github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/runtime/mgc.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup. 6 // It has gotten completely out of control. 7 8 // Garbage collector (GC). 9 // 10 // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple 11 // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is 12 // non-generational and non-compacting. Allocation is done using size segregated per P allocation 13 // areas to minimize fragmentation while eliminating locks in the common case. 14 // 15 // The algorithm decomposes into several steps. 16 // This is a high level description of the algorithm being used. For an overview of GC a good 17 // place to start is Richard Jones' gchandbook.org. 18 // 19 // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see 20 // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978. 21 // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978), 22 // 966-975. 23 // For journal quality proofs that these steps are complete, correct, and terminate see 24 // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world. 25 // Concurrency and Computation: Practice and Experience 15(3-5), 2003. 26 // 27 // TODO(austin): The rest of this comment is woefully out of date and 28 // needs to be rewritten. There is no distinct scan phase any more and 29 // we allocate black during GC. 30 // 31 // 0. Set phase = GCscan from GCoff. 32 // 1. Wait for all P's to acknowledge phase change. 33 // At this point all goroutines have passed through a GC safepoint and 34 // know we are in the GCscan phase. 35 // 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers 36 // (marking avoids most duplicate enqueuing but races may produce benign duplication). 37 // Preempted goroutines are scanned before P schedules next goroutine. 38 // 3. Set phase = GCmark. 39 // 4. Wait for all P's to acknowledge phase change. 40 // 5. Now write barrier marks and enqueues black, grey, or white to white pointers. 41 // Malloc still allocates white (non-marked) objects. 42 // 6. Meanwhile GC transitively walks the heap marking reachable objects. 43 // 7. When GC finishes marking heap, it preempts P's one-by-one and 44 // retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine 45 // currently scheduled on the P). 46 // 8. Once the GC has exhausted all available marking work it sets phase = marktermination. 47 // 9. Wait for all P's to acknowledge phase change. 48 // 10. Malloc now allocates black objects, so number of unmarked reachable objects 49 // monotonically decreases. 50 // 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet 51 // reachable objects. 52 // 12. When GC completes a full cycle over P's and discovers no new grey 53 // objects, (which means all reachable objects are marked) set phase = GCoff. 54 // 13. Wait for all P's to acknowledge phase change. 55 // 14. Now malloc allocates white (but sweeps spans before use). 56 // Write barrier becomes nop. 57 // 15. GC does background sweeping, see description below. 58 // 16. When sufficient allocation has taken place replay the sequence starting at 0 above, 59 // see discussion of GC rate below. 60 61 // Changing phases. 62 // Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase. 63 // All phase action must be benign in the presence of a change. 64 // Starting with GCoff 65 // GCoff to GCscan 66 // GSscan scans stacks and globals greying them and never marks an object black. 67 // Once all the P's are aware of the new phase they will scan gs on preemption. 68 // This means that the scanning of preempted gs can't start until all the Ps 69 // have acknowledged. 70 // When a stack is scanned, this phase also installs stack barriers to 71 // track how much of the stack has been active. 72 // This transition enables write barriers because stack barriers 73 // assume that writes to higher frames will be tracked by write 74 // barriers. Technically this only needs write barriers for writes 75 // to stack slots, but we enable write barriers in general. 76 // GCscan to GCmark 77 // In GCmark, work buffers are drained until there are no more 78 // pointers to scan. 79 // No scanning of objects (making them black) can happen until all 80 // Ps have enabled the write barrier, but that already happened in 81 // the transition to GCscan. 82 // GCmark to GCmarktermination 83 // The only change here is that we start allocating black so the Ps must acknowledge 84 // the change before we begin the termination algorithm 85 // GCmarktermination to GSsweep 86 // Object currently on the freelist must be marked black for this to work. 87 // Are things on the free lists black or white? How does the sweep phase work? 88 89 // Concurrent sweep. 90 // 91 // The sweep phase proceeds concurrently with normal program execution. 92 // The heap is swept span-by-span both lazily (when a goroutine needs another span) 93 // and concurrently in a background goroutine (this helps programs that are not CPU bound). 94 // At the end of STW mark termination all spans are marked as "needs sweeping". 95 // 96 // The background sweeper goroutine simply sweeps spans one-by-one. 97 // 98 // To avoid requesting more OS memory while there are unswept spans, when a 99 // goroutine needs another span, it first attempts to reclaim that much memory 100 // by sweeping. When a goroutine needs to allocate a new small-object span, it 101 // sweeps small-object spans for the same object size until it frees at least 102 // one object. When a goroutine needs to allocate large-object span from heap, 103 // it sweeps spans until it frees at least that many pages into heap. There is 104 // one case where this may not suffice: if a goroutine sweeps and frees two 105 // nonadjacent one-page spans to the heap, it will allocate a new two-page 106 // span, but there can still be other one-page unswept spans which could be 107 // combined into a two-page span. 108 // 109 // It's critical to ensure that no operations proceed on unswept spans (that would corrupt 110 // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, 111 // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. 112 // When a goroutine explicitly frees an object or sets a finalizer, it ensures that 113 // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). 114 // The finalizer goroutine is kicked off only when all spans are swept. 115 // When the next GC starts, it sweeps all not-yet-swept spans (if any). 116 117 // GC rate. 118 // Next GC is after we've allocated an extra amount of memory proportional to 119 // the amount already in use. The proportion is controlled by GOGC environment variable 120 // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M 121 // (this mark is tracked in next_gc variable). This keeps the GC cost in linear 122 // proportion to the allocation cost. Adjusting GOGC just changes the linear constant 123 // (and also the amount of extra memory used). 124 125 // Oblets 126 // 127 // In order to prevent long pauses while scanning large objects and to 128 // improve parallelism, the garbage collector breaks up scan jobs for 129 // objects larger than maxObletBytes into "oblets" of at most 130 // maxObletBytes. When scanning encounters the beginning of a large 131 // object, it scans only the first oblet and enqueues the remaining 132 // oblets as new scan jobs. 133 134 package runtime 135 136 import ( 137 "runtime/internal/atomic" 138 "runtime/internal/sys" 139 "unsafe" 140 ) 141 142 const ( 143 _DebugGC = 0 144 _ConcurrentSweep = true 145 _FinBlockSize = 4 * 1024 146 147 // sweepMinHeapDistance is a lower bound on the heap distance 148 // (in bytes) reserved for concurrent sweeping between GC 149 // cycles. This will be scaled by gcpercent/100. 150 sweepMinHeapDistance = 1024 * 1024 151 ) 152 153 // heapminimum is the minimum heap size at which to trigger GC. 154 // For small heaps, this overrides the usual GOGC*live set rule. 155 // 156 // When there is a very small live set but a lot of allocation, simply 157 // collecting when the heap reaches GOGC*live results in many GC 158 // cycles and high total per-GC overhead. This minimum amortizes this 159 // per-GC overhead while keeping the heap reasonably small. 160 // 161 // During initialization this is set to 4MB*GOGC/100. In the case of 162 // GOGC==0, this will set heapminimum to 0, resulting in constant 163 // collection even when the heap size is small, which is useful for 164 // debugging. 165 var heapminimum uint64 = defaultHeapMinimum 166 167 // defaultHeapMinimum is the value of heapminimum for GOGC==100. 168 const defaultHeapMinimum = 4 << 20 169 170 // Initialized from $GOGC. GOGC=off means no GC. 171 var gcpercent int32 172 173 func gcinit() { 174 if unsafe.Sizeof(workbuf{}) != _WorkbufSize { 175 throw("size of Workbuf is suboptimal") 176 } 177 178 _ = setGCPercent(readgogc()) 179 memstats.gc_trigger = heapminimum 180 // Compute the goal heap size based on the trigger: 181 // trigger = marked * (1 + triggerRatio) 182 // marked = trigger / (1 + triggerRatio) 183 // goal = marked * (1 + GOGC/100) 184 // = trigger / (1 + triggerRatio) * (1 + GOGC/100) 185 memstats.next_gc = uint64(float64(memstats.gc_trigger) / (1 + gcController.triggerRatio) * (1 + float64(gcpercent)/100)) 186 if gcpercent < 0 { 187 memstats.next_gc = ^uint64(0) 188 } 189 work.startSema = 1 190 work.markDoneSema = 1 191 } 192 193 func readgogc() int32 { 194 p := gogetenv("GOGC") 195 if p == "off" { 196 return -1 197 } 198 if n, ok := atoi32(p); ok { 199 return n 200 } 201 return 100 202 } 203 204 // gcenable is called after the bulk of the runtime initialization, 205 // just before we're about to start letting user code run. 206 // It kicks off the background sweeper goroutine and enables GC. 207 func gcenable() { 208 c := make(chan int, 1) 209 go bgsweep(c) 210 <-c 211 memstats.enablegc = true // now that runtime is initialized, GC is okay 212 } 213 214 //go:linkname setGCPercent runtime/debug.setGCPercent 215 func setGCPercent(in int32) (out int32) { 216 lock(&mheap_.lock) 217 out = gcpercent 218 if in < 0 { 219 in = -1 220 } 221 gcpercent = in 222 heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100 223 if gcController.triggerRatio > float64(gcpercent)/100 { 224 gcController.triggerRatio = float64(gcpercent) / 100 225 } 226 // This is either in gcinit or followed by a STW GC, both of 227 // which will reset other stats like memstats.gc_trigger and 228 // memstats.next_gc to appropriate values. 229 unlock(&mheap_.lock) 230 return out 231 } 232 233 // Garbage collector phase. 234 // Indicates to write barrier and synchronization task to perform. 235 var gcphase uint32 236 237 // The compiler knows about this variable. 238 // If you change it, you must change the compiler too. 239 var writeBarrier struct { 240 enabled bool // compiler emits a check of this before calling write barrier 241 pad [3]byte // compiler uses 32-bit load for "enabled" field 242 needed bool // whether we need a write barrier for current GC phase 243 cgo bool // whether we need a write barrier for a cgo check 244 alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load 245 } 246 247 // gcBlackenEnabled is 1 if mutator assists and background mark 248 // workers are allowed to blacken objects. This must only be set when 249 // gcphase == _GCmark. 250 var gcBlackenEnabled uint32 251 252 // gcBlackenPromptly indicates that optimizations that may 253 // hide work from the global work queue should be disabled. 254 // 255 // If gcBlackenPromptly is true, per-P gcWork caches should 256 // be flushed immediately and new objects should be allocated black. 257 // 258 // There is a tension between allocating objects white and 259 // allocating them black. If white and the objects die before being 260 // marked they can be collected during this GC cycle. On the other 261 // hand allocating them black will reduce _GCmarktermination latency 262 // since more work is done in the mark phase. This tension is resolved 263 // by allocating white until the mark phase is approaching its end and 264 // then allocating black for the remainder of the mark phase. 265 var gcBlackenPromptly bool 266 267 const ( 268 _GCoff = iota // GC not running; sweeping in background, write barrier disabled 269 _GCmark // GC marking roots and workbufs: allocate black, write barrier ENABLED 270 _GCmarktermination // GC mark termination: allocate black, P's help GC, write barrier ENABLED 271 ) 272 273 //go:nosplit 274 func setGCPhase(x uint32) { 275 atomic.Store(&gcphase, x) 276 writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination 277 writeBarrier.enabled = writeBarrier.needed || writeBarrier.cgo 278 } 279 280 // gcMarkWorkerMode represents the mode that a concurrent mark worker 281 // should operate in. 282 // 283 // Concurrent marking happens through four different mechanisms. One 284 // is mutator assists, which happen in response to allocations and are 285 // not scheduled. The other three are variations in the per-P mark 286 // workers and are distinguished by gcMarkWorkerMode. 287 type gcMarkWorkerMode int 288 289 const ( 290 // gcMarkWorkerDedicatedMode indicates that the P of a mark 291 // worker is dedicated to running that mark worker. The mark 292 // worker should run without preemption. 293 gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota 294 295 // gcMarkWorkerFractionalMode indicates that a P is currently 296 // running the "fractional" mark worker. The fractional worker 297 // is necessary when GOMAXPROCS*gcGoalUtilization is not an 298 // integer. The fractional worker should run until it is 299 // preempted and will be scheduled to pick up the fractional 300 // part of GOMAXPROCS*gcGoalUtilization. 301 gcMarkWorkerFractionalMode 302 303 // gcMarkWorkerIdleMode indicates that a P is running the mark 304 // worker because it has nothing else to do. The idle worker 305 // should run until it is preempted and account its time 306 // against gcController.idleMarkTime. 307 gcMarkWorkerIdleMode 308 ) 309 310 // gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes 311 // to use in execution traces. 312 var gcMarkWorkerModeStrings = [...]string{ 313 "GC (dedicated)", 314 "GC (fractional)", 315 "GC (idle)", 316 } 317 318 // gcController implements the GC pacing controller that determines 319 // when to trigger concurrent garbage collection and how much marking 320 // work to do in mutator assists and background marking. 321 // 322 // It uses a feedback control algorithm to adjust the memstats.gc_trigger 323 // trigger based on the heap growth and GC CPU utilization each cycle. 324 // This algorithm optimizes for heap growth to match GOGC and for CPU 325 // utilization between assist and background marking to be 25% of 326 // GOMAXPROCS. The high-level design of this algorithm is documented 327 // at https://golang.org/s/go15gcpacing. 328 var gcController = gcControllerState{ 329 // Initial trigger ratio guess. 330 triggerRatio: 7 / 8.0, 331 } 332 333 type gcControllerState struct { 334 // scanWork is the total scan work performed this cycle. This 335 // is updated atomically during the cycle. Updates occur in 336 // bounded batches, since it is both written and read 337 // throughout the cycle. At the end of the cycle, this is how 338 // much of the retained heap is scannable. 339 // 340 // Currently this is the bytes of heap scanned. For most uses, 341 // this is an opaque unit of work, but for estimation the 342 // definition is important. 343 scanWork int64 344 345 // bgScanCredit is the scan work credit accumulated by the 346 // concurrent background scan. This credit is accumulated by 347 // the background scan and stolen by mutator assists. This is 348 // updated atomically. Updates occur in bounded batches, since 349 // it is both written and read throughout the cycle. 350 bgScanCredit int64 351 352 // assistTime is the nanoseconds spent in mutator assists 353 // during this cycle. This is updated atomically. Updates 354 // occur in bounded batches, since it is both written and read 355 // throughout the cycle. 356 assistTime int64 357 358 // dedicatedMarkTime is the nanoseconds spent in dedicated 359 // mark workers during this cycle. This is updated atomically 360 // at the end of the concurrent mark phase. 361 dedicatedMarkTime int64 362 363 // fractionalMarkTime is the nanoseconds spent in the 364 // fractional mark worker during this cycle. This is updated 365 // atomically throughout the cycle and will be up-to-date if 366 // the fractional mark worker is not currently running. 367 fractionalMarkTime int64 368 369 // idleMarkTime is the nanoseconds spent in idle marking 370 // during this cycle. This is updated atomically throughout 371 // the cycle. 372 idleMarkTime int64 373 374 // markStartTime is the absolute start time in nanoseconds 375 // that assists and background mark workers started. 376 markStartTime int64 377 378 // dedicatedMarkWorkersNeeded is the number of dedicated mark 379 // workers that need to be started. This is computed at the 380 // beginning of each cycle and decremented atomically as 381 // dedicated mark workers get started. 382 dedicatedMarkWorkersNeeded int64 383 384 // assistWorkPerByte is the ratio of scan work to allocated 385 // bytes that should be performed by mutator assists. This is 386 // computed at the beginning of each cycle and updated every 387 // time heap_scan is updated. 388 assistWorkPerByte float64 389 390 // assistBytesPerWork is 1/assistWorkPerByte. 391 assistBytesPerWork float64 392 393 // fractionalUtilizationGoal is the fraction of wall clock 394 // time that should be spent in the fractional mark worker. 395 // For example, if the overall mark utilization goal is 25% 396 // and GOMAXPROCS is 6, one P will be a dedicated mark worker 397 // and this will be set to 0.5 so that 50% of the time some P 398 // is in a fractional mark worker. This is computed at the 399 // beginning of each cycle. 400 fractionalUtilizationGoal float64 401 402 // triggerRatio is the heap growth ratio at which the garbage 403 // collection cycle should start. E.g., if this is 0.6, then 404 // GC should start when the live heap has reached 1.6 times 405 // the heap size marked by the previous cycle. This should be 406 // ≤ GOGC/100 so the trigger heap size is less than the goal 407 // heap size. This is updated at the end of of each cycle. 408 triggerRatio float64 409 410 _ [sys.CacheLineSize]byte 411 412 // fractionalMarkWorkersNeeded is the number of fractional 413 // mark workers that need to be started. This is either 0 or 414 // 1. This is potentially updated atomically at every 415 // scheduling point (hence it gets its own cache line). 416 fractionalMarkWorkersNeeded int64 417 418 _ [sys.CacheLineSize]byte 419 } 420 421 // startCycle resets the GC controller's state and computes estimates 422 // for a new GC cycle. The caller must hold worldsema. 423 func (c *gcControllerState) startCycle() { 424 c.scanWork = 0 425 c.bgScanCredit = 0 426 c.assistTime = 0 427 c.dedicatedMarkTime = 0 428 c.fractionalMarkTime = 0 429 c.idleMarkTime = 0 430 431 // If this is the first GC cycle or we're operating on a very 432 // small heap, fake heap_marked so it looks like gc_trigger is 433 // the appropriate growth from heap_marked, even though the 434 // real heap_marked may not have a meaningful value (on the 435 // first cycle) or may be much smaller (resulting in a large 436 // error response). 437 if memstats.gc_trigger <= heapminimum { 438 memstats.heap_marked = uint64(float64(memstats.gc_trigger) / (1 + c.triggerRatio)) 439 } 440 441 // Re-compute the heap goal for this cycle in case something 442 // changed. This is the same calculation we use elsewhere. 443 memstats.next_gc = memstats.heap_marked + memstats.heap_marked*uint64(gcpercent)/100 444 if gcpercent < 0 { 445 memstats.next_gc = ^uint64(0) 446 } 447 448 // Ensure that the heap goal is at least a little larger than 449 // the current live heap size. This may not be the case if GC 450 // start is delayed or if the allocation that pushed heap_live 451 // over gc_trigger is large or if the trigger is really close to 452 // GOGC. Assist is proportional to this distance, so enforce a 453 // minimum distance, even if it means going over the GOGC goal 454 // by a tiny bit. 455 if memstats.next_gc < memstats.heap_live+1024*1024 { 456 memstats.next_gc = memstats.heap_live + 1024*1024 457 } 458 459 // Compute the total mark utilization goal and divide it among 460 // dedicated and fractional workers. 461 totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization 462 c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal) 463 c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded) 464 if c.fractionalUtilizationGoal > 0 { 465 c.fractionalMarkWorkersNeeded = 1 466 } else { 467 c.fractionalMarkWorkersNeeded = 0 468 } 469 470 // Clear per-P state 471 for _, p := range &allp { 472 if p == nil { 473 break 474 } 475 p.gcAssistTime = 0 476 } 477 478 // Compute initial values for controls that are updated 479 // throughout the cycle. 480 c.revise() 481 482 if debug.gcpacertrace > 0 { 483 print("pacer: assist ratio=", c.assistWorkPerByte, 484 " (scan ", memstats.heap_scan>>20, " MB in ", 485 work.initialHeapLive>>20, "->", 486 memstats.next_gc>>20, " MB)", 487 " workers=", c.dedicatedMarkWorkersNeeded, 488 "+", c.fractionalMarkWorkersNeeded, "\n") 489 } 490 } 491 492 // revise updates the assist ratio during the GC cycle to account for 493 // improved estimates. This should be called either under STW or 494 // whenever memstats.heap_scan or memstats.heap_live is updated (with 495 // mheap_.lock held). 496 // 497 // It should only be called when gcBlackenEnabled != 0 (because this 498 // is when assists are enabled and the necessary statistics are 499 // available). 500 // 501 // TODO: Consider removing the periodic controller update altogether. 502 // Since we switched to allocating black, in theory we shouldn't have 503 // to change the assist ratio. However, this is still a useful hook 504 // that we've found many uses for when experimenting. 505 func (c *gcControllerState) revise() { 506 // Compute the expected scan work remaining. 507 // 508 // Note that we currently count allocations during GC as both 509 // scannable heap (heap_scan) and scan work completed 510 // (scanWork), so this difference won't be changed by 511 // allocations during GC. 512 // 513 // This particular estimate is a strict upper bound on the 514 // possible remaining scan work for the current heap. 515 // You might consider dividing this by 2 (or by 516 // (100+GOGC)/100) to counter this over-estimation, but 517 // benchmarks show that this has almost no effect on mean 518 // mutator utilization, heap size, or assist time and it 519 // introduces the danger of under-estimating and letting the 520 // mutator outpace the garbage collector. 521 scanWorkExpected := int64(memstats.heap_scan) - c.scanWork 522 if scanWorkExpected < 1000 { 523 // We set a somewhat arbitrary lower bound on 524 // remaining scan work since if we aim a little high, 525 // we can miss by a little. 526 // 527 // We *do* need to enforce that this is at least 1, 528 // since marking is racy and double-scanning objects 529 // may legitimately make the expected scan work 530 // negative. 531 scanWorkExpected = 1000 532 } 533 534 // Compute the heap distance remaining. 535 heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live) 536 if heapDistance <= 0 { 537 // This shouldn't happen, but if it does, avoid 538 // dividing by zero or setting the assist negative. 539 heapDistance = 1 540 } 541 542 // Compute the mutator assist ratio so by the time the mutator 543 // allocates the remaining heap bytes up to next_gc, it will 544 // have done (or stolen) the remaining amount of scan work. 545 c.assistWorkPerByte = float64(scanWorkExpected) / float64(heapDistance) 546 c.assistBytesPerWork = float64(heapDistance) / float64(scanWorkExpected) 547 } 548 549 // endCycle updates the GC controller state at the end of the 550 // concurrent part of the GC cycle. 551 func (c *gcControllerState) endCycle() { 552 h_t := c.triggerRatio // For debugging 553 554 // Proportional response gain for the trigger controller. Must 555 // be in [0, 1]. Lower values smooth out transient effects but 556 // take longer to respond to phase changes. Higher values 557 // react to phase changes quickly, but are more affected by 558 // transient changes. Values near 1 may be unstable. 559 const triggerGain = 0.5 560 561 // Compute next cycle trigger ratio. First, this computes the 562 // "error" for this cycle; that is, how far off the trigger 563 // was from what it should have been, accounting for both heap 564 // growth and GC CPU utilization. We compute the actual heap 565 // growth during this cycle and scale that by how far off from 566 // the goal CPU utilization we were (to estimate the heap 567 // growth if we had the desired CPU utilization). The 568 // difference between this estimate and the GOGC-based goal 569 // heap growth is the error. 570 goalGrowthRatio := float64(gcpercent) / 100 571 actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1 572 assistDuration := nanotime() - c.markStartTime 573 574 // Assume background mark hit its utilization goal. 575 utilization := gcGoalUtilization 576 // Add assist utilization; avoid divide by zero. 577 if assistDuration > 0 { 578 utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs)) 579 } 580 581 triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio) 582 583 // Finally, we adjust the trigger for next time by this error, 584 // damped by the proportional gain. 585 c.triggerRatio += triggerGain * triggerError 586 if c.triggerRatio < 0 { 587 // This can happen if the mutator is allocating very 588 // quickly or the GC is scanning very slowly. 589 c.triggerRatio = 0 590 } else if c.triggerRatio > goalGrowthRatio*0.95 { 591 // Ensure there's always a little margin so that the 592 // mutator assist ratio isn't infinity. 593 c.triggerRatio = goalGrowthRatio * 0.95 594 } 595 596 if debug.gcpacertrace > 0 { 597 // Print controller state in terms of the design 598 // document. 599 H_m_prev := memstats.heap_marked 600 H_T := memstats.gc_trigger 601 h_a := actualGrowthRatio 602 H_a := memstats.heap_live 603 h_g := goalGrowthRatio 604 H_g := int64(float64(H_m_prev) * (1 + h_g)) 605 u_a := utilization 606 u_g := gcGoalUtilization 607 W_a := c.scanWork 608 print("pacer: H_m_prev=", H_m_prev, 609 " h_t=", h_t, " H_T=", H_T, 610 " h_a=", h_a, " H_a=", H_a, 611 " h_g=", h_g, " H_g=", H_g, 612 " u_a=", u_a, " u_g=", u_g, 613 " W_a=", W_a, 614 " goalΔ=", goalGrowthRatio-h_t, 615 " actualΔ=", h_a-h_t, 616 " u_a/u_g=", u_a/u_g, 617 "\n") 618 } 619 } 620 621 // enlistWorker encourages another dedicated mark worker to start on 622 // another P if there are spare worker slots. It is used by putfull 623 // when more work is made available. 624 // 625 //go:nowritebarrier 626 func (c *gcControllerState) enlistWorker() { 627 if c.dedicatedMarkWorkersNeeded <= 0 { 628 return 629 } 630 // Pick a random other P to preempt. 631 if gomaxprocs <= 1 { 632 return 633 } 634 gp := getg() 635 if gp == nil || gp.m == nil || gp.m.p == 0 { 636 return 637 } 638 myID := gp.m.p.ptr().id 639 for tries := 0; tries < 5; tries++ { 640 id := int32(fastrand() % uint32(gomaxprocs-1)) 641 if id >= myID { 642 id++ 643 } 644 p := allp[id] 645 if p.status != _Prunning { 646 continue 647 } 648 if preemptone(p) { 649 return 650 } 651 } 652 } 653 654 // findRunnableGCWorker returns the background mark worker for _p_ if it 655 // should be run. This must only be called when gcBlackenEnabled != 0. 656 func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g { 657 if gcBlackenEnabled == 0 { 658 throw("gcControllerState.findRunnable: blackening not enabled") 659 } 660 if _p_.gcBgMarkWorker == 0 { 661 // The mark worker associated with this P is blocked 662 // performing a mark transition. We can't run it 663 // because it may be on some other run or wait queue. 664 return nil 665 } 666 667 if !gcMarkWorkAvailable(_p_) { 668 // No work to be done right now. This can happen at 669 // the end of the mark phase when there are still 670 // assists tapering off. Don't bother running a worker 671 // now because it'll just return immediately. 672 return nil 673 } 674 675 decIfPositive := func(ptr *int64) bool { 676 if *ptr > 0 { 677 if atomic.Xaddint64(ptr, -1) >= 0 { 678 return true 679 } 680 // We lost a race 681 atomic.Xaddint64(ptr, +1) 682 } 683 return false 684 } 685 686 if decIfPositive(&c.dedicatedMarkWorkersNeeded) { 687 // This P is now dedicated to marking until the end of 688 // the concurrent mark phase. 689 _p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode 690 // TODO(austin): This P isn't going to run anything 691 // else for a while, so kick everything out of its run 692 // queue. 693 } else { 694 if !decIfPositive(&c.fractionalMarkWorkersNeeded) { 695 // No more workers are need right now. 696 return nil 697 } 698 699 // This P has picked the token for the fractional worker. 700 // Is the GC currently under or at the utilization goal? 701 // If so, do more work. 702 // 703 // We used to check whether doing one time slice of work 704 // would remain under the utilization goal, but that has the 705 // effect of delaying work until the mutator has run for 706 // enough time slices to pay for the work. During those time 707 // slices, write barriers are enabled, so the mutator is running slower. 708 // Now instead we do the work whenever we're under or at the 709 // utilization work and pay for it by letting the mutator run later. 710 // This doesn't change the overall utilization averages, but it 711 // front loads the GC work so that the GC finishes earlier and 712 // write barriers can be turned off sooner, effectively giving 713 // the mutator a faster machine. 714 // 715 // The old, slower behavior can be restored by setting 716 // gcForcePreemptNS = forcePreemptNS. 717 const gcForcePreemptNS = 0 718 719 // TODO(austin): We could fast path this and basically 720 // eliminate contention on c.fractionalMarkWorkersNeeded by 721 // precomputing the minimum time at which it's worth 722 // next scheduling the fractional worker. Then Ps 723 // don't have to fight in the window where we've 724 // passed that deadline and no one has started the 725 // worker yet. 726 // 727 // TODO(austin): Shorter preemption interval for mark 728 // worker to improve fairness and give this 729 // finer-grained control over schedule? 730 now := nanotime() - gcController.markStartTime 731 then := now + gcForcePreemptNS 732 timeUsed := c.fractionalMarkTime + gcForcePreemptNS 733 if then > 0 && float64(timeUsed)/float64(then) > c.fractionalUtilizationGoal { 734 // Nope, we'd overshoot the utilization goal 735 atomic.Xaddint64(&c.fractionalMarkWorkersNeeded, +1) 736 return nil 737 } 738 _p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode 739 } 740 741 // Run the background mark worker 742 gp := _p_.gcBgMarkWorker.ptr() 743 casgstatus(gp, _Gwaiting, _Grunnable) 744 if trace.enabled { 745 traceGoUnpark(gp, 0) 746 } 747 return gp 748 } 749 750 // gcGoalUtilization is the goal CPU utilization for background 751 // marking as a fraction of GOMAXPROCS. 752 const gcGoalUtilization = 0.25 753 754 // gcCreditSlack is the amount of scan work credit that can can 755 // accumulate locally before updating gcController.scanWork and, 756 // optionally, gcController.bgScanCredit. Lower values give a more 757 // accurate assist ratio and make it more likely that assists will 758 // successfully steal background credit. Higher values reduce memory 759 // contention. 760 const gcCreditSlack = 2000 761 762 // gcAssistTimeSlack is the nanoseconds of mutator assist time that 763 // can accumulate on a P before updating gcController.assistTime. 764 const gcAssistTimeSlack = 5000 765 766 // gcOverAssistWork determines how many extra units of scan work a GC 767 // assist does when an assist happens. This amortizes the cost of an 768 // assist by pre-paying for this many bytes of future allocations. 769 const gcOverAssistWork = 64 << 10 770 771 var work struct { 772 full uint64 // lock-free list of full blocks workbuf 773 empty uint64 // lock-free list of empty blocks workbuf 774 pad0 [sys.CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait 775 776 markrootNext uint32 // next markroot job 777 markrootJobs uint32 // number of markroot jobs 778 779 nproc uint32 780 tstart int64 781 nwait uint32 782 ndone uint32 783 alldone note 784 785 // helperDrainBlock indicates that GC mark termination helpers 786 // should pass gcDrainBlock to gcDrain to block in the 787 // getfull() barrier. Otherwise, they should pass gcDrainNoBlock. 788 // 789 // TODO: This is a temporary fallback to support 790 // debug.gcrescanstacks > 0 and to work around some known 791 // races. Remove this when we remove the debug option and fix 792 // the races. 793 helperDrainBlock bool 794 795 // Number of roots of various root types. Set by gcMarkRootPrepare. 796 nFlushCacheRoots int 797 nDataRoots, nBSSRoots, nSpanRoots, nStackRoots, nRescanRoots int 798 799 // markrootDone indicates that roots have been marked at least 800 // once during the current GC cycle. This is checked by root 801 // marking operations that have to happen only during the 802 // first root marking pass, whether that's during the 803 // concurrent mark phase in current GC or mark termination in 804 // STW GC. 805 markrootDone bool 806 807 // Each type of GC state transition is protected by a lock. 808 // Since multiple threads can simultaneously detect the state 809 // transition condition, any thread that detects a transition 810 // condition must acquire the appropriate transition lock, 811 // re-check the transition condition and return if it no 812 // longer holds or perform the transition if it does. 813 // Likewise, any transition must invalidate the transition 814 // condition before releasing the lock. This ensures that each 815 // transition is performed by exactly one thread and threads 816 // that need the transition to happen block until it has 817 // happened. 818 // 819 // startSema protects the transition from "off" to mark or 820 // mark termination. 821 startSema uint32 822 // markDoneSema protects transitions from mark 1 to mark 2 and 823 // from mark 2 to mark termination. 824 markDoneSema uint32 825 826 bgMarkReady note // signal background mark worker has started 827 bgMarkDone uint32 // cas to 1 when at a background mark completion point 828 // Background mark completion signaling 829 830 // mode is the concurrency mode of the current GC cycle. 831 mode gcMode 832 833 // totaltime is the CPU nanoseconds spent in GC since the 834 // program started if debug.gctrace > 0. 835 totaltime int64 836 837 // bytesMarked is the number of bytes marked this cycle. This 838 // includes bytes blackened in scanned objects, noscan objects 839 // that go straight to black, and permagrey objects scanned by 840 // markroot during the concurrent scan phase. This is updated 841 // atomically during the cycle. Updates may be batched 842 // arbitrarily, since the value is only read at the end of the 843 // cycle. 844 // 845 // Because of benign races during marking, this number may not 846 // be the exact number of marked bytes, but it should be very 847 // close. 848 bytesMarked uint64 849 850 // initialHeapLive is the value of memstats.heap_live at the 851 // beginning of this GC cycle. 852 initialHeapLive uint64 853 854 // assistQueue is a queue of assists that are blocked because 855 // there was neither enough credit to steal or enough work to 856 // do. 857 assistQueue struct { 858 lock mutex 859 head, tail guintptr 860 } 861 862 // rescan is a list of G's that need to be rescanned during 863 // mark termination. A G adds itself to this list when it 864 // first invalidates its stack scan. 865 rescan struct { 866 lock mutex 867 list []guintptr 868 } 869 870 // Timing/utilization stats for this cycle. 871 stwprocs, maxprocs int32 872 tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start 873 874 pauseNS int64 // total STW time this cycle 875 pauseStart int64 // nanotime() of last STW 876 877 // debug.gctrace heap sizes for this cycle. 878 heap0, heap1, heap2, heapGoal uint64 879 } 880 881 // GC runs a garbage collection and blocks the caller until the 882 // garbage collection is complete. It may also block the entire 883 // program. 884 func GC() { 885 gcStart(gcForceBlockMode, false) 886 } 887 888 // gcMode indicates how concurrent a GC cycle should be. 889 type gcMode int 890 891 const ( 892 gcBackgroundMode gcMode = iota // concurrent GC and sweep 893 gcForceMode // stop-the-world GC now, concurrent sweep 894 gcForceBlockMode // stop-the-world GC now and STW sweep 895 ) 896 897 // gcShouldStart returns true if the exit condition for the _GCoff 898 // phase has been met. The exit condition should be tested when 899 // allocating. 900 // 901 // If forceTrigger is true, it ignores the current heap size, but 902 // checks all other conditions. In general this should be false. 903 func gcShouldStart(forceTrigger bool) bool { 904 return gcphase == _GCoff && (forceTrigger || memstats.heap_live >= memstats.gc_trigger) && memstats.enablegc && panicking == 0 && gcpercent >= 0 905 } 906 907 // gcStart transitions the GC from _GCoff to _GCmark (if mode == 908 // gcBackgroundMode) or _GCmarktermination (if mode != 909 // gcBackgroundMode) by performing sweep termination and GC 910 // initialization. 911 // 912 // This may return without performing this transition in some cases, 913 // such as when called on a system stack or with locks held. 914 func gcStart(mode gcMode, forceTrigger bool) { 915 // Since this is called from malloc and malloc is called in 916 // the guts of a number of libraries that might be holding 917 // locks, don't attempt to start GC in non-preemptible or 918 // potentially unstable situations. 919 mp := acquirem() 920 if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" { 921 releasem(mp) 922 return 923 } 924 releasem(mp) 925 mp = nil 926 927 // Pick up the remaining unswept/not being swept spans concurrently 928 // 929 // This shouldn't happen if we're being invoked in background 930 // mode since proportional sweep should have just finished 931 // sweeping everything, but rounding errors, etc, may leave a 932 // few spans unswept. In forced mode, this is necessary since 933 // GC can be forced at any point in the sweeping cycle. 934 // 935 // We check the transition condition continuously here in case 936 // this G gets delayed in to the next GC cycle. 937 for (mode != gcBackgroundMode || gcShouldStart(forceTrigger)) && gosweepone() != ^uintptr(0) { 938 sweep.nbgsweep++ 939 } 940 941 // Perform GC initialization and the sweep termination 942 // transition. 943 // 944 // If this is a forced GC, don't acquire the transition lock 945 // or re-check the transition condition because we 946 // specifically *don't* want to share the transition with 947 // another thread. 948 useStartSema := mode == gcBackgroundMode 949 if useStartSema { 950 semacquire(&work.startSema, 0) 951 // Re-check transition condition under transition lock. 952 if !gcShouldStart(forceTrigger) { 953 semrelease(&work.startSema) 954 return 955 } 956 } 957 958 // In gcstoptheworld debug mode, upgrade the mode accordingly. 959 // We do this after re-checking the transition condition so 960 // that multiple goroutines that detect the heap trigger don't 961 // start multiple STW GCs. 962 if mode == gcBackgroundMode { 963 if debug.gcstoptheworld == 1 { 964 mode = gcForceMode 965 } else if debug.gcstoptheworld == 2 { 966 mode = gcForceBlockMode 967 } 968 } 969 970 // Ok, we're doing it! Stop everybody else 971 semacquire(&worldsema, 0) 972 973 if trace.enabled { 974 traceGCStart() 975 } 976 977 if mode == gcBackgroundMode { 978 gcBgMarkStartWorkers() 979 } 980 981 gcResetMarkState() 982 983 now := nanotime() 984 work.stwprocs, work.maxprocs = gcprocs(), gomaxprocs 985 work.tSweepTerm = now 986 work.heap0 = memstats.heap_live 987 work.pauseNS = 0 988 work.mode = mode 989 990 work.pauseStart = now 991 systemstack(stopTheWorldWithSema) 992 // Finish sweep before we start concurrent scan. 993 systemstack(func() { 994 finishsweep_m() 995 }) 996 // clearpools before we start the GC. If we wait they memory will not be 997 // reclaimed until the next GC cycle. 998 clearpools() 999 1000 if mode == gcBackgroundMode { // Do as much work concurrently as possible 1001 gcController.startCycle() 1002 work.heapGoal = memstats.next_gc 1003 1004 // Enter concurrent mark phase and enable 1005 // write barriers. 1006 // 1007 // Because the world is stopped, all Ps will 1008 // observe that write barriers are enabled by 1009 // the time we start the world and begin 1010 // scanning. 1011 // 1012 // It's necessary to enable write barriers 1013 // during the scan phase for several reasons: 1014 // 1015 // They must be enabled for writes to higher 1016 // stack frames before we scan stacks and 1017 // install stack barriers because this is how 1018 // we track writes to inactive stack frames. 1019 // (Alternatively, we could not install stack 1020 // barriers over frame boundaries with 1021 // up-pointers). 1022 // 1023 // They must be enabled before assists are 1024 // enabled because they must be enabled before 1025 // any non-leaf heap objects are marked. Since 1026 // allocations are blocked until assists can 1027 // happen, we want enable assists as early as 1028 // possible. 1029 setGCPhase(_GCmark) 1030 1031 gcBgMarkPrepare() // Must happen before assist enable. 1032 gcMarkRootPrepare() 1033 1034 // Mark all active tinyalloc blocks. Since we're 1035 // allocating from these, they need to be black like 1036 // other allocations. The alternative is to blacken 1037 // the tiny block on every allocation from it, which 1038 // would slow down the tiny allocator. 1039 gcMarkTinyAllocs() 1040 1041 // At this point all Ps have enabled the write 1042 // barrier, thus maintaining the no white to 1043 // black invariant. Enable mutator assists to 1044 // put back-pressure on fast allocating 1045 // mutators. 1046 atomic.Store(&gcBlackenEnabled, 1) 1047 1048 // Assists and workers can start the moment we start 1049 // the world. 1050 gcController.markStartTime = now 1051 1052 // Concurrent mark. 1053 systemstack(startTheWorldWithSema) 1054 now = nanotime() 1055 work.pauseNS += now - work.pauseStart 1056 work.tMark = now 1057 } else { 1058 t := nanotime() 1059 work.tMark, work.tMarkTerm = t, t 1060 work.heapGoal = work.heap0 1061 1062 // Perform mark termination. This will restart the world. 1063 gcMarkTermination() 1064 } 1065 1066 if useStartSema { 1067 semrelease(&work.startSema) 1068 } 1069 } 1070 1071 // gcMarkDone transitions the GC from mark 1 to mark 2 and from mark 2 1072 // to mark termination. 1073 // 1074 // This should be called when all mark work has been drained. In mark 1075 // 1, this includes all root marking jobs, global work buffers, and 1076 // active work buffers in assists and background workers; however, 1077 // work may still be cached in per-P work buffers. In mark 2, per-P 1078 // caches are disabled. 1079 // 1080 // The calling context must be preemptible. 1081 // 1082 // Note that it is explicitly okay to have write barriers in this 1083 // function because completion of concurrent mark is best-effort 1084 // anyway. Any work created by write barriers here will be cleaned up 1085 // by mark termination. 1086 func gcMarkDone() { 1087 top: 1088 semacquire(&work.markDoneSema, 0) 1089 1090 // Re-check transition condition under transition lock. 1091 if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) { 1092 semrelease(&work.markDoneSema) 1093 return 1094 } 1095 1096 // Disallow starting new workers so that any remaining workers 1097 // in the current mark phase will drain out. 1098 // 1099 // TODO(austin): Should dedicated workers keep an eye on this 1100 // and exit gcDrain promptly? 1101 atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, -0xffffffff) 1102 atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, -0xffffffff) 1103 1104 if !gcBlackenPromptly { 1105 // Transition from mark 1 to mark 2. 1106 // 1107 // The global work list is empty, but there can still be work 1108 // sitting in the per-P work caches. 1109 // Flush and disable work caches. 1110 1111 gcMarkRootCheck() 1112 1113 // Disallow caching workbufs and indicate that we're in mark 2. 1114 gcBlackenPromptly = true 1115 1116 // Prevent completion of mark 2 until we've flushed 1117 // cached workbufs. 1118 atomic.Xadd(&work.nwait, -1) 1119 1120 // GC is set up for mark 2. Let Gs blocked on the 1121 // transition lock go while we flush caches. 1122 semrelease(&work.markDoneSema) 1123 1124 systemstack(func() { 1125 // Flush all currently cached workbufs and 1126 // ensure all Ps see gcBlackenPromptly. This 1127 // also blocks until any remaining mark 1 1128 // workers have exited their loop so we can 1129 // start new mark 2 workers. 1130 forEachP(func(_p_ *p) { 1131 _p_.gcw.dispose() 1132 }) 1133 }) 1134 1135 // Now we can start up mark 2 workers. 1136 atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 0xffffffff) 1137 atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 0xffffffff) 1138 1139 incnwait := atomic.Xadd(&work.nwait, +1) 1140 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 1141 // This loop will make progress because 1142 // gcBlackenPromptly is now true, so it won't 1143 // take this same "if" branch. 1144 goto top 1145 } 1146 } else { 1147 // Transition to mark termination. 1148 now := nanotime() 1149 work.tMarkTerm = now 1150 work.pauseStart = now 1151 getg().m.preemptoff = "gcing" 1152 systemstack(stopTheWorldWithSema) 1153 // The gcphase is _GCmark, it will transition to _GCmarktermination 1154 // below. The important thing is that the wb remains active until 1155 // all marking is complete. This includes writes made by the GC. 1156 1157 // Record that one root marking pass has completed. 1158 work.markrootDone = true 1159 1160 // Disable assists and background workers. We must do 1161 // this before waking blocked assists. 1162 atomic.Store(&gcBlackenEnabled, 0) 1163 1164 // Wake all blocked assists. These will run when we 1165 // start the world again. 1166 gcWakeAllAssists() 1167 1168 // Likewise, release the transition lock. Blocked 1169 // workers and assists will run when we start the 1170 // world again. 1171 semrelease(&work.markDoneSema) 1172 1173 // endCycle depends on all gcWork cache stats being 1174 // flushed. This is ensured by mark 2. 1175 gcController.endCycle() 1176 1177 // Perform mark termination. This will restart the world. 1178 gcMarkTermination() 1179 } 1180 } 1181 1182 func gcMarkTermination() { 1183 // World is stopped. 1184 // Start marktermination which includes enabling the write barrier. 1185 atomic.Store(&gcBlackenEnabled, 0) 1186 gcBlackenPromptly = false 1187 setGCPhase(_GCmarktermination) 1188 1189 work.heap1 = memstats.heap_live 1190 startTime := nanotime() 1191 1192 mp := acquirem() 1193 mp.preemptoff = "gcing" 1194 _g_ := getg() 1195 _g_.m.traceback = 2 1196 gp := _g_.m.curg 1197 casgstatus(gp, _Grunning, _Gwaiting) 1198 gp.waitreason = "garbage collection" 1199 1200 // Run gc on the g0 stack. We do this so that the g stack 1201 // we're currently running on will no longer change. Cuts 1202 // the root set down a bit (g0 stacks are not scanned, and 1203 // we don't need to scan gc's internal state). We also 1204 // need to switch to g0 so we can shrink the stack. 1205 systemstack(func() { 1206 gcMark(startTime) 1207 // Must return immediately. 1208 // The outer function's stack may have moved 1209 // during gcMark (it shrinks stacks, including the 1210 // outer function's stack), so we must not refer 1211 // to any of its variables. Return back to the 1212 // non-system stack to pick up the new addresses 1213 // before continuing. 1214 }) 1215 1216 systemstack(func() { 1217 work.heap2 = work.bytesMarked 1218 if debug.gccheckmark > 0 { 1219 // Run a full stop-the-world mark using checkmark bits, 1220 // to check that we didn't forget to mark anything during 1221 // the concurrent mark process. 1222 gcResetMarkState() 1223 initCheckmarks() 1224 gcMark(startTime) 1225 clearCheckmarks() 1226 } 1227 1228 // marking is complete so we can turn the write barrier off 1229 setGCPhase(_GCoff) 1230 gcSweep(work.mode) 1231 1232 if debug.gctrace > 1 { 1233 startTime = nanotime() 1234 // The g stacks have been scanned so 1235 // they have gcscanvalid==true and gcworkdone==true. 1236 // Reset these so that all stacks will be rescanned. 1237 gcResetMarkState() 1238 finishsweep_m() 1239 1240 // Still in STW but gcphase is _GCoff, reset to _GCmarktermination 1241 // At this point all objects will be found during the gcMark which 1242 // does a complete STW mark and object scan. 1243 setGCPhase(_GCmarktermination) 1244 gcMark(startTime) 1245 setGCPhase(_GCoff) // marking is done, turn off wb. 1246 gcSweep(work.mode) 1247 } 1248 }) 1249 1250 _g_.m.traceback = 0 1251 casgstatus(gp, _Gwaiting, _Grunning) 1252 1253 if trace.enabled { 1254 traceGCDone() 1255 } 1256 1257 // all done 1258 mp.preemptoff = "" 1259 1260 if gcphase != _GCoff { 1261 throw("gc done but gcphase != _GCoff") 1262 } 1263 1264 // Update timing memstats 1265 now, unixNow := nanotime(), unixnanotime() 1266 work.pauseNS += now - work.pauseStart 1267 work.tEnd = now 1268 atomic.Store64(&memstats.last_gc, uint64(unixNow)) // must be Unix time to make sense to user 1269 memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS) 1270 memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow) 1271 memstats.pause_total_ns += uint64(work.pauseNS) 1272 1273 // Update work.totaltime. 1274 sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm) 1275 // We report idle marking time below, but omit it from the 1276 // overall utilization here since it's "free". 1277 markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime 1278 markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm) 1279 cycleCpu := sweepTermCpu + markCpu + markTermCpu 1280 work.totaltime += cycleCpu 1281 1282 // Compute overall GC CPU utilization. 1283 totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs) 1284 memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu) 1285 1286 memstats.numgc++ 1287 1288 // Reset sweep state. 1289 sweep.nbgsweep = 0 1290 sweep.npausesweep = 0 1291 1292 systemstack(startTheWorldWithSema) 1293 1294 // Update heap profile stats if gcSweep didn't do it. This is 1295 // relatively expensive, so we don't want to do it while the 1296 // world is stopped, but it needs to happen ASAP after 1297 // starting the world to prevent too many allocations from the 1298 // next cycle leaking in. It must happen before releasing 1299 // worldsema since there are applications that do a 1300 // runtime.GC() to update the heap profile and then 1301 // immediately collect the profile. 1302 if _ConcurrentSweep && work.mode != gcForceBlockMode { 1303 mProf_GC() 1304 } 1305 1306 // Free stack spans. This must be done between GC cycles. 1307 systemstack(freeStackSpans) 1308 1309 // Best-effort remove stack barriers so they don't get in the 1310 // way of things like GDB and perf. 1311 lock(&allglock) 1312 myallgs := allgs 1313 unlock(&allglock) 1314 gcTryRemoveAllStackBarriers(myallgs) 1315 1316 // Print gctrace before dropping worldsema. As soon as we drop 1317 // worldsema another cycle could start and smash the stats 1318 // we're trying to print. 1319 if debug.gctrace > 0 { 1320 util := int(memstats.gc_cpu_fraction * 100) 1321 1322 var sbuf [24]byte 1323 printlock() 1324 print("gc ", memstats.numgc, 1325 " @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ", 1326 util, "%: ") 1327 prev := work.tSweepTerm 1328 for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} { 1329 if i != 0 { 1330 print("+") 1331 } 1332 print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev)))) 1333 prev = ns 1334 } 1335 print(" ms clock, ") 1336 for i, ns := range []int64{sweepTermCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} { 1337 if i == 2 || i == 3 { 1338 // Separate mark time components with /. 1339 print("/") 1340 } else if i != 0 { 1341 print("+") 1342 } 1343 print(string(fmtNSAsMS(sbuf[:], uint64(ns)))) 1344 } 1345 print(" ms cpu, ", 1346 work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ", 1347 work.heapGoal>>20, " MB goal, ", 1348 work.maxprocs, " P") 1349 if work.mode != gcBackgroundMode { 1350 print(" (forced)") 1351 } 1352 print("\n") 1353 printunlock() 1354 } 1355 1356 semrelease(&worldsema) 1357 // Careful: another GC cycle may start now. 1358 1359 releasem(mp) 1360 mp = nil 1361 1362 // now that gc is done, kick off finalizer thread if needed 1363 if !concurrentSweep { 1364 // give the queued finalizers, if any, a chance to run 1365 Gosched() 1366 } 1367 } 1368 1369 // gcBgMarkStartWorkers prepares background mark worker goroutines. 1370 // These goroutines will not run until the mark phase, but they must 1371 // be started while the work is not stopped and from a regular G 1372 // stack. The caller must hold worldsema. 1373 func gcBgMarkStartWorkers() { 1374 // Background marking is performed by per-P G's. Ensure that 1375 // each P has a background GC G. 1376 for _, p := range &allp { 1377 if p == nil || p.status == _Pdead { 1378 break 1379 } 1380 if p.gcBgMarkWorker == 0 { 1381 go gcBgMarkWorker(p) 1382 notetsleepg(&work.bgMarkReady, -1) 1383 noteclear(&work.bgMarkReady) 1384 } 1385 } 1386 } 1387 1388 // gcBgMarkPrepare sets up state for background marking. 1389 // Mutator assists must not yet be enabled. 1390 func gcBgMarkPrepare() { 1391 // Background marking will stop when the work queues are empty 1392 // and there are no more workers (note that, since this is 1393 // concurrent, this may be a transient state, but mark 1394 // termination will clean it up). Between background workers 1395 // and assists, we don't really know how many workers there 1396 // will be, so we pretend to have an arbitrarily large number 1397 // of workers, almost all of which are "waiting". While a 1398 // worker is working it decrements nwait. If nproc == nwait, 1399 // there are no workers. 1400 work.nproc = ^uint32(0) 1401 work.nwait = ^uint32(0) 1402 } 1403 1404 func gcBgMarkWorker(_p_ *p) { 1405 gp := getg() 1406 1407 type parkInfo struct { 1408 m muintptr // Release this m on park. 1409 attach puintptr // If non-nil, attach to this p on park. 1410 } 1411 // We pass park to a gopark unlock function, so it can't be on 1412 // the stack (see gopark). Prevent deadlock from recursively 1413 // starting GC by disabling preemption. 1414 gp.m.preemptoff = "GC worker init" 1415 park := new(parkInfo) 1416 gp.m.preemptoff = "" 1417 1418 park.m.set(acquirem()) 1419 park.attach.set(_p_) 1420 // Inform gcBgMarkStartWorkers that this worker is ready. 1421 // After this point, the background mark worker is scheduled 1422 // cooperatively by gcController.findRunnable. Hence, it must 1423 // never be preempted, as this would put it into _Grunnable 1424 // and put it on a run queue. Instead, when the preempt flag 1425 // is set, this puts itself into _Gwaiting to be woken up by 1426 // gcController.findRunnable at the appropriate time. 1427 notewakeup(&work.bgMarkReady) 1428 1429 for { 1430 // Go to sleep until woken by gcController.findRunnable. 1431 // We can't releasem yet since even the call to gopark 1432 // may be preempted. 1433 gopark(func(g *g, parkp unsafe.Pointer) bool { 1434 park := (*parkInfo)(parkp) 1435 1436 // The worker G is no longer running, so it's 1437 // now safe to allow preemption. 1438 releasem(park.m.ptr()) 1439 1440 // If the worker isn't attached to its P, 1441 // attach now. During initialization and after 1442 // a phase change, the worker may have been 1443 // running on a different P. As soon as we 1444 // attach, the owner P may schedule the 1445 // worker, so this must be done after the G is 1446 // stopped. 1447 if park.attach != 0 { 1448 p := park.attach.ptr() 1449 park.attach.set(nil) 1450 // cas the worker because we may be 1451 // racing with a new worker starting 1452 // on this P. 1453 if !p.gcBgMarkWorker.cas(0, guintptr(unsafe.Pointer(g))) { 1454 // The P got a new worker. 1455 // Exit this worker. 1456 return false 1457 } 1458 } 1459 return true 1460 }, unsafe.Pointer(park), "GC worker (idle)", traceEvGoBlock, 0) 1461 1462 // Loop until the P dies and disassociates this 1463 // worker (the P may later be reused, in which case 1464 // it will get a new worker) or we failed to associate. 1465 if _p_.gcBgMarkWorker.ptr() != gp { 1466 break 1467 } 1468 1469 // Disable preemption so we can use the gcw. If the 1470 // scheduler wants to preempt us, we'll stop draining, 1471 // dispose the gcw, and then preempt. 1472 park.m.set(acquirem()) 1473 1474 if gcBlackenEnabled == 0 { 1475 throw("gcBgMarkWorker: blackening not enabled") 1476 } 1477 1478 startTime := nanotime() 1479 1480 decnwait := atomic.Xadd(&work.nwait, -1) 1481 if decnwait == work.nproc { 1482 println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc) 1483 throw("work.nwait was > work.nproc") 1484 } 1485 1486 systemstack(func() { 1487 // Mark our goroutine preemptible so its stack 1488 // can be scanned. This lets two mark workers 1489 // scan each other (otherwise, they would 1490 // deadlock). We must not modify anything on 1491 // the G stack. However, stack shrinking is 1492 // disabled for mark workers, so it is safe to 1493 // read from the G stack. 1494 casgstatus(gp, _Grunning, _Gwaiting) 1495 switch _p_.gcMarkWorkerMode { 1496 default: 1497 throw("gcBgMarkWorker: unexpected gcMarkWorkerMode") 1498 case gcMarkWorkerDedicatedMode: 1499 gcDrain(&_p_.gcw, gcDrainNoBlock|gcDrainFlushBgCredit) 1500 case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode: 1501 gcDrain(&_p_.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit) 1502 } 1503 casgstatus(gp, _Gwaiting, _Grunning) 1504 }) 1505 1506 // If we are nearing the end of mark, dispose 1507 // of the cache promptly. We must do this 1508 // before signaling that we're no longer 1509 // working so that other workers can't observe 1510 // no workers and no work while we have this 1511 // cached, and before we compute done. 1512 if gcBlackenPromptly { 1513 _p_.gcw.dispose() 1514 } 1515 1516 // Account for time. 1517 duration := nanotime() - startTime 1518 switch _p_.gcMarkWorkerMode { 1519 case gcMarkWorkerDedicatedMode: 1520 atomic.Xaddint64(&gcController.dedicatedMarkTime, duration) 1521 atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1) 1522 case gcMarkWorkerFractionalMode: 1523 atomic.Xaddint64(&gcController.fractionalMarkTime, duration) 1524 atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 1) 1525 case gcMarkWorkerIdleMode: 1526 atomic.Xaddint64(&gcController.idleMarkTime, duration) 1527 } 1528 1529 // Was this the last worker and did we run out 1530 // of work? 1531 incnwait := atomic.Xadd(&work.nwait, +1) 1532 if incnwait > work.nproc { 1533 println("runtime: p.gcMarkWorkerMode=", _p_.gcMarkWorkerMode, 1534 "work.nwait=", incnwait, "work.nproc=", work.nproc) 1535 throw("work.nwait > work.nproc") 1536 } 1537 1538 // If this worker reached a background mark completion 1539 // point, signal the main GC goroutine. 1540 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 1541 // Make this G preemptible and disassociate it 1542 // as the worker for this P so 1543 // findRunnableGCWorker doesn't try to 1544 // schedule it. 1545 _p_.gcBgMarkWorker.set(nil) 1546 releasem(park.m.ptr()) 1547 1548 gcMarkDone() 1549 1550 // Disable preemption and prepare to reattach 1551 // to the P. 1552 // 1553 // We may be running on a different P at this 1554 // point, so we can't reattach until this G is 1555 // parked. 1556 park.m.set(acquirem()) 1557 park.attach.set(_p_) 1558 } 1559 } 1560 } 1561 1562 // gcMarkWorkAvailable returns true if executing a mark worker 1563 // on p is potentially useful. p may be nil, in which case it only 1564 // checks the global sources of work. 1565 func gcMarkWorkAvailable(p *p) bool { 1566 if p != nil && !p.gcw.empty() { 1567 return true 1568 } 1569 if atomic.Load64(&work.full) != 0 { 1570 return true // global work available 1571 } 1572 if work.markrootNext < work.markrootJobs { 1573 return true // root scan work available 1574 } 1575 return false 1576 } 1577 1578 // gcMark runs the mark (or, for concurrent GC, mark termination) 1579 // All gcWork caches must be empty. 1580 // STW is in effect at this point. 1581 //TODO go:nowritebarrier 1582 func gcMark(start_time int64) { 1583 if debug.allocfreetrace > 0 { 1584 tracegc() 1585 } 1586 1587 if gcphase != _GCmarktermination { 1588 throw("in gcMark expecting to see gcphase as _GCmarktermination") 1589 } 1590 work.tstart = start_time 1591 1592 // Queue root marking jobs. 1593 gcMarkRootPrepare() 1594 1595 work.nwait = 0 1596 work.ndone = 0 1597 work.nproc = uint32(gcprocs()) 1598 1599 if debug.gcrescanstacks == 0 && work.full == 0 && work.nDataRoots+work.nBSSRoots+work.nSpanRoots+work.nStackRoots+work.nRescanRoots == 0 { 1600 // There's no work on the work queue and no root jobs 1601 // that can produce work, so don't bother entering the 1602 // getfull() barrier. 1603 // 1604 // With the hybrid barrier enabled, this will be the 1605 // situation the vast majority of the time after 1606 // concurrent mark. However, we still need a fallback 1607 // for STW GC and because there are some known races 1608 // that occasionally leave work around for mark 1609 // termination. 1610 // 1611 // We're still hedging our bets here: if we do 1612 // accidentally produce some work, we'll still process 1613 // it, just not necessarily in parallel. 1614 // 1615 // TODO(austin): When we eliminate 1616 // debug.gcrescanstacks: fix the races, and remove 1617 // work draining from mark termination so we don't 1618 // need the fallback path. 1619 work.helperDrainBlock = false 1620 } else { 1621 work.helperDrainBlock = true 1622 } 1623 1624 if trace.enabled { 1625 traceGCScanStart() 1626 } 1627 1628 if work.nproc > 1 { 1629 noteclear(&work.alldone) 1630 helpgc(int32(work.nproc)) 1631 } 1632 1633 gchelperstart() 1634 1635 gcw := &getg().m.p.ptr().gcw 1636 if work.helperDrainBlock { 1637 gcDrain(gcw, gcDrainBlock) 1638 } else { 1639 gcDrain(gcw, gcDrainNoBlock) 1640 } 1641 gcw.dispose() 1642 1643 if debug.gccheckmark > 0 { 1644 // This is expensive when there's a large number of 1645 // Gs, so only do it if checkmark is also enabled. 1646 gcMarkRootCheck() 1647 } 1648 if work.full != 0 { 1649 throw("work.full != 0") 1650 } 1651 1652 if work.nproc > 1 { 1653 notesleep(&work.alldone) 1654 } 1655 1656 // Record that at least one root marking pass has completed. 1657 work.markrootDone = true 1658 1659 // Double-check that all gcWork caches are empty. This should 1660 // be ensured by mark 2 before we enter mark termination. 1661 for i := 0; i < int(gomaxprocs); i++ { 1662 gcw := &allp[i].gcw 1663 if !gcw.empty() { 1664 throw("P has cached GC work at end of mark termination") 1665 } 1666 if gcw.scanWork != 0 || gcw.bytesMarked != 0 { 1667 throw("P has unflushed stats at end of mark termination") 1668 } 1669 } 1670 1671 if trace.enabled { 1672 traceGCScanDone() 1673 } 1674 1675 cachestats() 1676 1677 // Update the marked heap stat. 1678 memstats.heap_marked = work.bytesMarked 1679 1680 // Trigger the next GC cycle when the allocated heap has grown 1681 // by triggerRatio over the marked heap size. Assume that 1682 // we're in steady state, so the marked heap size is the 1683 // same now as it was at the beginning of the GC cycle. 1684 memstats.gc_trigger = uint64(float64(memstats.heap_marked) * (1 + gcController.triggerRatio)) 1685 if memstats.gc_trigger < heapminimum { 1686 memstats.gc_trigger = heapminimum 1687 } 1688 if int64(memstats.gc_trigger) < 0 { 1689 print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n") 1690 throw("gc_trigger underflow") 1691 } 1692 1693 // Update other GC heap size stats. This must happen after 1694 // cachestats (which flushes local statistics to these) and 1695 // flushallmcaches (which modifies heap_live). 1696 memstats.heap_live = work.bytesMarked 1697 memstats.heap_scan = uint64(gcController.scanWork) 1698 1699 minTrigger := memstats.heap_live + sweepMinHeapDistance*uint64(gcpercent)/100 1700 if memstats.gc_trigger < minTrigger { 1701 // The allocated heap is already past the trigger. 1702 // This can happen if the triggerRatio is very low and 1703 // the marked heap is less than the live heap size. 1704 // 1705 // Concurrent sweep happens in the heap growth from 1706 // heap_live to gc_trigger, so bump gc_trigger up to ensure 1707 // that concurrent sweep has some heap growth in which 1708 // to perform sweeping before we start the next GC 1709 // cycle. 1710 memstats.gc_trigger = minTrigger 1711 } 1712 1713 // The next GC cycle should finish before the allocated heap 1714 // has grown by GOGC/100. 1715 memstats.next_gc = memstats.heap_marked + memstats.heap_marked*uint64(gcpercent)/100 1716 if gcpercent < 0 { 1717 memstats.next_gc = ^uint64(0) 1718 } 1719 if memstats.next_gc < memstats.gc_trigger { 1720 memstats.next_gc = memstats.gc_trigger 1721 } 1722 1723 if trace.enabled { 1724 traceHeapAlloc() 1725 traceNextGC() 1726 } 1727 } 1728 1729 func gcSweep(mode gcMode) { 1730 if gcphase != _GCoff { 1731 throw("gcSweep being done but phase is not GCoff") 1732 } 1733 1734 lock(&mheap_.lock) 1735 mheap_.sweepgen += 2 1736 mheap_.sweepdone = 0 1737 if mheap_.sweepSpans[mheap_.sweepgen/2%2].index != 0 { 1738 // We should have drained this list during the last 1739 // sweep phase. We certainly need to start this phase 1740 // with an empty swept list. 1741 throw("non-empty swept list") 1742 } 1743 unlock(&mheap_.lock) 1744 1745 if !_ConcurrentSweep || mode == gcForceBlockMode { 1746 // Special case synchronous sweep. 1747 // Record that no proportional sweeping has to happen. 1748 lock(&mheap_.lock) 1749 mheap_.sweepPagesPerByte = 0 1750 mheap_.pagesSwept = 0 1751 unlock(&mheap_.lock) 1752 // Sweep all spans eagerly. 1753 for sweepone() != ^uintptr(0) { 1754 sweep.npausesweep++ 1755 } 1756 // Do an additional mProf_GC, because all 'free' events are now real as well. 1757 mProf_GC() 1758 mProf_GC() 1759 return 1760 } 1761 1762 // Concurrent sweep needs to sweep all of the in-use pages by 1763 // the time the allocated heap reaches the GC trigger. Compute 1764 // the ratio of in-use pages to sweep per byte allocated. 1765 heapDistance := int64(memstats.gc_trigger) - int64(memstats.heap_live) 1766 // Add a little margin so rounding errors and concurrent 1767 // sweep are less likely to leave pages unswept when GC starts. 1768 heapDistance -= 1024 * 1024 1769 if heapDistance < _PageSize { 1770 // Avoid setting the sweep ratio extremely high 1771 heapDistance = _PageSize 1772 } 1773 lock(&mheap_.lock) 1774 mheap_.sweepPagesPerByte = float64(mheap_.pagesInUse) / float64(heapDistance) 1775 mheap_.pagesSwept = 0 1776 mheap_.spanBytesAlloc = 0 1777 unlock(&mheap_.lock) 1778 1779 // Background sweep. 1780 lock(&sweep.lock) 1781 if sweep.parked { 1782 sweep.parked = false 1783 ready(sweep.g, 0, true) 1784 } 1785 unlock(&sweep.lock) 1786 } 1787 1788 // gcResetMarkState resets global state prior to marking (concurrent 1789 // or STW) and resets the stack scan state of all Gs. 1790 // 1791 // This is safe to do without the world stopped because any Gs created 1792 // during or after this will start out in the reset state. 1793 func gcResetMarkState() { 1794 // This may be called during a concurrent phase, so make sure 1795 // allgs doesn't change. 1796 if !(gcphase == _GCoff || gcphase == _GCmarktermination) { 1797 // Accessing gcRescan is unsafe. 1798 throw("bad GC phase") 1799 } 1800 lock(&allglock) 1801 for _, gp := range allgs { 1802 gp.gcscandone = false // set to true in gcphasework 1803 gp.gcscanvalid = false // stack has not been scanned 1804 gp.gcRescan = -1 1805 gp.gcAssistBytes = 0 1806 } 1807 unlock(&allglock) 1808 1809 // Clear rescan list. 1810 work.rescan.list = work.rescan.list[:0] 1811 1812 work.bytesMarked = 0 1813 work.initialHeapLive = memstats.heap_live 1814 work.markrootDone = false 1815 } 1816 1817 // Hooks for other packages 1818 1819 var poolcleanup func() 1820 1821 //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup 1822 func sync_runtime_registerPoolCleanup(f func()) { 1823 poolcleanup = f 1824 } 1825 1826 func clearpools() { 1827 // clear sync.Pools 1828 if poolcleanup != nil { 1829 poolcleanup() 1830 } 1831 1832 // Clear central sudog cache. 1833 // Leave per-P caches alone, they have strictly bounded size. 1834 // Disconnect cached list before dropping it on the floor, 1835 // so that a dangling ref to one entry does not pin all of them. 1836 lock(&sched.sudoglock) 1837 var sg, sgnext *sudog 1838 for sg = sched.sudogcache; sg != nil; sg = sgnext { 1839 sgnext = sg.next 1840 sg.next = nil 1841 } 1842 sched.sudogcache = nil 1843 unlock(&sched.sudoglock) 1844 1845 // Clear central defer pools. 1846 // Leave per-P pools alone, they have strictly bounded size. 1847 lock(&sched.deferlock) 1848 for i := range sched.deferpool { 1849 // disconnect cached list before dropping it on the floor, 1850 // so that a dangling ref to one entry does not pin all of them. 1851 var d, dlink *_defer 1852 for d = sched.deferpool[i]; d != nil; d = dlink { 1853 dlink = d.link 1854 d.link = nil 1855 } 1856 sched.deferpool[i] = nil 1857 } 1858 unlock(&sched.deferlock) 1859 } 1860 1861 // Timing 1862 1863 //go:nowritebarrier 1864 func gchelper() { 1865 _g_ := getg() 1866 _g_.m.traceback = 2 1867 gchelperstart() 1868 1869 if trace.enabled { 1870 traceGCScanStart() 1871 } 1872 1873 // Parallel mark over GC roots and heap 1874 if gcphase == _GCmarktermination { 1875 gcw := &_g_.m.p.ptr().gcw 1876 if work.helperDrainBlock { 1877 gcDrain(gcw, gcDrainBlock) // blocks in getfull 1878 } else { 1879 gcDrain(gcw, gcDrainNoBlock) 1880 } 1881 gcw.dispose() 1882 } 1883 1884 if trace.enabled { 1885 traceGCScanDone() 1886 } 1887 1888 nproc := work.nproc // work.nproc can change right after we increment work.ndone 1889 if atomic.Xadd(&work.ndone, +1) == nproc-1 { 1890 notewakeup(&work.alldone) 1891 } 1892 _g_.m.traceback = 0 1893 } 1894 1895 func gchelperstart() { 1896 _g_ := getg() 1897 1898 if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc { 1899 throw("gchelperstart: bad m->helpgc") 1900 } 1901 if _g_ != _g_.m.g0 { 1902 throw("gchelper not running on g0 stack") 1903 } 1904 } 1905 1906 // itoaDiv formats val/(10**dec) into buf. 1907 func itoaDiv(buf []byte, val uint64, dec int) []byte { 1908 i := len(buf) - 1 1909 idec := i - dec 1910 for val >= 10 || i >= idec { 1911 buf[i] = byte(val%10 + '0') 1912 i-- 1913 if i == idec { 1914 buf[i] = '.' 1915 i-- 1916 } 1917 val /= 10 1918 } 1919 buf[i] = byte(val + '0') 1920 return buf[i:] 1921 } 1922 1923 // fmtNSAsMS nicely formats ns nanoseconds as milliseconds. 1924 func fmtNSAsMS(buf []byte, ns uint64) []byte { 1925 if ns >= 10e6 { 1926 // Format as whole milliseconds. 1927 return itoaDiv(buf, ns/1e6, 0) 1928 } 1929 // Format two digits of precision, with at most three decimal places. 1930 x := ns / 1e3 1931 if x == 0 { 1932 buf[0] = '0' 1933 return buf[:1] 1934 } 1935 dec := 3 1936 for x >= 100 { 1937 x /= 10 1938 dec-- 1939 } 1940 return itoaDiv(buf, x, dec) 1941 }