github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/runtime/mgcmark.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: marking and scanning 6 7 package runtime 8 9 import ( 10 "runtime/internal/atomic" 11 "runtime/internal/sys" 12 "unsafe" 13 ) 14 15 const ( 16 fixedRootFinalizers = iota 17 fixedRootFreeGStacks 18 fixedRootCount 19 20 // rootBlockBytes is the number of bytes to scan per data or 21 // BSS root. 22 rootBlockBytes = 256 << 10 23 24 // rootBlockSpans is the number of spans to scan per span 25 // root. 26 rootBlockSpans = 8 * 1024 // 64MB worth of spans 27 28 // maxObletBytes is the maximum bytes of an object to scan at 29 // once. Larger objects will be split up into "oblets" of at 30 // most this size. Since we can scan 1–2 MB/ms, 128 KB bounds 31 // scan preemption at ~100 µs. 32 // 33 // This must be > _MaxSmallSize so that the object base is the 34 // span base. 35 maxObletBytes = 128 << 10 36 ) 37 38 // gcMarkRootPrepare queues root scanning jobs (stacks, globals, and 39 // some miscellany) and initializes scanning-related state. 40 // 41 // The caller must have call gcCopySpans(). 42 // 43 // The world must be stopped. 44 // 45 //go:nowritebarrier 46 func gcMarkRootPrepare() { 47 if gcphase == _GCmarktermination { 48 work.nFlushCacheRoots = int(gomaxprocs) 49 } else { 50 work.nFlushCacheRoots = 0 51 } 52 53 // Compute how many data and BSS root blocks there are. 54 nBlocks := func(bytes uintptr) int { 55 return int((bytes + rootBlockBytes - 1) / rootBlockBytes) 56 } 57 58 work.nDataRoots = 0 59 work.nBSSRoots = 0 60 61 // Only scan globals once per cycle; preferably concurrently. 62 if !work.markrootDone { 63 for _, datap := range activeModules() { 64 nDataRoots := nBlocks(datap.edata - datap.data) 65 if nDataRoots > work.nDataRoots { 66 work.nDataRoots = nDataRoots 67 } 68 } 69 70 for _, datap := range activeModules() { 71 nBSSRoots := nBlocks(datap.ebss - datap.bss) 72 if nBSSRoots > work.nBSSRoots { 73 work.nBSSRoots = nBSSRoots 74 } 75 } 76 } 77 78 if !work.markrootDone { 79 // On the first markroot, we need to scan span roots. 80 // In concurrent GC, this happens during concurrent 81 // mark and we depend on addfinalizer to ensure the 82 // above invariants for objects that get finalizers 83 // after concurrent mark. In STW GC, this will happen 84 // during mark termination. 85 // 86 // We're only interested in scanning the in-use spans, 87 // which will all be swept at this point. More spans 88 // may be added to this list during concurrent GC, but 89 // we only care about spans that were allocated before 90 // this mark phase. 91 work.nSpanRoots = mheap_.sweepSpans[mheap_.sweepgen/2%2].numBlocks() 92 93 // On the first markroot, we need to scan all Gs. Gs 94 // may be created after this point, but it's okay that 95 // we ignore them because they begin life without any 96 // roots, so there's nothing to scan, and any roots 97 // they create during the concurrent phase will be 98 // scanned during mark termination. During mark 99 // termination, allglen isn't changing, so we'll scan 100 // all Gs. 101 work.nStackRoots = int(atomic.Loaduintptr(&allglen)) 102 work.nRescanRoots = 0 103 } else { 104 // We've already scanned span roots and kept the scan 105 // up-to-date during concurrent mark. 106 work.nSpanRoots = 0 107 108 // On the second pass of markroot, we're just scanning 109 // dirty stacks. It's safe to access rescan since the 110 // world is stopped. 111 work.nStackRoots = 0 112 work.nRescanRoots = len(work.rescan.list) 113 } 114 115 work.markrootNext = 0 116 work.markrootJobs = uint32(fixedRootCount + work.nFlushCacheRoots + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots + work.nRescanRoots) 117 } 118 119 // gcMarkRootCheck checks that all roots have been scanned. It is 120 // purely for debugging. 121 func gcMarkRootCheck() { 122 if work.markrootNext < work.markrootJobs { 123 print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n") 124 throw("left over markroot jobs") 125 } 126 127 lock(&allglock) 128 // Check that stacks have been scanned. 129 if gcphase == _GCmarktermination && debug.gcrescanstacks > 0 { 130 for i := 0; i < len(allgs); i++ { 131 gp := allgs[i] 132 if !(gp.gcscandone && gp.gcscanvalid) && readgstatus(gp) != _Gdead { 133 println("gp", gp, "goid", gp.goid, 134 "status", readgstatus(gp), 135 "gcscandone", gp.gcscandone, 136 "gcscanvalid", gp.gcscanvalid) 137 throw("scan missed a g") 138 } 139 } 140 } else { 141 for i := 0; i < work.nStackRoots; i++ { 142 gp := allgs[i] 143 if !gp.gcscandone { 144 throw("scan missed a g") 145 } 146 } 147 } 148 unlock(&allglock) 149 } 150 151 // ptrmask for an allocation containing a single pointer. 152 var oneptrmask = [...]uint8{1} 153 154 // markroot scans the i'th root. 155 // 156 // Preemption must be disabled (because this uses a gcWork). 157 // 158 // nowritebarrier is only advisory here. 159 // 160 //go:nowritebarrier 161 func markroot(gcw *gcWork, i uint32) { 162 // TODO(austin): This is a bit ridiculous. Compute and store 163 // the bases in gcMarkRootPrepare instead of the counts. 164 baseFlushCache := uint32(fixedRootCount) 165 baseData := baseFlushCache + uint32(work.nFlushCacheRoots) 166 baseBSS := baseData + uint32(work.nDataRoots) 167 baseSpans := baseBSS + uint32(work.nBSSRoots) 168 baseStacks := baseSpans + uint32(work.nSpanRoots) 169 baseRescan := baseStacks + uint32(work.nStackRoots) 170 end := baseRescan + uint32(work.nRescanRoots) 171 172 // Note: if you add a case here, please also update heapdump.go:dumproots. 173 switch { 174 case baseFlushCache <= i && i < baseData: 175 flushmcache(int(i - baseFlushCache)) 176 177 case baseData <= i && i < baseBSS: 178 for _, datap := range activeModules() { 179 markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, gcw, int(i-baseData)) 180 } 181 182 case baseBSS <= i && i < baseSpans: 183 for _, datap := range activeModules() { 184 markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, gcw, int(i-baseBSS)) 185 } 186 187 case i == fixedRootFinalizers: 188 for fb := allfin; fb != nil; fb = fb.alllink { 189 cnt := uintptr(atomic.Load(&fb.cnt)) 190 scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw) 191 } 192 193 case i == fixedRootFreeGStacks: 194 // Only do this once per GC cycle; preferably 195 // concurrently. 196 if !work.markrootDone { 197 // Switch to the system stack so we can call 198 // stackfree. 199 systemstack(markrootFreeGStacks) 200 } 201 202 case baseSpans <= i && i < baseStacks: 203 // mark MSpan.specials 204 markrootSpans(gcw, int(i-baseSpans)) 205 206 default: 207 // the rest is scanning goroutine stacks 208 var gp *g 209 if baseStacks <= i && i < baseRescan { 210 gp = allgs[i-baseStacks] 211 } else if baseRescan <= i && i < end { 212 gp = work.rescan.list[i-baseRescan].ptr() 213 if gp.gcRescan != int32(i-baseRescan) { 214 // Looking for issue #17099. 215 println("runtime: gp", gp, "found at rescan index", i-baseRescan, "but should be at", gp.gcRescan) 216 throw("bad g rescan index") 217 } 218 } else { 219 throw("markroot: bad index") 220 } 221 222 // remember when we've first observed the G blocked 223 // needed only to output in traceback 224 status := readgstatus(gp) // We are not in a scan state 225 if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { 226 gp.waitsince = work.tstart 227 } 228 229 // scang must be done on the system stack in case 230 // we're trying to scan our own stack. 231 systemstack(func() { 232 // If this is a self-scan, put the user G in 233 // _Gwaiting to prevent self-deadlock. It may 234 // already be in _Gwaiting if this is a mark 235 // worker or we're in mark termination. 236 userG := getg().m.curg 237 selfScan := gp == userG && readgstatus(userG) == _Grunning 238 if selfScan { 239 casgstatus(userG, _Grunning, _Gwaiting) 240 userG.waitreason = "garbage collection scan" 241 } 242 243 // TODO: scang blocks until gp's stack has 244 // been scanned, which may take a while for 245 // running goroutines. Consider doing this in 246 // two phases where the first is non-blocking: 247 // we scan the stacks we can and ask running 248 // goroutines to scan themselves; and the 249 // second blocks. 250 scang(gp, gcw) 251 252 if selfScan { 253 casgstatus(userG, _Gwaiting, _Grunning) 254 } 255 }) 256 } 257 } 258 259 // markrootBlock scans the shard'th shard of the block of memory [b0, 260 // b0+n0), with the given pointer mask. 261 // 262 //go:nowritebarrier 263 func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) { 264 if rootBlockBytes%(8*sys.PtrSize) != 0 { 265 // This is necessary to pick byte offsets in ptrmask0. 266 throw("rootBlockBytes must be a multiple of 8*ptrSize") 267 } 268 269 b := b0 + uintptr(shard)*rootBlockBytes 270 if b >= b0+n0 { 271 return 272 } 273 ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*sys.PtrSize)))) 274 n := uintptr(rootBlockBytes) 275 if b+n > b0+n0 { 276 n = b0 + n0 - b 277 } 278 279 // Scan this shard. 280 scanblock(b, n, ptrmask, gcw) 281 } 282 283 // markrootFreeGStacks frees stacks of dead Gs. 284 // 285 // This does not free stacks of dead Gs cached on Ps, but having a few 286 // cached stacks around isn't a problem. 287 // 288 //TODO go:nowritebarrier 289 func markrootFreeGStacks() { 290 // Take list of dead Gs with stacks. 291 lock(&sched.gflock) 292 list := sched.gfreeStack 293 sched.gfreeStack = nil 294 unlock(&sched.gflock) 295 if list == nil { 296 return 297 } 298 299 // Free stacks. 300 tail := list 301 for gp := list; gp != nil; gp = gp.schedlink.ptr() { 302 shrinkstack(gp) 303 tail = gp 304 } 305 306 // Put Gs back on the free list. 307 lock(&sched.gflock) 308 tail.schedlink.set(sched.gfreeNoStack) 309 sched.gfreeNoStack = list 310 unlock(&sched.gflock) 311 } 312 313 // markrootSpans marks roots for one shard of work.spans. 314 // 315 //go:nowritebarrier 316 func markrootSpans(gcw *gcWork, shard int) { 317 // Objects with finalizers have two GC-related invariants: 318 // 319 // 1) Everything reachable from the object must be marked. 320 // This ensures that when we pass the object to its finalizer, 321 // everything the finalizer can reach will be retained. 322 // 323 // 2) Finalizer specials (which are not in the garbage 324 // collected heap) are roots. In practice, this means the fn 325 // field must be scanned. 326 // 327 // TODO(austin): There are several ideas for making this more 328 // efficient in issue #11485. 329 330 if work.markrootDone { 331 throw("markrootSpans during second markroot") 332 } 333 334 sg := mheap_.sweepgen 335 spans := mheap_.sweepSpans[mheap_.sweepgen/2%2].block(shard) 336 // Note that work.spans may not include spans that were 337 // allocated between entering the scan phase and now. This is 338 // okay because any objects with finalizers in those spans 339 // must have been allocated and given finalizers after we 340 // entered the scan phase, so addfinalizer will have ensured 341 // the above invariants for them. 342 for _, s := range spans { 343 if s.state != mSpanInUse { 344 continue 345 } 346 if !useCheckmark && s.sweepgen != sg { 347 // sweepgen was updated (+2) during non-checkmark GC pass 348 print("sweep ", s.sweepgen, " ", sg, "\n") 349 throw("gc: unswept span") 350 } 351 352 // Speculatively check if there are any specials 353 // without acquiring the span lock. This may race with 354 // adding the first special to a span, but in that 355 // case addfinalizer will observe that the GC is 356 // active (which is globally synchronized) and ensure 357 // the above invariants. We may also ensure the 358 // invariants, but it's okay to scan an object twice. 359 if s.specials == nil { 360 continue 361 } 362 363 // Lock the specials to prevent a special from being 364 // removed from the list while we're traversing it. 365 lock(&s.speciallock) 366 367 for sp := s.specials; sp != nil; sp = sp.next { 368 if sp.kind != _KindSpecialFinalizer { 369 continue 370 } 371 // don't mark finalized object, but scan it so we 372 // retain everything it points to. 373 spf := (*specialfinalizer)(unsafe.Pointer(sp)) 374 // A finalizer can be set for an inner byte of an object, find object beginning. 375 p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize 376 377 // Mark everything that can be reached from 378 // the object (but *not* the object itself or 379 // we'll never collect it). 380 scanobject(p, gcw) 381 382 // The special itself is a root. 383 scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw) 384 } 385 386 unlock(&s.speciallock) 387 } 388 } 389 390 // gcAssistAlloc performs GC work to make gp's assist debt positive. 391 // gp must be the calling user gorountine. 392 // 393 // This must be called with preemption enabled. 394 func gcAssistAlloc(gp *g) { 395 // Don't assist in non-preemptible contexts. These are 396 // generally fragile and won't allow the assist to block. 397 if getg() == gp.m.g0 { 398 return 399 } 400 if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" { 401 return 402 } 403 404 retry: 405 // Compute the amount of scan work we need to do to make the 406 // balance positive. When the required amount of work is low, 407 // we over-assist to build up credit for future allocations 408 // and amortize the cost of assisting. 409 debtBytes := -gp.gcAssistBytes 410 scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes)) 411 if scanWork < gcOverAssistWork { 412 scanWork = gcOverAssistWork 413 debtBytes = int64(gcController.assistBytesPerWork * float64(scanWork)) 414 } 415 416 // Steal as much credit as we can from the background GC's 417 // scan credit. This is racy and may drop the background 418 // credit below 0 if two mutators steal at the same time. This 419 // will just cause steals to fail until credit is accumulated 420 // again, so in the long run it doesn't really matter, but we 421 // do have to handle the negative credit case. 422 bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit) 423 stolen := int64(0) 424 if bgScanCredit > 0 { 425 if bgScanCredit < scanWork { 426 stolen = bgScanCredit 427 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen)) 428 } else { 429 stolen = scanWork 430 gp.gcAssistBytes += debtBytes 431 } 432 atomic.Xaddint64(&gcController.bgScanCredit, -stolen) 433 434 scanWork -= stolen 435 436 if scanWork == 0 { 437 // We were able to steal all of the credit we 438 // needed. 439 return 440 } 441 } 442 443 // Perform assist work 444 systemstack(func() { 445 gcAssistAlloc1(gp, scanWork) 446 // The user stack may have moved, so this can't touch 447 // anything on it until it returns from systemstack. 448 }) 449 450 completed := gp.param != nil 451 gp.param = nil 452 if completed { 453 gcMarkDone() 454 } 455 456 if gp.gcAssistBytes < 0 { 457 // We were unable steal enough credit or perform 458 // enough work to pay off the assist debt. We need to 459 // do one of these before letting the mutator allocate 460 // more to prevent over-allocation. 461 // 462 // If this is because we were preempted, reschedule 463 // and try some more. 464 if gp.preempt { 465 Gosched() 466 goto retry 467 } 468 469 // Add this G to an assist queue and park. When the GC 470 // has more background credit, it will satisfy queued 471 // assists before flushing to the global credit pool. 472 // 473 // Note that this does *not* get woken up when more 474 // work is added to the work list. The theory is that 475 // there wasn't enough work to do anyway, so we might 476 // as well let background marking take care of the 477 // work that is available. 478 if !gcParkAssist() { 479 goto retry 480 } 481 482 // At this point either background GC has satisfied 483 // this G's assist debt, or the GC cycle is over. 484 } 485 } 486 487 // gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system 488 // stack. This is a separate function to make it easier to see that 489 // we're not capturing anything from the user stack, since the user 490 // stack may move while we're in this function. 491 // 492 // gcAssistAlloc1 indicates whether this assist completed the mark 493 // phase by setting gp.param to non-nil. This can't be communicated on 494 // the stack since it may move. 495 // 496 //go:systemstack 497 func gcAssistAlloc1(gp *g, scanWork int64) { 498 // Clear the flag indicating that this assist completed the 499 // mark phase. 500 gp.param = nil 501 502 if atomic.Load(&gcBlackenEnabled) == 0 { 503 // The gcBlackenEnabled check in malloc races with the 504 // store that clears it but an atomic check in every malloc 505 // would be a performance hit. 506 // Instead we recheck it here on the non-preemptable system 507 // stack to determine if we should preform an assist. 508 509 // GC is done, so ignore any remaining debt. 510 gp.gcAssistBytes = 0 511 return 512 } 513 // Track time spent in this assist. Since we're on the 514 // system stack, this is non-preemptible, so we can 515 // just measure start and end time. 516 startTime := nanotime() 517 518 decnwait := atomic.Xadd(&work.nwait, -1) 519 if decnwait == work.nproc { 520 println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) 521 throw("nwait > work.nprocs") 522 } 523 524 // gcDrainN requires the caller to be preemptible. 525 casgstatus(gp, _Grunning, _Gwaiting) 526 gp.waitreason = "GC assist marking" 527 528 // drain own cached work first in the hopes that it 529 // will be more cache friendly. 530 gcw := &getg().m.p.ptr().gcw 531 workDone := gcDrainN(gcw, scanWork) 532 // If we are near the end of the mark phase 533 // dispose of the gcw. 534 if gcBlackenPromptly { 535 gcw.dispose() 536 } 537 538 casgstatus(gp, _Gwaiting, _Grunning) 539 540 // Record that we did this much scan work. 541 // 542 // Back out the number of bytes of assist credit that 543 // this scan work counts for. The "1+" is a poor man's 544 // round-up, to ensure this adds credit even if 545 // assistBytesPerWork is very low. 546 gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone)) 547 548 // If this is the last worker and we ran out of work, 549 // signal a completion point. 550 incnwait := atomic.Xadd(&work.nwait, +1) 551 if incnwait > work.nproc { 552 println("runtime: work.nwait=", incnwait, 553 "work.nproc=", work.nproc, 554 "gcBlackenPromptly=", gcBlackenPromptly) 555 throw("work.nwait > work.nproc") 556 } 557 558 if incnwait == work.nproc && !gcMarkWorkAvailable(nil) { 559 // This has reached a background completion point. Set 560 // gp.param to a non-nil value to indicate this. It 561 // doesn't matter what we set it to (it just has to be 562 // a valid pointer). 563 gp.param = unsafe.Pointer(gp) 564 } 565 duration := nanotime() - startTime 566 _p_ := gp.m.p.ptr() 567 _p_.gcAssistTime += duration 568 if _p_.gcAssistTime > gcAssistTimeSlack { 569 atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime) 570 _p_.gcAssistTime = 0 571 } 572 } 573 574 // gcWakeAllAssists wakes all currently blocked assists. This is used 575 // at the end of a GC cycle. gcBlackenEnabled must be false to prevent 576 // new assists from going to sleep after this point. 577 func gcWakeAllAssists() { 578 lock(&work.assistQueue.lock) 579 injectglist(work.assistQueue.head.ptr()) 580 work.assistQueue.head.set(nil) 581 work.assistQueue.tail.set(nil) 582 unlock(&work.assistQueue.lock) 583 } 584 585 // gcParkAssist puts the current goroutine on the assist queue and parks. 586 // 587 // gcParkAssist returns whether the assist is now satisfied. If it 588 // returns false, the caller must retry the assist. 589 // 590 //go:nowritebarrier 591 func gcParkAssist() bool { 592 lock(&work.assistQueue.lock) 593 // If the GC cycle finished while we were getting the lock, 594 // exit the assist. The cycle can't finish while we hold the 595 // lock. 596 if atomic.Load(&gcBlackenEnabled) == 0 { 597 unlock(&work.assistQueue.lock) 598 return true 599 } 600 601 gp := getg() 602 oldHead, oldTail := work.assistQueue.head, work.assistQueue.tail 603 if oldHead == 0 { 604 work.assistQueue.head.set(gp) 605 } else { 606 oldTail.ptr().schedlink.set(gp) 607 } 608 work.assistQueue.tail.set(gp) 609 gp.schedlink.set(nil) 610 611 // Recheck for background credit now that this G is in 612 // the queue, but can still back out. This avoids a 613 // race in case background marking has flushed more 614 // credit since we checked above. 615 if atomic.Loadint64(&gcController.bgScanCredit) > 0 { 616 work.assistQueue.head = oldHead 617 work.assistQueue.tail = oldTail 618 if oldTail != 0 { 619 oldTail.ptr().schedlink.set(nil) 620 } 621 unlock(&work.assistQueue.lock) 622 return false 623 } 624 // Park. 625 goparkunlock(&work.assistQueue.lock, "GC assist wait", traceEvGoBlockGC, 2) 626 return true 627 } 628 629 // gcFlushBgCredit flushes scanWork units of background scan work 630 // credit. This first satisfies blocked assists on the 631 // work.assistQueue and then flushes any remaining credit to 632 // gcController.bgScanCredit. 633 // 634 // Write barriers are disallowed because this is used by gcDrain after 635 // it has ensured that all work is drained and this must preserve that 636 // condition. 637 // 638 //go:nowritebarrierrec 639 func gcFlushBgCredit(scanWork int64) { 640 if work.assistQueue.head == 0 { 641 // Fast path; there are no blocked assists. There's a 642 // small window here where an assist may add itself to 643 // the blocked queue and park. If that happens, we'll 644 // just get it on the next flush. 645 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 646 return 647 } 648 649 scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork) 650 651 lock(&work.assistQueue.lock) 652 gp := work.assistQueue.head.ptr() 653 for gp != nil && scanBytes > 0 { 654 // Note that gp.gcAssistBytes is negative because gp 655 // is in debt. Think carefully about the signs below. 656 if scanBytes+gp.gcAssistBytes >= 0 { 657 // Satisfy this entire assist debt. 658 scanBytes += gp.gcAssistBytes 659 gp.gcAssistBytes = 0 660 xgp := gp 661 gp = gp.schedlink.ptr() 662 // It's important that we *not* put xgp in 663 // runnext. Otherwise, it's possible for user 664 // code to exploit the GC worker's high 665 // scheduler priority to get itself always run 666 // before other goroutines and always in the 667 // fresh quantum started by GC. 668 ready(xgp, 0, false) 669 } else { 670 // Partially satisfy this assist. 671 gp.gcAssistBytes += scanBytes 672 scanBytes = 0 673 // As a heuristic, we move this assist to the 674 // back of the queue so that large assists 675 // can't clog up the assist queue and 676 // substantially delay small assists. 677 xgp := gp 678 gp = gp.schedlink.ptr() 679 if gp == nil { 680 // gp is the only assist in the queue. 681 gp = xgp 682 } else { 683 xgp.schedlink = 0 684 work.assistQueue.tail.ptr().schedlink.set(xgp) 685 work.assistQueue.tail.set(xgp) 686 } 687 break 688 } 689 } 690 work.assistQueue.head.set(gp) 691 if gp == nil { 692 work.assistQueue.tail.set(nil) 693 } 694 695 if scanBytes > 0 { 696 // Convert from scan bytes back to work. 697 scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte) 698 atomic.Xaddint64(&gcController.bgScanCredit, scanWork) 699 } 700 unlock(&work.assistQueue.lock) 701 } 702 703 // scanstack scans gp's stack, greying all pointers found on the stack. 704 // 705 // During mark phase, it also installs stack barriers while traversing 706 // gp's stack. During mark termination, it stops scanning when it 707 // reaches an unhit stack barrier. 708 // 709 // scanstack is marked go:systemstack because it must not be preempted 710 // while using a workbuf. 711 // 712 //go:nowritebarrier 713 //go:systemstack 714 func scanstack(gp *g, gcw *gcWork) { 715 if gp.gcscanvalid { 716 return 717 } 718 719 if readgstatus(gp)&_Gscan == 0 { 720 print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") 721 throw("scanstack - bad status") 722 } 723 724 switch readgstatus(gp) &^ _Gscan { 725 default: 726 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 727 throw("mark - bad status") 728 case _Gdead: 729 return 730 case _Grunning: 731 print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 732 throw("scanstack: goroutine not stopped") 733 case _Grunnable, _Gsyscall, _Gwaiting: 734 // ok 735 } 736 737 if gp == getg() { 738 throw("can't scan our own stack") 739 } 740 mp := gp.m 741 if mp != nil && mp.helpgc != 0 { 742 throw("can't scan gchelper stack") 743 } 744 745 // Shrink the stack if not much of it is being used. During 746 // concurrent GC, we can do this during concurrent mark. 747 if !work.markrootDone { 748 shrinkstack(gp) 749 } 750 751 // Prepare for stack barrier insertion/removal. 752 var sp, barrierOffset, nextBarrier uintptr 753 if gp.syscallsp != 0 { 754 sp = gp.syscallsp 755 } else { 756 sp = gp.sched.sp 757 } 758 gcLockStackBarriers(gp) // Not necessary during mark term, but harmless. 759 switch gcphase { 760 case _GCmark: 761 // Install stack barriers during stack scan. 762 barrierOffset = uintptr(firstStackBarrierOffset) 763 nextBarrier = sp + barrierOffset 764 765 if debug.gcstackbarrieroff > 0 { 766 nextBarrier = ^uintptr(0) 767 } 768 769 // Remove any existing stack barriers before we 770 // install new ones. 771 gcRemoveStackBarriers(gp) 772 773 case _GCmarktermination: 774 if !work.markrootDone { 775 // This is a STW GC. There may be stale stack 776 // barriers from an earlier cycle since we 777 // never passed through mark phase. 778 gcRemoveStackBarriers(gp) 779 } 780 781 if int(gp.stkbarPos) == len(gp.stkbar) { 782 // gp hit all of the stack barriers (or there 783 // were none). Re-scan the whole stack. 784 nextBarrier = ^uintptr(0) 785 } else { 786 // Only re-scan up to the lowest un-hit 787 // barrier. Any frames above this have not 788 // executed since the concurrent scan of gp and 789 // any writes through up-pointers to above 790 // this barrier had write barriers. 791 nextBarrier = gp.stkbar[gp.stkbarPos].savedLRPtr 792 if debugStackBarrier { 793 print("rescan below ", hex(nextBarrier), " in [", hex(sp), ",", hex(gp.stack.hi), ") goid=", gp.goid, "\n") 794 } 795 } 796 797 default: 798 throw("scanstack in wrong phase") 799 } 800 801 // Scan the stack. 802 var cache pcvalueCache 803 n := 0 804 scanframe := func(frame *stkframe, unused unsafe.Pointer) bool { 805 scanframeworker(frame, &cache, gcw) 806 807 if frame.fp > nextBarrier { 808 // We skip installing a barrier on bottom-most 809 // frame because on LR machines this LR is not 810 // on the stack. 811 if gcphase == _GCmark && n != 0 { 812 if gcInstallStackBarrier(gp, frame) { 813 barrierOffset *= 2 814 nextBarrier = sp + barrierOffset 815 } 816 } else if gcphase == _GCmarktermination { 817 // We just scanned a frame containing 818 // a return to a stack barrier. Since 819 // this frame never returned, we can 820 // stop scanning. 821 return false 822 } 823 } 824 n++ 825 826 return true 827 } 828 gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0) 829 tracebackdefers(gp, scanframe, nil) 830 gcUnlockStackBarriers(gp) 831 if gcphase == _GCmark { 832 // gp may have added itself to the rescan list between 833 // when GC started and now. It's clean now, so remove 834 // it. This isn't safe during mark termination because 835 // mark termination is consuming this list, but it's 836 // also not necessary. 837 dequeueRescan(gp) 838 } 839 gp.gcscanvalid = true 840 } 841 842 // Scan a stack frame: local variables and function arguments/results. 843 //go:nowritebarrier 844 func scanframeworker(frame *stkframe, cache *pcvalueCache, gcw *gcWork) { 845 846 f := frame.fn 847 targetpc := frame.continpc 848 if targetpc == 0 { 849 // Frame is dead. 850 return 851 } 852 if _DebugGC > 1 { 853 print("scanframe ", funcname(f), "\n") 854 } 855 if targetpc != f.entry { 856 targetpc-- 857 } 858 pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, cache) 859 if pcdata == -1 { 860 // We do not have a valid pcdata value but there might be a 861 // stackmap for this function. It is likely that we are looking 862 // at the function prologue, assume so and hope for the best. 863 pcdata = 0 864 } 865 866 // Scan local variables if stack frame has been allocated. 867 size := frame.varp - frame.sp 868 var minsize uintptr 869 switch sys.ArchFamily { 870 case sys.ARM64: 871 minsize = sys.SpAlign 872 default: 873 minsize = sys.MinFrameSize 874 } 875 if size > minsize { 876 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) 877 if stkmap == nil || stkmap.n <= 0 { 878 print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n") 879 throw("missing stackmap") 880 } 881 882 // Locals bitmap information, scan just the pointers in locals. 883 if pcdata < 0 || pcdata >= stkmap.n { 884 // don't know where we are 885 print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") 886 throw("scanframe: bad symbol table") 887 } 888 bv := stackmapdata(stkmap, pcdata) 889 size = uintptr(bv.n) * sys.PtrSize 890 scanblock(frame.varp-size, size, bv.bytedata, gcw) 891 } 892 893 // Scan arguments. 894 if frame.arglen > 0 { 895 var bv bitvector 896 if frame.argmap != nil { 897 bv = *frame.argmap 898 } else { 899 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) 900 if stkmap == nil || stkmap.n <= 0 { 901 print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n") 902 throw("missing stackmap") 903 } 904 if pcdata < 0 || pcdata >= stkmap.n { 905 // don't know where we are 906 print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") 907 throw("scanframe: bad symbol table") 908 } 909 bv = stackmapdata(stkmap, pcdata) 910 } 911 scanblock(frame.argp, uintptr(bv.n)*sys.PtrSize, bv.bytedata, gcw) 912 } 913 } 914 915 // queueRescan adds gp to the stack rescan list and clears 916 // gp.gcscanvalid. The caller must own gp and ensure that gp isn't 917 // already on the rescan list. 918 func queueRescan(gp *g) { 919 if debug.gcrescanstacks == 0 { 920 // Clear gcscanvalid to keep assertions happy. 921 // 922 // TODO: Remove gcscanvalid entirely when we remove 923 // stack rescanning. 924 gp.gcscanvalid = false 925 return 926 } 927 928 if gcphase == _GCoff { 929 gp.gcscanvalid = false 930 return 931 } 932 if gp.gcRescan != -1 { 933 throw("g already on rescan list") 934 } 935 936 lock(&work.rescan.lock) 937 gp.gcscanvalid = false 938 939 // Recheck gcphase under the lock in case there was a phase change. 940 if gcphase == _GCoff { 941 unlock(&work.rescan.lock) 942 return 943 } 944 if len(work.rescan.list) == cap(work.rescan.list) { 945 throw("rescan list overflow") 946 } 947 n := len(work.rescan.list) 948 gp.gcRescan = int32(n) 949 work.rescan.list = work.rescan.list[:n+1] 950 work.rescan.list[n].set(gp) 951 unlock(&work.rescan.lock) 952 } 953 954 // dequeueRescan removes gp from the stack rescan list, if gp is on 955 // the rescan list. The caller must own gp. 956 func dequeueRescan(gp *g) { 957 if debug.gcrescanstacks == 0 { 958 return 959 } 960 961 if gp.gcRescan == -1 { 962 return 963 } 964 if gcphase == _GCoff { 965 gp.gcRescan = -1 966 return 967 } 968 969 lock(&work.rescan.lock) 970 if work.rescan.list[gp.gcRescan].ptr() != gp { 971 throw("bad dequeueRescan") 972 } 973 // Careful: gp may itself be the last G on the list. 974 last := work.rescan.list[len(work.rescan.list)-1] 975 work.rescan.list[gp.gcRescan] = last 976 last.ptr().gcRescan = gp.gcRescan 977 gp.gcRescan = -1 978 work.rescan.list = work.rescan.list[:len(work.rescan.list)-1] 979 unlock(&work.rescan.lock) 980 } 981 982 type gcDrainFlags int 983 984 const ( 985 gcDrainUntilPreempt gcDrainFlags = 1 << iota 986 gcDrainNoBlock 987 gcDrainFlushBgCredit 988 989 // gcDrainBlock means neither gcDrainUntilPreempt or 990 // gcDrainNoBlock. It is the default, but callers should use 991 // the constant for documentation purposes. 992 gcDrainBlock gcDrainFlags = 0 993 ) 994 995 // gcDrain scans roots and objects in work buffers, blackening grey 996 // objects until all roots and work buffers have been drained. 997 // 998 // If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt 999 // is set. This implies gcDrainNoBlock. 1000 // 1001 // If flags&gcDrainNoBlock != 0, gcDrain returns as soon as it is 1002 // unable to get more work. Otherwise, it will block until all 1003 // blocking calls are blocked in gcDrain. 1004 // 1005 // If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work 1006 // credit to gcController.bgScanCredit every gcCreditSlack units of 1007 // scan work. 1008 // 1009 //go:nowritebarrier 1010 func gcDrain(gcw *gcWork, flags gcDrainFlags) { 1011 if !writeBarrier.needed { 1012 throw("gcDrain phase incorrect") 1013 } 1014 1015 gp := getg().m.curg 1016 preemptible := flags&gcDrainUntilPreempt != 0 1017 blocking := flags&(gcDrainUntilPreempt|gcDrainNoBlock) == 0 1018 flushBgCredit := flags&gcDrainFlushBgCredit != 0 1019 1020 // Drain root marking jobs. 1021 if work.markrootNext < work.markrootJobs { 1022 for !(preemptible && gp.preempt) { 1023 job := atomic.Xadd(&work.markrootNext, +1) - 1 1024 if job >= work.markrootJobs { 1025 break 1026 } 1027 markroot(gcw, job) 1028 } 1029 } 1030 1031 initScanWork := gcw.scanWork 1032 1033 // Drain heap marking jobs. 1034 for !(preemptible && gp.preempt) { 1035 // Try to keep work available on the global queue. We used to 1036 // check if there were waiting workers, but it's better to 1037 // just keep work available than to make workers wait. In the 1038 // worst case, we'll do O(log(_WorkbufSize)) unnecessary 1039 // balances. 1040 if work.full == 0 { 1041 gcw.balance() 1042 } 1043 1044 var b uintptr 1045 if blocking { 1046 b = gcw.get() 1047 } else { 1048 b = gcw.tryGetFast() 1049 if b == 0 { 1050 b = gcw.tryGet() 1051 } 1052 } 1053 if b == 0 { 1054 // work barrier reached or tryGet failed. 1055 break 1056 } 1057 scanobject(b, gcw) 1058 1059 // Flush background scan work credit to the global 1060 // account if we've accumulated enough locally so 1061 // mutator assists can draw on it. 1062 if gcw.scanWork >= gcCreditSlack { 1063 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 1064 if flushBgCredit { 1065 gcFlushBgCredit(gcw.scanWork - initScanWork) 1066 initScanWork = 0 1067 } 1068 gcw.scanWork = 0 1069 } 1070 } 1071 1072 // In blocking mode, write barriers are not allowed after this 1073 // point because we must preserve the condition that the work 1074 // buffers are empty. 1075 1076 // Flush remaining scan work credit. 1077 if gcw.scanWork > 0 { 1078 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 1079 if flushBgCredit { 1080 gcFlushBgCredit(gcw.scanWork - initScanWork) 1081 } 1082 gcw.scanWork = 0 1083 } 1084 } 1085 1086 // gcDrainN blackens grey objects until it has performed roughly 1087 // scanWork units of scan work or the G is preempted. This is 1088 // best-effort, so it may perform less work if it fails to get a work 1089 // buffer. Otherwise, it will perform at least n units of work, but 1090 // may perform more because scanning is always done in whole object 1091 // increments. It returns the amount of scan work performed. 1092 // 1093 // The caller goroutine must be in a preemptible state (e.g., 1094 // _Gwaiting) to prevent deadlocks during stack scanning. As a 1095 // consequence, this must be called on the system stack. 1096 // 1097 //go:nowritebarrier 1098 //go:systemstack 1099 func gcDrainN(gcw *gcWork, scanWork int64) int64 { 1100 if !writeBarrier.needed { 1101 throw("gcDrainN phase incorrect") 1102 } 1103 1104 // There may already be scan work on the gcw, which we don't 1105 // want to claim was done by this call. 1106 workFlushed := -gcw.scanWork 1107 1108 gp := getg().m.curg 1109 for !gp.preempt && workFlushed+gcw.scanWork < scanWork { 1110 // See gcDrain comment. 1111 if work.full == 0 { 1112 gcw.balance() 1113 } 1114 1115 // This might be a good place to add prefetch code... 1116 // if(wbuf.nobj > 4) { 1117 // PREFETCH(wbuf->obj[wbuf.nobj - 3]; 1118 // } 1119 // 1120 b := gcw.tryGetFast() 1121 if b == 0 { 1122 b = gcw.tryGet() 1123 } 1124 1125 if b == 0 { 1126 // Try to do a root job. 1127 // 1128 // TODO: Assists should get credit for this 1129 // work. 1130 if work.markrootNext < work.markrootJobs { 1131 job := atomic.Xadd(&work.markrootNext, +1) - 1 1132 if job < work.markrootJobs { 1133 markroot(gcw, job) 1134 continue 1135 } 1136 } 1137 // No heap or root jobs. 1138 break 1139 } 1140 scanobject(b, gcw) 1141 1142 // Flush background scan work credit. 1143 if gcw.scanWork >= gcCreditSlack { 1144 atomic.Xaddint64(&gcController.scanWork, gcw.scanWork) 1145 workFlushed += gcw.scanWork 1146 gcw.scanWork = 0 1147 } 1148 } 1149 1150 // Unlike gcDrain, there's no need to flush remaining work 1151 // here because this never flushes to bgScanCredit and 1152 // gcw.dispose will flush any remaining work to scanWork. 1153 1154 return workFlushed + gcw.scanWork 1155 } 1156 1157 // scanblock scans b as scanobject would, but using an explicit 1158 // pointer bitmap instead of the heap bitmap. 1159 // 1160 // This is used to scan non-heap roots, so it does not update 1161 // gcw.bytesMarked or gcw.scanWork. 1162 // 1163 //go:nowritebarrier 1164 func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { 1165 // Use local copies of original parameters, so that a stack trace 1166 // due to one of the throws below shows the original block 1167 // base and extent. 1168 b := b0 1169 n := n0 1170 1171 arena_start := mheap_.arena_start 1172 arena_used := mheap_.arena_used 1173 1174 for i := uintptr(0); i < n; { 1175 // Find bits for the next word. 1176 bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8))) 1177 if bits == 0 { 1178 i += sys.PtrSize * 8 1179 continue 1180 } 1181 for j := 0; j < 8 && i < n; j++ { 1182 if bits&1 != 0 { 1183 // Same work as in scanobject; see comments there. 1184 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1185 if obj != 0 && arena_start <= obj && obj < arena_used { 1186 if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 { 1187 greyobject(obj, b, i, hbits, span, gcw, objIndex) 1188 } 1189 } 1190 } 1191 bits >>= 1 1192 i += sys.PtrSize 1193 } 1194 } 1195 } 1196 1197 // scanobject scans the object starting at b, adding pointers to gcw. 1198 // b must point to the beginning of a heap object or an oblet. 1199 // scanobject consults the GC bitmap for the pointer mask and the 1200 // spans for the size of the object. 1201 // 1202 //go:nowritebarrier 1203 func scanobject(b uintptr, gcw *gcWork) { 1204 // Note that arena_used may change concurrently during 1205 // scanobject and hence scanobject may encounter a pointer to 1206 // a newly allocated heap object that is *not* in 1207 // [start,used). It will not mark this object; however, we 1208 // know that it was just installed by a mutator, which means 1209 // that mutator will execute a write barrier and take care of 1210 // marking it. This is even more pronounced on relaxed memory 1211 // architectures since we access arena_used without barriers 1212 // or synchronization, but the same logic applies. 1213 arena_start := mheap_.arena_start 1214 arena_used := mheap_.arena_used 1215 1216 // Find the bits for b and the size of the object at b. 1217 // 1218 // b is either the beginning of an object, in which case this 1219 // is the size of the object to scan, or it points to an 1220 // oblet, in which case we compute the size to scan below. 1221 hbits := heapBitsForAddr(b) 1222 s := spanOfUnchecked(b) 1223 n := s.elemsize 1224 if n == 0 { 1225 throw("scanobject n == 0") 1226 } 1227 1228 if n > maxObletBytes { 1229 // Large object. Break into oblets for better 1230 // parallelism and lower latency. 1231 if b == s.base() { 1232 // It's possible this is a noscan object (not 1233 // from greyobject, but from other code 1234 // paths), in which case we must *not* enqueue 1235 // oblets since their bitmaps will be 1236 // uninitialized. 1237 if !hbits.hasPointers(n) { 1238 // Bypass the whole scan. 1239 gcw.bytesMarked += uint64(n) 1240 return 1241 } 1242 1243 // Enqueue the other oblets to scan later. 1244 // Some oblets may be in b's scalar tail, but 1245 // these will be marked as "no more pointers", 1246 // so we'll drop out immediately when we go to 1247 // scan those. 1248 for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes { 1249 if !gcw.putFast(oblet) { 1250 gcw.put(oblet) 1251 } 1252 } 1253 } 1254 1255 // Compute the size of the oblet. Since this object 1256 // must be a large object, s.base() is the beginning 1257 // of the object. 1258 n = s.base() + s.elemsize - b 1259 if n > maxObletBytes { 1260 n = maxObletBytes 1261 } 1262 } 1263 1264 var i uintptr 1265 for i = 0; i < n; i += sys.PtrSize { 1266 // Find bits for this word. 1267 if i != 0 { 1268 // Avoid needless hbits.next() on last iteration. 1269 hbits = hbits.next() 1270 } 1271 // Load bits once. See CL 22712 and issue 16973 for discussion. 1272 bits := hbits.bits() 1273 // During checkmarking, 1-word objects store the checkmark 1274 // in the type bit for the one word. The only one-word objects 1275 // are pointers, or else they'd be merged with other non-pointer 1276 // data into larger allocations. 1277 if i != 1*sys.PtrSize && bits&bitScan == 0 { 1278 break // no more pointers in this object 1279 } 1280 if bits&bitPointer == 0 { 1281 continue // not a pointer 1282 } 1283 1284 // Work here is duplicated in scanblock and above. 1285 // If you make changes here, make changes there too. 1286 obj := *(*uintptr)(unsafe.Pointer(b + i)) 1287 1288 // At this point we have extracted the next potential pointer. 1289 // Check if it points into heap and not back at the current object. 1290 if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n { 1291 // Mark the object. 1292 if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 { 1293 greyobject(obj, b, i, hbits, span, gcw, objIndex) 1294 } 1295 } 1296 } 1297 gcw.bytesMarked += uint64(n) 1298 gcw.scanWork += int64(i) 1299 } 1300 1301 // Shade the object if it isn't already. 1302 // The object is not nil and known to be in the heap. 1303 // Preemption must be disabled. 1304 //go:nowritebarrier 1305 func shade(b uintptr) { 1306 if obj, hbits, span, objIndex := heapBitsForObject(b, 0, 0); obj != 0 { 1307 gcw := &getg().m.p.ptr().gcw 1308 greyobject(obj, 0, 0, hbits, span, gcw, objIndex) 1309 if gcphase == _GCmarktermination || gcBlackenPromptly { 1310 // Ps aren't allowed to cache work during mark 1311 // termination. 1312 gcw.dispose() 1313 } 1314 } 1315 } 1316 1317 // obj is the start of an object with mark mbits. 1318 // If it isn't already marked, mark it and enqueue into gcw. 1319 // base and off are for debugging only and could be removed. 1320 //go:nowritebarrierrec 1321 func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork, objIndex uintptr) { 1322 // obj should be start of allocation, and so must be at least pointer-aligned. 1323 if obj&(sys.PtrSize-1) != 0 { 1324 throw("greyobject: obj not pointer-aligned") 1325 } 1326 mbits := span.markBitsForIndex(objIndex) 1327 1328 if useCheckmark { 1329 if !mbits.isMarked() { 1330 printlock() 1331 print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n") 1332 print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n") 1333 1334 // Dump the source (base) object 1335 gcDumpObject("base", base, off) 1336 1337 // Dump the object 1338 gcDumpObject("obj", obj, ^uintptr(0)) 1339 1340 throw("checkmark found unmarked object") 1341 } 1342 if hbits.isCheckmarked(span.elemsize) { 1343 return 1344 } 1345 hbits.setCheckmarked(span.elemsize) 1346 if !hbits.isCheckmarked(span.elemsize) { 1347 throw("setCheckmarked and isCheckmarked disagree") 1348 } 1349 } else { 1350 if debug.gccheckmark > 0 && span.isFree(objIndex) { 1351 print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n") 1352 gcDumpObject("base", base, off) 1353 gcDumpObject("obj", obj, ^uintptr(0)) 1354 throw("marking free object") 1355 } 1356 1357 // If marked we have nothing to do. 1358 if mbits.isMarked() { 1359 return 1360 } 1361 // mbits.setMarked() // Avoid extra call overhead with manual inlining. 1362 atomic.Or8(mbits.bytep, mbits.mask) 1363 // If this is a noscan object, fast-track it to black 1364 // instead of greying it. 1365 if !hbits.hasPointers(span.elemsize) { 1366 gcw.bytesMarked += uint64(span.elemsize) 1367 return 1368 } 1369 } 1370 1371 // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but 1372 // seems like a nice optimization that can be added back in. 1373 // There needs to be time between the PREFETCH and the use. 1374 // Previously we put the obj in an 8 element buffer that is drained at a rate 1375 // to give the PREFETCH time to do its work. 1376 // Use of PREFETCHNTA might be more appropriate than PREFETCH 1377 if !gcw.putFast(obj) { 1378 gcw.put(obj) 1379 } 1380 } 1381 1382 // gcDumpObject dumps the contents of obj for debugging and marks the 1383 // field at byte offset off in obj. 1384 func gcDumpObject(label string, obj, off uintptr) { 1385 if obj < mheap_.arena_start || obj >= mheap_.arena_used { 1386 print(label, "=", hex(obj), " is not in the Go heap\n") 1387 return 1388 } 1389 k := obj >> _PageShift 1390 x := k 1391 x -= mheap_.arena_start >> _PageShift 1392 s := mheap_.spans[x] 1393 print(label, "=", hex(obj), " k=", hex(k)) 1394 if s == nil { 1395 print(" s=nil\n") 1396 return 1397 } 1398 print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, " s.state=") 1399 if 0 <= s.state && int(s.state) < len(mSpanStateNames) { 1400 print(mSpanStateNames[s.state], "\n") 1401 } else { 1402 print("unknown(", s.state, ")\n") 1403 } 1404 1405 skipped := false 1406 size := s.elemsize 1407 if s.state == _MSpanStack && size == 0 { 1408 // We're printing something from a stack frame. We 1409 // don't know how big it is, so just show up to an 1410 // including off. 1411 size = off + sys.PtrSize 1412 } 1413 for i := uintptr(0); i < size; i += sys.PtrSize { 1414 // For big objects, just print the beginning (because 1415 // that usually hints at the object's type) and the 1416 // fields around off. 1417 if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) { 1418 skipped = true 1419 continue 1420 } 1421 if skipped { 1422 print(" ...\n") 1423 skipped = false 1424 } 1425 print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i)))) 1426 if i == off { 1427 print(" <==") 1428 } 1429 print("\n") 1430 } 1431 if skipped { 1432 print(" ...\n") 1433 } 1434 } 1435 1436 // gcmarknewobject marks a newly allocated object black. obj must 1437 // not contain any non-nil pointers. 1438 // 1439 // This is nosplit so it can manipulate a gcWork without preemption. 1440 // 1441 //go:nowritebarrier 1442 //go:nosplit 1443 func gcmarknewobject(obj, size, scanSize uintptr) { 1444 if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen. 1445 throw("gcmarknewobject called while doing checkmark") 1446 } 1447 markBitsForAddr(obj).setMarked() 1448 gcw := &getg().m.p.ptr().gcw 1449 gcw.bytesMarked += uint64(size) 1450 gcw.scanWork += int64(scanSize) 1451 if gcBlackenPromptly { 1452 // There shouldn't be anything in the work queue, but 1453 // we still need to flush stats. 1454 gcw.dispose() 1455 } 1456 } 1457 1458 // gcMarkTinyAllocs greys all active tiny alloc blocks. 1459 // 1460 // The world must be stopped. 1461 func gcMarkTinyAllocs() { 1462 for _, p := range &allp { 1463 if p == nil || p.status == _Pdead { 1464 break 1465 } 1466 c := p.mcache 1467 if c == nil || c.tiny == 0 { 1468 continue 1469 } 1470 _, hbits, span, objIndex := heapBitsForObject(c.tiny, 0, 0) 1471 gcw := &p.gcw 1472 greyobject(c.tiny, 0, 0, hbits, span, gcw, objIndex) 1473 if gcBlackenPromptly { 1474 gcw.dispose() 1475 } 1476 } 1477 } 1478 1479 // Checkmarking 1480 1481 // To help debug the concurrent GC we remark with the world 1482 // stopped ensuring that any object encountered has their normal 1483 // mark bit set. To do this we use an orthogonal bit 1484 // pattern to indicate the object is marked. The following pattern 1485 // uses the upper two bits in the object's boundary nibble. 1486 // 01: scalar not marked 1487 // 10: pointer not marked 1488 // 11: pointer marked 1489 // 00: scalar marked 1490 // Xoring with 01 will flip the pattern from marked to unmarked and vica versa. 1491 // The higher bit is 1 for pointers and 0 for scalars, whether the object 1492 // is marked or not. 1493 // The first nibble no longer holds the typeDead pattern indicating that the 1494 // there are no more pointers in the object. This information is held 1495 // in the second nibble. 1496 1497 // If useCheckmark is true, marking of an object uses the 1498 // checkmark bits (encoding above) instead of the standard 1499 // mark bits. 1500 var useCheckmark = false 1501 1502 //go:nowritebarrier 1503 func initCheckmarks() { 1504 useCheckmark = true 1505 for _, s := range mheap_.allspans { 1506 if s.state == _MSpanInUse { 1507 heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout()) 1508 } 1509 } 1510 } 1511 1512 func clearCheckmarks() { 1513 useCheckmark = false 1514 for _, s := range mheap_.allspans { 1515 if s.state == _MSpanInUse { 1516 heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout()) 1517 } 1518 } 1519 }