush bit buffer, c/npattern times. 1673 // Since pattern contains >8 bits, there will be full bytes to flush 1674 // on each iteration. 1675 for ; c >= npattern; c -= npattern { 1676 bits |= pattern << nbits 1677 nbits += npattern 1678 if size == 1 { 1679 for nbits >= 8 { 1680 *dst = uint8(bits) 1681 dst = add1(dst) 1682 bits >>= 8 1683 nbits -= 8 1684 } 1685 } else { 1686 for nbits >= 4 { 1687 *dst = uint8(bits&0xf | bitScanAll) 1688 dst = subtract1(dst) 1689 bits >>= 4 1690 nbits -= 4 1691 } 1692 } 1693 } 1694 1695 // Add final fragment to bit buffer. 1696 if c > 0 { 1697 pattern &= 1<<c - 1 1698 bits |= pattern << nbits 1699 nbits += c 1700 } 1701 continue Run 1702 } 1703 1704 // Repeat; n too large to fit in a register. 1705 // Since nbits <= 7, we know the first few bytes of repeated data 1706 // are already written to memory. 1707 off := n - nbits // n > nbits because n > maxBits and nbits <= 7 1708 if size == 1 { 1709 // Leading src fragment. 1710 src = subtractb(src, (off+7)/8) 1711 if frag := off & 7; frag != 0 { 1712 bits |= uintptr(*src) >> (8 - frag) << nbits 1713 src = add1(src) 1714 nbits += frag 1715 c -= frag 1716 } 1717 // Main loop: load one byte, write another. 1718 // The bits are rotating through the bit buffer. 1719 for i := c / 8; i > 0; i-- { 1720 bits |= uintptr(*src) << nbits 1721 src = add1(src) 1722 *dst = uint8(bits) 1723 dst = add1(dst) 1724 bits >>= 8 1725 } 1726 // Final src fragment. 1727 if c %= 8; c > 0 { 1728 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1729 nbits += c 1730 } 1731 } else { 1732 // Leading src fragment. 1733 src = addb(src, (off+3)/4) 1734 if frag := off & 3; frag != 0 { 1735 bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits 1736 src = subtract1(src) 1737 nbits += frag 1738 c -= frag 1739 } 1740 // Main loop: load one byte, write another. 1741 // The bits are rotating through the bit buffer. 1742 for i := c / 4; i > 0; i-- { 1743 bits |= (uintptr(*src) & 0xf) << nbits 1744 src = subtract1(src) 1745 *dst = uint8(bits&0xf | bitScanAll) 1746 dst = subtract1(dst) 1747 bits >>= 4 1748 } 1749 // Final src fragment. 1750 if c %= 4; c > 0 { 1751 bits |= (uintptr(*src) & (1<<c - 1)) << nbits 1752 nbits += c 1753 } 1754 } 1755 } 1756 1757 // Write any final bits out, using full-byte writes, even for the final byte. 1758 var totalBits uintptr 1759 if size == 1 { 1760 totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits 1761 nbits += -nbits & 7 1762 for ; nbits > 0; nbits -= 8 { 1763 *dst = uint8(bits) 1764 dst = add1(dst) 1765 bits >>= 8 1766 } 1767 } else { 1768 totalBits = (uintptr(unsafe.Pointer(dstStart))-uintptr(unsafe.Pointer(dst)))*4 + nbits 1769 nbits += -nbits & 3 1770 for ; nbits > 0; nbits -= 4 { 1771 v := bits&0xf | bitScanAll 1772 *dst = uint8(v) 1773 dst = subtract1(dst) 1774 bits >>= 4 1775 } 1776 } 1777 return totalBits 1778 } 1779 1780 func dumpGCProg(p *byte) { 1781 nptr := 0 1782 for { 1783 x := *p 1784 p = add1(p) 1785 if x == 0 { 1786 print("\t", nptr, " end\n") 1787 break 1788 } 1789 if x&0x80 == 0 { 1790 print("\t", nptr, " lit ", x, ":") 1791 n := int(x+7) / 8 1792 for i := 0; i < n; i++ { 1793 print(" ", hex(*p)) 1794 p = add1(p) 1795 } 1796 print("\n") 1797 nptr += int(x) 1798 } else { 1799 nbit := int(x &^ 0x80) 1800 if nbit == 0 { 1801 for nb := uint(0); ; nb += 7 { 1802 x := *p 1803 p = add1(p) 1804 nbit |= int(x&0x7f) << nb 1805 if x&0x80 == 0 { 1806 break 1807 } 1808 } 1809 } 1810 count := 0 1811 for nb := uint(0); ; nb += 7 { 1812 x := *p 1813 p = add1(p) 1814 count |= int(x&0x7f) << nb 1815 if x&0x80 == 0 { 1816 break 1817 } 1818 } 1819 print("\t", nptr, " repeat ", nbit, " × ", count, "\n") 1820 nptr += nbit * count 1821 } 1822 } 1823 } 1824 1825 // Testing. 1826 1827 func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { 1828 target := (*stkframe)(ctxt) 1829 if frame.sp <= target.sp && target.sp < frame.varp { 1830 *target = *frame 1831 return false 1832 } 1833 return true 1834 } 1835 1836 // gcbits returns the GC type info for x, for testing. 1837 // The result is the bitmap entries (0 or 1), one entry per byte. 1838 //go:linkname reflect_gcbits reflect.gcbits 1839 func reflect_gcbits(x interface{}) []byte { 1840 ret := getgcmask(x) 1841 typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem 1842 nptr := typ.ptrdata / sys.PtrSize 1843 for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 { 1844 ret = ret[:len(ret)-1] 1845 } 1846 return ret 1847 } 1848 1849 // Returns GC type info for object p for testing. 1850 func getgcmask(ep interface{}) (mask []byte) { 1851 e := *efaceOf(&ep) 1852 p := e.data 1853 t := e._type 1854 // data or bss 1855 for _, datap := range activeModules() { 1856 // data 1857 if datap.data <= uintptr(p) && uintptr(p) < datap.edata { 1858 bitmap := datap.gcdatamask.bytedata 1859 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1860 mask = make([]byte, n/sys.PtrSize) 1861 for i := uintptr(0); i < n; i += sys.PtrSize { 1862 off := (uintptr(p) + i - datap.data) / sys.PtrSize 1863 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1864 } 1865 return 1866 } 1867 1868 // bss 1869 if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { 1870 bitmap := datap.gcbssmask.bytedata 1871 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1872 mask = make([]byte, n/sys.PtrSize) 1873 for i := uintptr(0); i < n; i += sys.PtrSize { 1874 off := (uintptr(p) + i - datap.bss) / sys.PtrSize 1875 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1876 } 1877 return 1878 } 1879 } 1880 1881 // heap 1882 var n uintptr 1883 var base uintptr 1884 if mlookup(uintptr(p), &base, &n, nil) != 0 { 1885 mask = make([]byte, n/sys.PtrSize) 1886 for i := uintptr(0); i < n; i += sys.PtrSize { 1887 hbits := heapBitsForAddr(base + i) 1888 if hbits.isPointer() { 1889 mask[i/sys.PtrSize] = 1 1890 } 1891 if i != 1*sys.PtrSize && !hbits.morePointers() { 1892 mask = mask[:i/sys.PtrSize] 1893 break 1894 } 1895 } 1896 return 1897 } 1898 1899 // stack 1900 if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi { 1901 var frame stkframe 1902 frame.sp = uintptr(p) 1903 _g_ := getg() 1904 gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) 1905 if frame.fn != nil { 1906 f := frame.fn 1907 targetpc := frame.continpc 1908 if targetpc == 0 { 1909 return 1910 } 1911 if targetpc != f.entry { 1912 targetpc-- 1913 } 1914 pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, nil) 1915 if pcdata == -1 { 1916 return 1917 } 1918 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) 1919 if stkmap == nil || stkmap.n <= 0 { 1920 return 1921 } 1922 bv := stackmapdata(stkmap, pcdata) 1923 size := uintptr(bv.n) * sys.PtrSize 1924 n := (*ptrtype)(unsafe.Pointer(t)).elem.size 1925 mask = make([]byte, n/sys.PtrSize) 1926 for i := uintptr(0); i < n; i += sys.PtrSize { 1927 bitmap := bv.bytedata 1928 off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize 1929 mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 1930 } 1931 } 1932 return 1933 } 1934 1935 // otherwise, not something the GC knows about. 1936 // possibly read-only data, like malloc(0). 1937 // must not have pointers 1938 return 1939 }