github.com/panjjo/go@v0.0.0-20161104043856-d62b31386338/src/runtime/proc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/atomic" 9 "runtime/internal/sys" 10 "unsafe" 11 ) 12 13 var buildVersion = sys.TheVersion 14 15 // Goroutine scheduler 16 // The scheduler's job is to distribute ready-to-run goroutines over worker threads. 17 // 18 // The main concepts are: 19 // G - goroutine. 20 // M - worker thread, or machine. 21 // P - processor, a resource that is required to execute Go code. 22 // M must have an associated P to execute Go code, however it can be 23 // blocked or in a syscall w/o an associated P. 24 // 25 // Design doc at https://golang.org/s/go11sched. 26 27 // Worker thread parking/unparking. 28 // We need to balance between keeping enough running worker threads to utilize 29 // available hardware parallelism and parking excessive running worker threads 30 // to conserve CPU resources and power. This is not simple for two reasons: 31 // (1) scheduler state is intentionally distributed (in particular, per-P work 32 // queues), so it is not possible to compute global predicates on fast paths; 33 // (2) for optimal thread management we would need to know the future (don't park 34 // a worker thread when a new goroutine will be readied in near future). 35 // 36 // Three rejected approaches that would work badly: 37 // 1. Centralize all scheduler state (would inhibit scalability). 38 // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there 39 // is a spare P, unpark a thread and handoff it the thread and the goroutine. 40 // This would lead to thread state thrashing, as the thread that readied the 41 // goroutine can be out of work the very next moment, we will need to park it. 42 // Also, it would destroy locality of computation as we want to preserve 43 // dependent goroutines on the same thread; and introduce additional latency. 44 // 3. Unpark an additional thread whenever we ready a goroutine and there is an 45 // idle P, but don't do handoff. This would lead to excessive thread parking/ 46 // unparking as the additional threads will instantly park without discovering 47 // any work to do. 48 // 49 // The current approach: 50 // We unpark an additional thread when we ready a goroutine if (1) there is an 51 // idle P and there are no "spinning" worker threads. A worker thread is considered 52 // spinning if it is out of local work and did not find work in global run queue/ 53 // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning. 54 // Threads unparked this way are also considered spinning; we don't do goroutine 55 // handoff so such threads are out of work initially. Spinning threads do some 56 // spinning looking for work in per-P run queues before parking. If a spinning 57 // thread finds work it takes itself out of the spinning state and proceeds to 58 // execution. If it does not find work it takes itself out of the spinning state 59 // and then parks. 60 // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark 61 // new threads when readying goroutines. To compensate for that, if the last spinning 62 // thread finds work and stops spinning, it must unpark a new spinning thread. 63 // This approach smooths out unjustified spikes of thread unparking, 64 // but at the same time guarantees eventual maximal CPU parallelism utilization. 65 // 66 // The main implementation complication is that we need to be very careful during 67 // spinning->non-spinning thread transition. This transition can race with submission 68 // of a new goroutine, and either one part or another needs to unpark another worker 69 // thread. If they both fail to do that, we can end up with semi-persistent CPU 70 // underutilization. The general pattern for goroutine readying is: submit a goroutine 71 // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning. 72 // The general pattern for spinning->non-spinning transition is: decrement nmspinning, 73 // #StoreLoad-style memory barrier, check all per-P work queues for new work. 74 // Note that all this complexity does not apply to global run queue as we are not 75 // sloppy about thread unparking when submitting to global queue. Also see comments 76 // for nmspinning manipulation. 77 78 var ( 79 m0 m 80 g0 g 81 raceprocctx0 uintptr 82 ) 83 84 //go:linkname runtime_init runtime.init 85 func runtime_init() 86 87 //go:linkname main_init main.init 88 func main_init() 89 90 // main_init_done is a signal used by cgocallbackg that initialization 91 // has been completed. It is made before _cgo_notify_runtime_init_done, 92 // so all cgo calls can rely on it existing. When main_init is complete, 93 // it is closed, meaning cgocallbackg can reliably receive from it. 94 var main_init_done chan bool 95 96 //go:linkname main_main main.main 97 func main_main() 98 99 // runtimeInitTime is the nanotime() at which the runtime started. 100 var runtimeInitTime int64 101 102 // Value to use for signal mask for newly created M's. 103 var initSigmask sigset 104 105 // The main goroutine. 106 func main() { 107 g := getg() 108 109 // Racectx of m0->g0 is used only as the parent of the main goroutine. 110 // It must not be used for anything else. 111 g.m.g0.racectx = 0 112 113 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. 114 // Using decimal instead of binary GB and MB because 115 // they look nicer in the stack overflow failure message. 116 if sys.PtrSize == 8 { 117 maxstacksize = 1000000000 118 } else { 119 maxstacksize = 250000000 120 } 121 122 // Record when the world started. 123 runtimeInitTime = nanotime() 124 125 systemstack(func() { 126 newm(sysmon, nil) 127 }) 128 129 // Lock the main goroutine onto this, the main OS thread, 130 // during initialization. Most programs won't care, but a few 131 // do require certain calls to be made by the main thread. 132 // Those can arrange for main.main to run in the main thread 133 // by calling runtime.LockOSThread during initialization 134 // to preserve the lock. 135 lockOSThread() 136 137 if g.m != &m0 { 138 throw("runtime.main not on m0") 139 } 140 141 runtime_init() // must be before defer 142 143 // Defer unlock so that runtime.Goexit during init does the unlock too. 144 needUnlock := true 145 defer func() { 146 if needUnlock { 147 unlockOSThread() 148 } 149 }() 150 151 gcenable() 152 153 main_init_done = make(chan bool) 154 if iscgo { 155 if _cgo_thread_start == nil { 156 throw("_cgo_thread_start missing") 157 } 158 if GOOS != "windows" { 159 if _cgo_setenv == nil { 160 throw("_cgo_setenv missing") 161 } 162 if _cgo_unsetenv == nil { 163 throw("_cgo_unsetenv missing") 164 } 165 } 166 if _cgo_notify_runtime_init_done == nil { 167 throw("_cgo_notify_runtime_init_done missing") 168 } 169 cgocall(_cgo_notify_runtime_init_done, nil) 170 } 171 172 fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime 173 fn() 174 close(main_init_done) 175 176 needUnlock = false 177 unlockOSThread() 178 179 if isarchive || islibrary { 180 // A program compiled with -buildmode=c-archive or c-shared 181 // has a main, but it is not executed. 182 return 183 } 184 fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime 185 fn() 186 if raceenabled { 187 racefini() 188 } 189 190 // Make racy client program work: if panicking on 191 // another goroutine at the same time as main returns, 192 // let the other goroutine finish printing the panic trace. 193 // Once it does, it will exit. See issue 3934. 194 if panicking != 0 { 195 gopark(nil, nil, "panicwait", traceEvGoStop, 1) 196 } 197 198 exit(0) 199 for { 200 var x *int32 201 *x = 0 202 } 203 } 204 205 // os_beforeExit is called from os.Exit(0). 206 //go:linkname os_beforeExit os.runtime_beforeExit 207 func os_beforeExit() { 208 if raceenabled { 209 racefini() 210 } 211 } 212 213 // start forcegc helper goroutine 214 func init() { 215 go forcegchelper() 216 } 217 218 func forcegchelper() { 219 forcegc.g = getg() 220 for { 221 lock(&forcegc.lock) 222 if forcegc.idle != 0 { 223 throw("forcegc: phase error") 224 } 225 atomic.Store(&forcegc.idle, 1) 226 goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1) 227 // this goroutine is explicitly resumed by sysmon 228 if debug.gctrace > 0 { 229 println("GC forced") 230 } 231 gcStart(gcBackgroundMode, true) 232 } 233 } 234 235 //go:nosplit 236 237 // Gosched yields the processor, allowing other goroutines to run. It does not 238 // suspend the current goroutine, so execution resumes automatically. 239 func Gosched() { 240 mcall(gosched_m) 241 } 242 243 // Puts the current goroutine into a waiting state and calls unlockf. 244 // If unlockf returns false, the goroutine is resumed. 245 // unlockf must not access this G's stack, as it may be moved between 246 // the call to gopark and the call to unlockf. 247 func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) { 248 mp := acquirem() 249 gp := mp.curg 250 status := readgstatus(gp) 251 if status != _Grunning && status != _Gscanrunning { 252 throw("gopark: bad g status") 253 } 254 mp.waitlock = lock 255 mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf)) 256 gp.waitreason = reason 257 mp.waittraceev = traceEv 258 mp.waittraceskip = traceskip 259 releasem(mp) 260 // can't do anything that might move the G between Ms here. 261 mcall(park_m) 262 } 263 264 // Puts the current goroutine into a waiting state and unlocks the lock. 265 // The goroutine can be made runnable again by calling goready(gp). 266 func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) { 267 gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) 268 } 269 270 func goready(gp *g, traceskip int) { 271 systemstack(func() { 272 ready(gp, traceskip, true) 273 }) 274 } 275 276 //go:nosplit 277 func acquireSudog() *sudog { 278 // Delicate dance: the semaphore implementation calls 279 // acquireSudog, acquireSudog calls new(sudog), 280 // new calls malloc, malloc can call the garbage collector, 281 // and the garbage collector calls the semaphore implementation 282 // in stopTheWorld. 283 // Break the cycle by doing acquirem/releasem around new(sudog). 284 // The acquirem/releasem increments m.locks during new(sudog), 285 // which keeps the garbage collector from being invoked. 286 mp := acquirem() 287 pp := mp.p.ptr() 288 if len(pp.sudogcache) == 0 { 289 lock(&sched.sudoglock) 290 // First, try to grab a batch from central cache. 291 for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { 292 s := sched.sudogcache 293 sched.sudogcache = s.next 294 s.next = nil 295 pp.sudogcache = append(pp.sudogcache, s) 296 } 297 unlock(&sched.sudoglock) 298 // If the central cache is empty, allocate a new one. 299 if len(pp.sudogcache) == 0 { 300 pp.sudogcache = append(pp.sudogcache, new(sudog)) 301 } 302 } 303 n := len(pp.sudogcache) 304 s := pp.sudogcache[n-1] 305 pp.sudogcache[n-1] = nil 306 pp.sudogcache = pp.sudogcache[:n-1] 307 if s.elem != nil { 308 throw("acquireSudog: found s.elem != nil in cache") 309 } 310 releasem(mp) 311 return s 312 } 313 314 //go:nosplit 315 func releaseSudog(s *sudog) { 316 if s.elem != nil { 317 throw("runtime: sudog with non-nil elem") 318 } 319 if s.selectdone != nil { 320 throw("runtime: sudog with non-nil selectdone") 321 } 322 if s.next != nil { 323 throw("runtime: sudog with non-nil next") 324 } 325 if s.prev != nil { 326 throw("runtime: sudog with non-nil prev") 327 } 328 if s.waitlink != nil { 329 throw("runtime: sudog with non-nil waitlink") 330 } 331 if s.c != nil { 332 throw("runtime: sudog with non-nil c") 333 } 334 gp := getg() 335 if gp.param != nil { 336 throw("runtime: releaseSudog with non-nil gp.param") 337 } 338 mp := acquirem() // avoid rescheduling to another P 339 pp := mp.p.ptr() 340 if len(pp.sudogcache) == cap(pp.sudogcache) { 341 // Transfer half of local cache to the central cache. 342 var first, last *sudog 343 for len(pp.sudogcache) > cap(pp.sudogcache)/2 { 344 n := len(pp.sudogcache) 345 p := pp.sudogcache[n-1] 346 pp.sudogcache[n-1] = nil 347 pp.sudogcache = pp.sudogcache[:n-1] 348 if first == nil { 349 first = p 350 } else { 351 last.next = p 352 } 353 last = p 354 } 355 lock(&sched.sudoglock) 356 last.next = sched.sudogcache 357 sched.sudogcache = first 358 unlock(&sched.sudoglock) 359 } 360 pp.sudogcache = append(pp.sudogcache, s) 361 releasem(mp) 362 } 363 364 // funcPC returns the entry PC of the function f. 365 // It assumes that f is a func value. Otherwise the behavior is undefined. 366 //go:nosplit 367 func funcPC(f interface{}) uintptr { 368 return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize)) 369 } 370 371 // called from assembly 372 func badmcall(fn func(*g)) { 373 throw("runtime: mcall called on m->g0 stack") 374 } 375 376 func badmcall2(fn func(*g)) { 377 throw("runtime: mcall function returned") 378 } 379 380 func badreflectcall() { 381 panic(plainError("arg size to reflect.call more than 1GB")) 382 } 383 384 var badmorestackg0Msg = "fatal: morestack on g0\n" 385 386 //go:nosplit 387 //go:nowritebarrierrec 388 func badmorestackg0() { 389 sp := stringStructOf(&badmorestackg0Msg) 390 write(2, sp.str, int32(sp.len)) 391 } 392 393 var badmorestackgsignalMsg = "fatal: morestack on gsignal\n" 394 395 //go:nosplit 396 //go:nowritebarrierrec 397 func badmorestackgsignal() { 398 sp := stringStructOf(&badmorestackgsignalMsg) 399 write(2, sp.str, int32(sp.len)) 400 } 401 402 //go:nosplit 403 func badctxt() { 404 throw("ctxt != 0") 405 } 406 407 func lockedOSThread() bool { 408 gp := getg() 409 return gp.lockedm != nil && gp.m.lockedg != nil 410 } 411 412 var ( 413 allgs []*g 414 allglock mutex 415 ) 416 417 func allgadd(gp *g) { 418 if readgstatus(gp) == _Gidle { 419 throw("allgadd: bad status Gidle") 420 } 421 422 lock(&allglock) 423 allgs = append(allgs, gp) 424 allglen = uintptr(len(allgs)) 425 426 // Grow GC rescan list if necessary. 427 if len(allgs) > cap(work.rescan.list) { 428 lock(&work.rescan.lock) 429 l := work.rescan.list 430 // Let append do the heavy lifting, but keep the 431 // length the same. 432 work.rescan.list = append(l[:cap(l)], 0)[:len(l)] 433 unlock(&work.rescan.lock) 434 } 435 unlock(&allglock) 436 } 437 438 const ( 439 // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. 440 // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. 441 _GoidCacheBatch = 16 442 ) 443 444 // The bootstrap sequence is: 445 // 446 // call osinit 447 // call schedinit 448 // make & queue new G 449 // call runtime·mstart 450 // 451 // The new G calls runtime·main. 452 func schedinit() { 453 // raceinit must be the first call to race detector. 454 // In particular, it must be done before mallocinit below calls racemapshadow. 455 _g_ := getg() 456 if raceenabled { 457 _g_.racectx, raceprocctx0 = raceinit() 458 } 459 460 sched.maxmcount = 10000 461 462 tracebackinit() 463 moduledataverify() 464 stackinit() 465 mallocinit() 466 mcommoninit(_g_.m) 467 alginit() // maps must not be used before this call 468 modulesinit() // provides activeModules 469 typelinksinit() // uses maps, activeModules 470 itabsinit() // uses activeModules 471 472 msigsave(_g_.m) 473 initSigmask = _g_.m.sigmask 474 475 goargs() 476 goenvs() 477 parsedebugvars() 478 gcinit() 479 480 sched.lastpoll = uint64(nanotime()) 481 procs := ncpu 482 if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { 483 procs = n 484 } 485 if procs > _MaxGomaxprocs { 486 procs = _MaxGomaxprocs 487 } 488 if procresize(procs) != nil { 489 throw("unknown runnable goroutine during bootstrap") 490 } 491 492 if buildVersion == "" { 493 // Condition should never trigger. This code just serves 494 // to ensure runtime·buildVersion is kept in the resulting binary. 495 buildVersion = "unknown" 496 } 497 } 498 499 func dumpgstatus(gp *g) { 500 _g_ := getg() 501 print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 502 print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") 503 } 504 505 func checkmcount() { 506 // sched lock is held 507 if sched.mcount > sched.maxmcount { 508 print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") 509 throw("thread exhaustion") 510 } 511 } 512 513 func mcommoninit(mp *m) { 514 _g_ := getg() 515 516 // g0 stack won't make sense for user (and is not necessary unwindable). 517 if _g_ != _g_.m.g0 { 518 callers(1, mp.createstack[:]) 519 } 520 521 mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks()) 522 if mp.fastrand == 0 { 523 mp.fastrand = 0x49f6428a 524 } 525 526 lock(&sched.lock) 527 mp.id = sched.mcount 528 sched.mcount++ 529 checkmcount() 530 mpreinit(mp) 531 if mp.gsignal != nil { 532 mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard 533 } 534 535 // Add to allm so garbage collector doesn't free g->m 536 // when it is just in a register or thread-local storage. 537 mp.alllink = allm 538 539 // NumCgoCall() iterates over allm w/o schedlock, 540 // so we need to publish it safely. 541 atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) 542 unlock(&sched.lock) 543 544 // Allocate memory to hold a cgo traceback if the cgo call crashes. 545 if iscgo || GOOS == "solaris" || GOOS == "windows" { 546 mp.cgoCallers = new(cgoCallers) 547 } 548 } 549 550 // Mark gp ready to run. 551 func ready(gp *g, traceskip int, next bool) { 552 if trace.enabled { 553 traceGoUnpark(gp, traceskip) 554 } 555 556 status := readgstatus(gp) 557 558 // Mark runnable. 559 _g_ := getg() 560 _g_.m.locks++ // disable preemption because it can be holding p in a local var 561 if status&^_Gscan != _Gwaiting { 562 dumpgstatus(gp) 563 throw("bad g->status in ready") 564 } 565 566 // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq 567 casgstatus(gp, _Gwaiting, _Grunnable) 568 runqput(_g_.m.p.ptr(), gp, next) 569 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { 570 wakep() 571 } 572 _g_.m.locks-- 573 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack 574 _g_.stackguard0 = stackPreempt 575 } 576 } 577 578 func gcprocs() int32 { 579 // Figure out how many CPUs to use during GC. 580 // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. 581 lock(&sched.lock) 582 n := gomaxprocs 583 if n > ncpu { 584 n = ncpu 585 } 586 if n > _MaxGcproc { 587 n = _MaxGcproc 588 } 589 if n > sched.nmidle+1 { // one M is currently running 590 n = sched.nmidle + 1 591 } 592 unlock(&sched.lock) 593 return n 594 } 595 596 func needaddgcproc() bool { 597 lock(&sched.lock) 598 n := gomaxprocs 599 if n > ncpu { 600 n = ncpu 601 } 602 if n > _MaxGcproc { 603 n = _MaxGcproc 604 } 605 n -= sched.nmidle + 1 // one M is currently running 606 unlock(&sched.lock) 607 return n > 0 608 } 609 610 func helpgc(nproc int32) { 611 _g_ := getg() 612 lock(&sched.lock) 613 pos := 0 614 for n := int32(1); n < nproc; n++ { // one M is currently running 615 if allp[pos].mcache == _g_.m.mcache { 616 pos++ 617 } 618 mp := mget() 619 if mp == nil { 620 throw("gcprocs inconsistency") 621 } 622 mp.helpgc = n 623 mp.p.set(allp[pos]) 624 mp.mcache = allp[pos].mcache 625 pos++ 626 notewakeup(&mp.park) 627 } 628 unlock(&sched.lock) 629 } 630 631 // freezeStopWait is a large value that freezetheworld sets 632 // sched.stopwait to in order to request that all Gs permanently stop. 633 const freezeStopWait = 0x7fffffff 634 635 // Similar to stopTheWorld but best-effort and can be called several times. 636 // There is no reverse operation, used during crashing. 637 // This function must not lock any mutexes. 638 func freezetheworld() { 639 // stopwait and preemption requests can be lost 640 // due to races with concurrently executing threads, 641 // so try several times 642 for i := 0; i < 5; i++ { 643 // this should tell the scheduler to not start any new goroutines 644 sched.stopwait = freezeStopWait 645 atomic.Store(&sched.gcwaiting, 1) 646 // this should stop running goroutines 647 if !preemptall() { 648 break // no running goroutines 649 } 650 usleep(1000) 651 } 652 // to be sure 653 usleep(1000) 654 preemptall() 655 usleep(1000) 656 } 657 658 func isscanstatus(status uint32) bool { 659 if status == _Gscan { 660 throw("isscanstatus: Bad status Gscan") 661 } 662 return status&_Gscan == _Gscan 663 } 664 665 // All reads and writes of g's status go through readgstatus, casgstatus 666 // castogscanstatus, casfrom_Gscanstatus. 667 //go:nosplit 668 func readgstatus(gp *g) uint32 { 669 return atomic.Load(&gp.atomicstatus) 670 } 671 672 // Ownership of gcscanvalid: 673 // 674 // If gp is running (meaning status == _Grunning or _Grunning|_Gscan), 675 // then gp owns gp.gcscanvalid, and other goroutines must not modify it. 676 // 677 // Otherwise, a second goroutine can lock the scan state by setting _Gscan 678 // in the status bit and then modify gcscanvalid, and then unlock the scan state. 679 // 680 // Note that the first condition implies an exception to the second: 681 // if a second goroutine changes gp's status to _Grunning|_Gscan, 682 // that second goroutine still does not have the right to modify gcscanvalid. 683 684 // The Gscanstatuses are acting like locks and this releases them. 685 // If it proves to be a performance hit we should be able to make these 686 // simple atomic stores but for now we are going to throw if 687 // we see an inconsistent state. 688 func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { 689 success := false 690 691 // Check that transition is valid. 692 switch oldval { 693 default: 694 print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 695 dumpgstatus(gp) 696 throw("casfrom_Gscanstatus:top gp->status is not in scan state") 697 case _Gscanrunnable, 698 _Gscanwaiting, 699 _Gscanrunning, 700 _Gscansyscall: 701 if newval == oldval&^_Gscan { 702 success = atomic.Cas(&gp.atomicstatus, oldval, newval) 703 } 704 } 705 if !success { 706 print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 707 dumpgstatus(gp) 708 throw("casfrom_Gscanstatus: gp->status is not in scan state") 709 } 710 } 711 712 // This will return false if the gp is not in the expected status and the cas fails. 713 // This acts like a lock acquire while the casfromgstatus acts like a lock release. 714 func castogscanstatus(gp *g, oldval, newval uint32) bool { 715 switch oldval { 716 case _Grunnable, 717 _Grunning, 718 _Gwaiting, 719 _Gsyscall: 720 if newval == oldval|_Gscan { 721 return atomic.Cas(&gp.atomicstatus, oldval, newval) 722 } 723 } 724 print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") 725 throw("castogscanstatus") 726 panic("not reached") 727 } 728 729 // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus 730 // and casfrom_Gscanstatus instead. 731 // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that 732 // put it in the Gscan state is finished. 733 //go:nosplit 734 func casgstatus(gp *g, oldval, newval uint32) { 735 if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { 736 systemstack(func() { 737 print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") 738 throw("casgstatus: bad incoming values") 739 }) 740 } 741 742 if oldval == _Grunning && gp.gcscanvalid { 743 // If oldvall == _Grunning, then the actual status must be 744 // _Grunning or _Grunning|_Gscan; either way, 745 // we own gp.gcscanvalid, so it's safe to read. 746 // gp.gcscanvalid must not be true when we are running. 747 print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n") 748 throw("casgstatus") 749 } 750 751 // See http://golang.org/cl/21503 for justification of the yield delay. 752 const yieldDelay = 5 * 1000 753 var nextYield int64 754 755 // loop if gp->atomicstatus is in a scan state giving 756 // GC time to finish and change the state to oldval. 757 for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ { 758 if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { 759 systemstack(func() { 760 throw("casgstatus: waiting for Gwaiting but is Grunnable") 761 }) 762 } 763 // Help GC if needed. 764 // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) { 765 // gp.preemptscan = false 766 // systemstack(func() { 767 // gcphasework(gp) 768 // }) 769 // } 770 // But meanwhile just yield. 771 if i == 0 { 772 nextYield = nanotime() + yieldDelay 773 } 774 if nanotime() < nextYield { 775 for x := 0; x < 10 && gp.atomicstatus != oldval; x++ { 776 procyield(1) 777 } 778 } else { 779 osyield() 780 nextYield = nanotime() + yieldDelay/2 781 } 782 } 783 if newval == _Grunning && gp.gcscanvalid { 784 // Run queueRescan on the system stack so it has more space. 785 systemstack(func() { queueRescan(gp) }) 786 } 787 } 788 789 // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. 790 // Returns old status. Cannot call casgstatus directly, because we are racing with an 791 // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, 792 // it might have become Grunnable by the time we get to the cas. If we called casgstatus, 793 // it would loop waiting for the status to go back to Gwaiting, which it never will. 794 //go:nosplit 795 func casgcopystack(gp *g) uint32 { 796 for { 797 oldstatus := readgstatus(gp) &^ _Gscan 798 if oldstatus != _Gwaiting && oldstatus != _Grunnable { 799 throw("copystack: bad status, not Gwaiting or Grunnable") 800 } 801 if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) { 802 return oldstatus 803 } 804 } 805 } 806 807 // scang blocks until gp's stack has been scanned. 808 // It might be scanned by scang or it might be scanned by the goroutine itself. 809 // Either way, the stack scan has completed when scang returns. 810 func scang(gp *g, gcw *gcWork) { 811 // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone. 812 // Nothing is racing with us now, but gcscandone might be set to true left over 813 // from an earlier round of stack scanning (we scan twice per GC). 814 // We use gcscandone to record whether the scan has been done during this round. 815 // It is important that the scan happens exactly once: if called twice, 816 // the installation of stack barriers will detect the double scan and die. 817 818 gp.gcscandone = false 819 820 // See http://golang.org/cl/21503 for justification of the yield delay. 821 const yieldDelay = 10 * 1000 822 var nextYield int64 823 824 // Endeavor to get gcscandone set to true, 825 // either by doing the stack scan ourselves or by coercing gp to scan itself. 826 // gp.gcscandone can transition from false to true when we're not looking 827 // (if we asked for preemption), so any time we lock the status using 828 // castogscanstatus we have to double-check that the scan is still not done. 829 loop: 830 for i := 0; !gp.gcscandone; i++ { 831 switch s := readgstatus(gp); s { 832 default: 833 dumpgstatus(gp) 834 throw("stopg: invalid status") 835 836 case _Gdead: 837 // No stack. 838 gp.gcscandone = true 839 break loop 840 841 case _Gcopystack: 842 // Stack being switched. Go around again. 843 844 case _Grunnable, _Gsyscall, _Gwaiting: 845 // Claim goroutine by setting scan bit. 846 // Racing with execution or readying of gp. 847 // The scan bit keeps them from running 848 // the goroutine until we're done. 849 if castogscanstatus(gp, s, s|_Gscan) { 850 if !gp.gcscandone { 851 scanstack(gp, gcw) 852 gp.gcscandone = true 853 } 854 restartg(gp) 855 break loop 856 } 857 858 case _Gscanwaiting: 859 // newstack is doing a scan for us right now. Wait. 860 861 case _Grunning: 862 // Goroutine running. Try to preempt execution so it can scan itself. 863 // The preemption handler (in newstack) does the actual scan. 864 865 // Optimization: if there is already a pending preemption request 866 // (from the previous loop iteration), don't bother with the atomics. 867 if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt { 868 break 869 } 870 871 // Ask for preemption and self scan. 872 if castogscanstatus(gp, _Grunning, _Gscanrunning) { 873 if !gp.gcscandone { 874 gp.preemptscan = true 875 gp.preempt = true 876 gp.stackguard0 = stackPreempt 877 } 878 casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) 879 } 880 } 881 882 if i == 0 { 883 nextYield = nanotime() + yieldDelay 884 } 885 if nanotime() < nextYield { 886 procyield(10) 887 } else { 888 osyield() 889 nextYield = nanotime() + yieldDelay/2 890 } 891 } 892 893 gp.preemptscan = false // cancel scan request if no longer needed 894 } 895 896 // The GC requests that this routine be moved from a scanmumble state to a mumble state. 897 func restartg(gp *g) { 898 s := readgstatus(gp) 899 switch s { 900 default: 901 dumpgstatus(gp) 902 throw("restartg: unexpected status") 903 904 case _Gdead: 905 // ok 906 907 case _Gscanrunnable, 908 _Gscanwaiting, 909 _Gscansyscall: 910 casfrom_Gscanstatus(gp, s, s&^_Gscan) 911 } 912 } 913 914 // stopTheWorld stops all P's from executing goroutines, interrupting 915 // all goroutines at GC safe points and records reason as the reason 916 // for the stop. On return, only the current goroutine's P is running. 917 // stopTheWorld must not be called from a system stack and the caller 918 // must not hold worldsema. The caller must call startTheWorld when 919 // other P's should resume execution. 920 // 921 // stopTheWorld is safe for multiple goroutines to call at the 922 // same time. Each will execute its own stop, and the stops will 923 // be serialized. 924 // 925 // This is also used by routines that do stack dumps. If the system is 926 // in panic or being exited, this may not reliably stop all 927 // goroutines. 928 func stopTheWorld(reason string) { 929 semacquire(&worldsema, 0) 930 getg().m.preemptoff = reason 931 systemstack(stopTheWorldWithSema) 932 } 933 934 // startTheWorld undoes the effects of stopTheWorld. 935 func startTheWorld() { 936 systemstack(startTheWorldWithSema) 937 // worldsema must be held over startTheWorldWithSema to ensure 938 // gomaxprocs cannot change while worldsema is held. 939 semrelease(&worldsema) 940 getg().m.preemptoff = "" 941 } 942 943 // Holding worldsema grants an M the right to try to stop the world 944 // and prevents gomaxprocs from changing concurrently. 945 var worldsema uint32 = 1 946 947 // stopTheWorldWithSema is the core implementation of stopTheWorld. 948 // The caller is responsible for acquiring worldsema and disabling 949 // preemption first and then should stopTheWorldWithSema on the system 950 // stack: 951 // 952 // semacquire(&worldsema, 0) 953 // m.preemptoff = "reason" 954 // systemstack(stopTheWorldWithSema) 955 // 956 // When finished, the caller must either call startTheWorld or undo 957 // these three operations separately: 958 // 959 // m.preemptoff = "" 960 // systemstack(startTheWorldWithSema) 961 // semrelease(&worldsema) 962 // 963 // It is allowed to acquire worldsema once and then execute multiple 964 // startTheWorldWithSema/stopTheWorldWithSema pairs. 965 // Other P's are able to execute between successive calls to 966 // startTheWorldWithSema and stopTheWorldWithSema. 967 // Holding worldsema causes any other goroutines invoking 968 // stopTheWorld to block. 969 func stopTheWorldWithSema() { 970 _g_ := getg() 971 972 // If we hold a lock, then we won't be able to stop another M 973 // that is blocked trying to acquire the lock. 974 if _g_.m.locks > 0 { 975 throw("stopTheWorld: holding locks") 976 } 977 978 lock(&sched.lock) 979 sched.stopwait = gomaxprocs 980 atomic.Store(&sched.gcwaiting, 1) 981 preemptall() 982 // stop current P 983 _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. 984 sched.stopwait-- 985 // try to retake all P's in Psyscall status 986 for i := 0; i < int(gomaxprocs); i++ { 987 p := allp[i] 988 s := p.status 989 if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) { 990 if trace.enabled { 991 traceGoSysBlock(p) 992 traceProcStop(p) 993 } 994 p.syscalltick++ 995 sched.stopwait-- 996 } 997 } 998 // stop idle P's 999 for { 1000 p := pidleget() 1001 if p == nil { 1002 break 1003 } 1004 p.status = _Pgcstop 1005 sched.stopwait-- 1006 } 1007 wait := sched.stopwait > 0 1008 unlock(&sched.lock) 1009 1010 // wait for remaining P's to stop voluntarily 1011 if wait { 1012 for { 1013 // wait for 100us, then try to re-preempt in case of any races 1014 if notetsleep(&sched.stopnote, 100*1000) { 1015 noteclear(&sched.stopnote) 1016 break 1017 } 1018 preemptall() 1019 } 1020 } 1021 if sched.stopwait != 0 { 1022 throw("stopTheWorld: not stopped") 1023 } 1024 for i := 0; i < int(gomaxprocs); i++ { 1025 p := allp[i] 1026 if p.status != _Pgcstop { 1027 throw("stopTheWorld: not stopped") 1028 } 1029 } 1030 } 1031 1032 func mhelpgc() { 1033 _g_ := getg() 1034 _g_.m.helpgc = -1 1035 } 1036 1037 func startTheWorldWithSema() { 1038 _g_ := getg() 1039 1040 _g_.m.locks++ // disable preemption because it can be holding p in a local var 1041 gp := netpoll(false) // non-blocking 1042 injectglist(gp) 1043 add := needaddgcproc() 1044 lock(&sched.lock) 1045 1046 procs := gomaxprocs 1047 if newprocs != 0 { 1048 procs = newprocs 1049 newprocs = 0 1050 } 1051 p1 := procresize(procs) 1052 sched.gcwaiting = 0 1053 if sched.sysmonwait != 0 { 1054 sched.sysmonwait = 0 1055 notewakeup(&sched.sysmonnote) 1056 } 1057 unlock(&sched.lock) 1058 1059 for p1 != nil { 1060 p := p1 1061 p1 = p1.link.ptr() 1062 if p.m != 0 { 1063 mp := p.m.ptr() 1064 p.m = 0 1065 if mp.nextp != 0 { 1066 throw("startTheWorld: inconsistent mp->nextp") 1067 } 1068 mp.nextp.set(p) 1069 notewakeup(&mp.park) 1070 } else { 1071 // Start M to run P. Do not start another M below. 1072 newm(nil, p) 1073 add = false 1074 } 1075 } 1076 1077 // Wakeup an additional proc in case we have excessive runnable goroutines 1078 // in local queues or in the global queue. If we don't, the proc will park itself. 1079 // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. 1080 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { 1081 wakep() 1082 } 1083 1084 if add { 1085 // If GC could have used another helper proc, start one now, 1086 // in the hope that it will be available next time. 1087 // It would have been even better to start it before the collection, 1088 // but doing so requires allocating memory, so it's tricky to 1089 // coordinate. This lazy approach works out in practice: 1090 // we don't mind if the first couple gc rounds don't have quite 1091 // the maximum number of procs. 1092 newm(mhelpgc, nil) 1093 } 1094 _g_.m.locks-- 1095 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 1096 _g_.stackguard0 = stackPreempt 1097 } 1098 } 1099 1100 // Called to start an M. 1101 //go:nosplit 1102 func mstart() { 1103 _g_ := getg() 1104 1105 if _g_.stack.lo == 0 { 1106 // Initialize stack bounds from system stack. 1107 // Cgo may have left stack size in stack.hi. 1108 size := _g_.stack.hi 1109 if size == 0 { 1110 size = 8192 * sys.StackGuardMultiplier 1111 } 1112 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) 1113 _g_.stack.lo = _g_.stack.hi - size + 1024 1114 } 1115 // Initialize stack guards so that we can start calling 1116 // both Go and C functions with stack growth prologues. 1117 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1118 _g_.stackguard1 = _g_.stackguard0 1119 mstart1() 1120 } 1121 1122 func mstart1() { 1123 _g_ := getg() 1124 1125 if _g_ != _g_.m.g0 { 1126 throw("bad runtime·mstart") 1127 } 1128 1129 // Record top of stack for use by mcall. 1130 // Once we call schedule we're never coming back, 1131 // so other calls can reuse this stack space. 1132 gosave(&_g_.m.g0.sched) 1133 _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used 1134 asminit() 1135 minit() 1136 1137 // Install signal handlers; after minit so that minit can 1138 // prepare the thread to be able to handle the signals. 1139 if _g_.m == &m0 { 1140 // Create an extra M for callbacks on threads not created by Go. 1141 if iscgo && !cgoHasExtraM { 1142 cgoHasExtraM = true 1143 newextram() 1144 } 1145 initsig(false) 1146 } 1147 1148 if fn := _g_.m.mstartfn; fn != nil { 1149 fn() 1150 } 1151 1152 if _g_.m.helpgc != 0 { 1153 _g_.m.helpgc = 0 1154 stopm() 1155 } else if _g_.m != &m0 { 1156 acquirep(_g_.m.nextp.ptr()) 1157 _g_.m.nextp = 0 1158 } 1159 schedule() 1160 } 1161 1162 // forEachP calls fn(p) for every P p when p reaches a GC safe point. 1163 // If a P is currently executing code, this will bring the P to a GC 1164 // safe point and execute fn on that P. If the P is not executing code 1165 // (it is idle or in a syscall), this will call fn(p) directly while 1166 // preventing the P from exiting its state. This does not ensure that 1167 // fn will run on every CPU executing Go code, but it acts as a global 1168 // memory barrier. GC uses this as a "ragged barrier." 1169 // 1170 // The caller must hold worldsema. 1171 // 1172 //go:systemstack 1173 func forEachP(fn func(*p)) { 1174 mp := acquirem() 1175 _p_ := getg().m.p.ptr() 1176 1177 lock(&sched.lock) 1178 if sched.safePointWait != 0 { 1179 throw("forEachP: sched.safePointWait != 0") 1180 } 1181 sched.safePointWait = gomaxprocs - 1 1182 sched.safePointFn = fn 1183 1184 // Ask all Ps to run the safe point function. 1185 for _, p := range allp[:gomaxprocs] { 1186 if p != _p_ { 1187 atomic.Store(&p.runSafePointFn, 1) 1188 } 1189 } 1190 preemptall() 1191 1192 // Any P entering _Pidle or _Psyscall from now on will observe 1193 // p.runSafePointFn == 1 and will call runSafePointFn when 1194 // changing its status to _Pidle/_Psyscall. 1195 1196 // Run safe point function for all idle Ps. sched.pidle will 1197 // not change because we hold sched.lock. 1198 for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { 1199 if atomic.Cas(&p.runSafePointFn, 1, 0) { 1200 fn(p) 1201 sched.safePointWait-- 1202 } 1203 } 1204 1205 wait := sched.safePointWait > 0 1206 unlock(&sched.lock) 1207 1208 // Run fn for the current P. 1209 fn(_p_) 1210 1211 // Force Ps currently in _Psyscall into _Pidle and hand them 1212 // off to induce safe point function execution. 1213 for i := 0; i < int(gomaxprocs); i++ { 1214 p := allp[i] 1215 s := p.status 1216 if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) { 1217 if trace.enabled { 1218 traceGoSysBlock(p) 1219 traceProcStop(p) 1220 } 1221 p.syscalltick++ 1222 handoffp(p) 1223 } 1224 } 1225 1226 // Wait for remaining Ps to run fn. 1227 if wait { 1228 for { 1229 // Wait for 100us, then try to re-preempt in 1230 // case of any races. 1231 // 1232 // Requires system stack. 1233 if notetsleep(&sched.safePointNote, 100*1000) { 1234 noteclear(&sched.safePointNote) 1235 break 1236 } 1237 preemptall() 1238 } 1239 } 1240 if sched.safePointWait != 0 { 1241 throw("forEachP: not done") 1242 } 1243 for i := 0; i < int(gomaxprocs); i++ { 1244 p := allp[i] 1245 if p.runSafePointFn != 0 { 1246 throw("forEachP: P did not run fn") 1247 } 1248 } 1249 1250 lock(&sched.lock) 1251 sched.safePointFn = nil 1252 unlock(&sched.lock) 1253 releasem(mp) 1254 } 1255 1256 // runSafePointFn runs the safe point function, if any, for this P. 1257 // This should be called like 1258 // 1259 // if getg().m.p.runSafePointFn != 0 { 1260 // runSafePointFn() 1261 // } 1262 // 1263 // runSafePointFn must be checked on any transition in to _Pidle or 1264 // _Psyscall to avoid a race where forEachP sees that the P is running 1265 // just before the P goes into _Pidle/_Psyscall and neither forEachP 1266 // nor the P run the safe-point function. 1267 func runSafePointFn() { 1268 p := getg().m.p.ptr() 1269 // Resolve the race between forEachP running the safe-point 1270 // function on this P's behalf and this P running the 1271 // safe-point function directly. 1272 if !atomic.Cas(&p.runSafePointFn, 1, 0) { 1273 return 1274 } 1275 sched.safePointFn(p) 1276 lock(&sched.lock) 1277 sched.safePointWait-- 1278 if sched.safePointWait == 0 { 1279 notewakeup(&sched.safePointNote) 1280 } 1281 unlock(&sched.lock) 1282 } 1283 1284 // When running with cgo, we call _cgo_thread_start 1285 // to start threads for us so that we can play nicely with 1286 // foreign code. 1287 var cgoThreadStart unsafe.Pointer 1288 1289 type cgothreadstart struct { 1290 g guintptr 1291 tls *uint64 1292 fn unsafe.Pointer 1293 } 1294 1295 // Allocate a new m unassociated with any thread. 1296 // Can use p for allocation context if needed. 1297 // fn is recorded as the new m's m.mstartfn. 1298 // 1299 // This function is allowed to have write barriers even if the caller 1300 // isn't because it borrows _p_. 1301 // 1302 //go:yeswritebarrierrec 1303 func allocm(_p_ *p, fn func()) *m { 1304 _g_ := getg() 1305 _g_.m.locks++ // disable GC because it can be called from sysmon 1306 if _g_.m.p == 0 { 1307 acquirep(_p_) // temporarily borrow p for mallocs in this function 1308 } 1309 mp := new(m) 1310 mp.mstartfn = fn 1311 mcommoninit(mp) 1312 1313 // In case of cgo or Solaris, pthread_create will make us a stack. 1314 // Windows and Plan 9 will layout sched stack on OS stack. 1315 if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" { 1316 mp.g0 = malg(-1) 1317 } else { 1318 mp.g0 = malg(8192 * sys.StackGuardMultiplier) 1319 } 1320 mp.g0.m = mp 1321 1322 if _p_ == _g_.m.p.ptr() { 1323 releasep() 1324 } 1325 _g_.m.locks-- 1326 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 1327 _g_.stackguard0 = stackPreempt 1328 } 1329 1330 return mp 1331 } 1332 1333 // needm is called when a cgo callback happens on a 1334 // thread without an m (a thread not created by Go). 1335 // In this case, needm is expected to find an m to use 1336 // and return with m, g initialized correctly. 1337 // Since m and g are not set now (likely nil, but see below) 1338 // needm is limited in what routines it can call. In particular 1339 // it can only call nosplit functions (textflag 7) and cannot 1340 // do any scheduling that requires an m. 1341 // 1342 // In order to avoid needing heavy lifting here, we adopt 1343 // the following strategy: there is a stack of available m's 1344 // that can be stolen. Using compare-and-swap 1345 // to pop from the stack has ABA races, so we simulate 1346 // a lock by doing an exchange (via casp) to steal the stack 1347 // head and replace the top pointer with MLOCKED (1). 1348 // This serves as a simple spin lock that we can use even 1349 // without an m. The thread that locks the stack in this way 1350 // unlocks the stack by storing a valid stack head pointer. 1351 // 1352 // In order to make sure that there is always an m structure 1353 // available to be stolen, we maintain the invariant that there 1354 // is always one more than needed. At the beginning of the 1355 // program (if cgo is in use) the list is seeded with a single m. 1356 // If needm finds that it has taken the last m off the list, its job 1357 // is - once it has installed its own m so that it can do things like 1358 // allocate memory - to create a spare m and put it on the list. 1359 // 1360 // Each of these extra m's also has a g0 and a curg that are 1361 // pressed into service as the scheduling stack and current 1362 // goroutine for the duration of the cgo callback. 1363 // 1364 // When the callback is done with the m, it calls dropm to 1365 // put the m back on the list. 1366 //go:nosplit 1367 func needm(x byte) { 1368 if iscgo && !cgoHasExtraM { 1369 // Can happen if C/C++ code calls Go from a global ctor. 1370 // Can not throw, because scheduler is not initialized yet. 1371 write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) 1372 exit(1) 1373 } 1374 1375 // Lock extra list, take head, unlock popped list. 1376 // nilokay=false is safe here because of the invariant above, 1377 // that the extra list always contains or will soon contain 1378 // at least one m. 1379 mp := lockextra(false) 1380 1381 // Set needextram when we've just emptied the list, 1382 // so that the eventual call into cgocallbackg will 1383 // allocate a new m for the extra list. We delay the 1384 // allocation until then so that it can be done 1385 // after exitsyscall makes sure it is okay to be 1386 // running at all (that is, there's no garbage collection 1387 // running right now). 1388 mp.needextram = mp.schedlink == 0 1389 unlockextra(mp.schedlink.ptr()) 1390 1391 // Save and block signals before installing g. 1392 // Once g is installed, any incoming signals will try to execute, 1393 // but we won't have the sigaltstack settings and other data 1394 // set up appropriately until the end of minit, which will 1395 // unblock the signals. This is the same dance as when 1396 // starting a new m to run Go code via newosproc. 1397 msigsave(mp) 1398 sigblock() 1399 1400 // Install g (= m->g0) and set the stack bounds 1401 // to match the current stack. We don't actually know 1402 // how big the stack is, like we don't know how big any 1403 // scheduling stack is, but we assume there's at least 32 kB, 1404 // which is more than enough for us. 1405 setg(mp.g0) 1406 _g_ := getg() 1407 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024 1408 _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024 1409 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1410 1411 // Initialize this thread to use the m. 1412 asminit() 1413 minit() 1414 } 1415 1416 var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") 1417 1418 // newextram allocates m's and puts them on the extra list. 1419 // It is called with a working local m, so that it can do things 1420 // like call schedlock and allocate. 1421 func newextram() { 1422 c := atomic.Xchg(&extraMWaiters, 0) 1423 if c > 0 { 1424 for i := uint32(0); i < c; i++ { 1425 oneNewExtraM() 1426 } 1427 } else { 1428 // Make sure there is at least one extra M. 1429 mp := lockextra(true) 1430 unlockextra(mp) 1431 if mp == nil { 1432 oneNewExtraM() 1433 } 1434 } 1435 } 1436 1437 // oneNewExtraM allocates an m and puts it on the extra list. 1438 func oneNewExtraM() { 1439 // Create extra goroutine locked to extra m. 1440 // The goroutine is the context in which the cgo callback will run. 1441 // The sched.pc will never be returned to, but setting it to 1442 // goexit makes clear to the traceback routines where 1443 // the goroutine stack ends. 1444 mp := allocm(nil, nil) 1445 gp := malg(4096) 1446 gp.sched.pc = funcPC(goexit) + sys.PCQuantum 1447 gp.sched.sp = gp.stack.hi 1448 gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame 1449 gp.sched.lr = 0 1450 gp.sched.g = guintptr(unsafe.Pointer(gp)) 1451 gp.syscallpc = gp.sched.pc 1452 gp.syscallsp = gp.sched.sp 1453 gp.stktopsp = gp.sched.sp 1454 gp.gcscanvalid = true // fresh G, so no dequeueRescan necessary 1455 gp.gcscandone = true 1456 gp.gcRescan = -1 1457 // malg returns status as Gidle, change to Gsyscall before adding to allg 1458 // where GC will see it. 1459 casgstatus(gp, _Gidle, _Gsyscall) 1460 gp.m = mp 1461 mp.curg = gp 1462 mp.locked = _LockInternal 1463 mp.lockedg = gp 1464 gp.lockedm = mp 1465 gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1)) 1466 if raceenabled { 1467 gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum) 1468 } 1469 // put on allg for garbage collector 1470 allgadd(gp) 1471 1472 // Add m to the extra list. 1473 mnext := lockextra(true) 1474 mp.schedlink.set(mnext) 1475 unlockextra(mp) 1476 } 1477 1478 // dropm is called when a cgo callback has called needm but is now 1479 // done with the callback and returning back into the non-Go thread. 1480 // It puts the current m back onto the extra list. 1481 // 1482 // The main expense here is the call to signalstack to release the 1483 // m's signal stack, and then the call to needm on the next callback 1484 // from this thread. It is tempting to try to save the m for next time, 1485 // which would eliminate both these costs, but there might not be 1486 // a next time: the current thread (which Go does not control) might exit. 1487 // If we saved the m for that thread, there would be an m leak each time 1488 // such a thread exited. Instead, we acquire and release an m on each 1489 // call. These should typically not be scheduling operations, just a few 1490 // atomics, so the cost should be small. 1491 // 1492 // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread 1493 // variable using pthread_key_create. Unlike the pthread keys we already use 1494 // on OS X, this dummy key would never be read by Go code. It would exist 1495 // only so that we could register at thread-exit-time destructor. 1496 // That destructor would put the m back onto the extra list. 1497 // This is purely a performance optimization. The current version, 1498 // in which dropm happens on each cgo call, is still correct too. 1499 // We may have to keep the current version on systems with cgo 1500 // but without pthreads, like Windows. 1501 func dropm() { 1502 // Clear m and g, and return m to the extra list. 1503 // After the call to setg we can only call nosplit functions 1504 // with no pointer manipulation. 1505 mp := getg().m 1506 1507 // Block signals before unminit. 1508 // Unminit unregisters the signal handling stack (but needs g on some systems). 1509 // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers. 1510 // It's important not to try to handle a signal between those two steps. 1511 sigmask := mp.sigmask 1512 sigblock() 1513 unminit() 1514 1515 mnext := lockextra(true) 1516 mp.schedlink.set(mnext) 1517 1518 setg(nil) 1519 1520 // Commit the release of mp. 1521 unlockextra(mp) 1522 1523 msigrestore(sigmask) 1524 } 1525 1526 // A helper function for EnsureDropM. 1527 func getm() uintptr { 1528 return uintptr(unsafe.Pointer(getg().m)) 1529 } 1530 1531 var extram uintptr 1532 var extraMWaiters uint32 1533 1534 // lockextra locks the extra list and returns the list head. 1535 // The caller must unlock the list by storing a new list head 1536 // to extram. If nilokay is true, then lockextra will 1537 // return a nil list head if that's what it finds. If nilokay is false, 1538 // lockextra will keep waiting until the list head is no longer nil. 1539 //go:nosplit 1540 func lockextra(nilokay bool) *m { 1541 const locked = 1 1542 1543 incr := false 1544 for { 1545 old := atomic.Loaduintptr(&extram) 1546 if old == locked { 1547 yield := osyield 1548 yield() 1549 continue 1550 } 1551 if old == 0 && !nilokay { 1552 if !incr { 1553 // Add 1 to the number of threads 1554 // waiting for an M. 1555 // This is cleared by newextram. 1556 atomic.Xadd(&extraMWaiters, 1) 1557 incr = true 1558 } 1559 usleep(1) 1560 continue 1561 } 1562 if atomic.Casuintptr(&extram, old, locked) { 1563 return (*m)(unsafe.Pointer(old)) 1564 } 1565 yield := osyield 1566 yield() 1567 continue 1568 } 1569 } 1570 1571 //go:nosplit 1572 func unlockextra(mp *m) { 1573 atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp))) 1574 } 1575 1576 // Create a new m. It will start off with a call to fn, or else the scheduler. 1577 // fn needs to be static and not a heap allocated closure. 1578 // May run with m.p==nil, so write barriers are not allowed. 1579 //go:nowritebarrierrec 1580 func newm(fn func(), _p_ *p) { 1581 mp := allocm(_p_, fn) 1582 mp.nextp.set(_p_) 1583 mp.sigmask = initSigmask 1584 if iscgo { 1585 var ts cgothreadstart 1586 if _cgo_thread_start == nil { 1587 throw("_cgo_thread_start missing") 1588 } 1589 ts.g.set(mp.g0) 1590 ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) 1591 ts.fn = unsafe.Pointer(funcPC(mstart)) 1592 if msanenabled { 1593 msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts)) 1594 } 1595 asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) 1596 return 1597 } 1598 newosproc(mp, unsafe.Pointer(mp.g0.stack.hi)) 1599 } 1600 1601 // Stops execution of the current m until new work is available. 1602 // Returns with acquired P. 1603 func stopm() { 1604 _g_ := getg() 1605 1606 if _g_.m.locks != 0 { 1607 throw("stopm holding locks") 1608 } 1609 if _g_.m.p != 0 { 1610 throw("stopm holding p") 1611 } 1612 if _g_.m.spinning { 1613 throw("stopm spinning") 1614 } 1615 1616 retry: 1617 lock(&sched.lock) 1618 mput(_g_.m) 1619 unlock(&sched.lock) 1620 notesleep(&_g_.m.park) 1621 noteclear(&_g_.m.park) 1622 if _g_.m.helpgc != 0 { 1623 gchelper() 1624 _g_.m.helpgc = 0 1625 _g_.m.mcache = nil 1626 _g_.m.p = 0 1627 goto retry 1628 } 1629 acquirep(_g_.m.nextp.ptr()) 1630 _g_.m.nextp = 0 1631 } 1632 1633 func mspinning() { 1634 // startm's caller incremented nmspinning. Set the new M's spinning. 1635 getg().m.spinning = true 1636 } 1637 1638 // Schedules some M to run the p (creates an M if necessary). 1639 // If p==nil, tries to get an idle P, if no idle P's does nothing. 1640 // May run with m.p==nil, so write barriers are not allowed. 1641 // If spinning is set, the caller has incremented nmspinning and startm will 1642 // either decrement nmspinning or set m.spinning in the newly started M. 1643 //go:nowritebarrierrec 1644 func startm(_p_ *p, spinning bool) { 1645 lock(&sched.lock) 1646 if _p_ == nil { 1647 _p_ = pidleget() 1648 if _p_ == nil { 1649 unlock(&sched.lock) 1650 if spinning { 1651 // The caller incremented nmspinning, but there are no idle Ps, 1652 // so it's okay to just undo the increment and give up. 1653 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 1654 throw("startm: negative nmspinning") 1655 } 1656 } 1657 return 1658 } 1659 } 1660 mp := mget() 1661 unlock(&sched.lock) 1662 if mp == nil { 1663 var fn func() 1664 if spinning { 1665 // The caller incremented nmspinning, so set m.spinning in the new M. 1666 fn = mspinning 1667 } 1668 newm(fn, _p_) 1669 return 1670 } 1671 if mp.spinning { 1672 throw("startm: m is spinning") 1673 } 1674 if mp.nextp != 0 { 1675 throw("startm: m has p") 1676 } 1677 if spinning && !runqempty(_p_) { 1678 throw("startm: p has runnable gs") 1679 } 1680 // The caller incremented nmspinning, so set m.spinning in the new M. 1681 mp.spinning = spinning 1682 mp.nextp.set(_p_) 1683 notewakeup(&mp.park) 1684 } 1685 1686 // Hands off P from syscall or locked M. 1687 // Always runs without a P, so write barriers are not allowed. 1688 //go:nowritebarrierrec 1689 func handoffp(_p_ *p) { 1690 // handoffp must start an M in any situation where 1691 // findrunnable would return a G to run on _p_. 1692 1693 // if it has local work, start it straight away 1694 if !runqempty(_p_) || sched.runqsize != 0 { 1695 startm(_p_, false) 1696 return 1697 } 1698 // if it has GC work, start it straight away 1699 if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { 1700 startm(_p_, false) 1701 return 1702 } 1703 // no local work, check that there are no spinning/idle M's, 1704 // otherwise our help is not required 1705 if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic 1706 startm(_p_, true) 1707 return 1708 } 1709 lock(&sched.lock) 1710 if sched.gcwaiting != 0 { 1711 _p_.status = _Pgcstop 1712 sched.stopwait-- 1713 if sched.stopwait == 0 { 1714 notewakeup(&sched.stopnote) 1715 } 1716 unlock(&sched.lock) 1717 return 1718 } 1719 if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) { 1720 sched.safePointFn(_p_) 1721 sched.safePointWait-- 1722 if sched.safePointWait == 0 { 1723 notewakeup(&sched.safePointNote) 1724 } 1725 } 1726 if sched.runqsize != 0 { 1727 unlock(&sched.lock) 1728 startm(_p_, false) 1729 return 1730 } 1731 // If this is the last running P and nobody is polling network, 1732 // need to wakeup another M to poll network. 1733 if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 { 1734 unlock(&sched.lock) 1735 startm(_p_, false) 1736 return 1737 } 1738 pidleput(_p_) 1739 unlock(&sched.lock) 1740 } 1741 1742 // Tries to add one more P to execute G's. 1743 // Called when a G is made runnable (newproc, ready). 1744 func wakep() { 1745 // be conservative about spinning threads 1746 if !atomic.Cas(&sched.nmspinning, 0, 1) { 1747 return 1748 } 1749 startm(nil, true) 1750 } 1751 1752 // Stops execution of the current m that is locked to a g until the g is runnable again. 1753 // Returns with acquired P. 1754 func stoplockedm() { 1755 _g_ := getg() 1756 1757 if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m { 1758 throw("stoplockedm: inconsistent locking") 1759 } 1760 if _g_.m.p != 0 { 1761 // Schedule another M to run this p. 1762 _p_ := releasep() 1763 handoffp(_p_) 1764 } 1765 incidlelocked(1) 1766 // Wait until another thread schedules lockedg again. 1767 notesleep(&_g_.m.park) 1768 noteclear(&_g_.m.park) 1769 status := readgstatus(_g_.m.lockedg) 1770 if status&^_Gscan != _Grunnable { 1771 print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n") 1772 dumpgstatus(_g_) 1773 throw("stoplockedm: not runnable") 1774 } 1775 acquirep(_g_.m.nextp.ptr()) 1776 _g_.m.nextp = 0 1777 } 1778 1779 // Schedules the locked m to run the locked gp. 1780 // May run during STW, so write barriers are not allowed. 1781 //go:nowritebarrierrec 1782 func startlockedm(gp *g) { 1783 _g_ := getg() 1784 1785 mp := gp.lockedm 1786 if mp == _g_.m { 1787 throw("startlockedm: locked to me") 1788 } 1789 if mp.nextp != 0 { 1790 throw("startlockedm: m has p") 1791 } 1792 // directly handoff current P to the locked m 1793 incidlelocked(-1) 1794 _p_ := releasep() 1795 mp.nextp.set(_p_) 1796 notewakeup(&mp.park) 1797 stopm() 1798 } 1799 1800 // Stops the current m for stopTheWorld. 1801 // Returns when the world is restarted. 1802 func gcstopm() { 1803 _g_ := getg() 1804 1805 if sched.gcwaiting == 0 { 1806 throw("gcstopm: not waiting for gc") 1807 } 1808 if _g_.m.spinning { 1809 _g_.m.spinning = false 1810 // OK to just drop nmspinning here, 1811 // startTheWorld will unpark threads as necessary. 1812 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 1813 throw("gcstopm: negative nmspinning") 1814 } 1815 } 1816 _p_ := releasep() 1817 lock(&sched.lock) 1818 _p_.status = _Pgcstop 1819 sched.stopwait-- 1820 if sched.stopwait == 0 { 1821 notewakeup(&sched.stopnote) 1822 } 1823 unlock(&sched.lock) 1824 stopm() 1825 } 1826 1827 // Schedules gp to run on the current M. 1828 // If inheritTime is true, gp inherits the remaining time in the 1829 // current time slice. Otherwise, it starts a new time slice. 1830 // Never returns. 1831 // 1832 // Write barriers are allowed because this is called immediately after 1833 // acquiring a P in several places. 1834 // 1835 //go:yeswritebarrierrec 1836 func execute(gp *g, inheritTime bool) { 1837 _g_ := getg() 1838 1839 casgstatus(gp, _Grunnable, _Grunning) 1840 gp.waitsince = 0 1841 gp.preempt = false 1842 gp.stackguard0 = gp.stack.lo + _StackGuard 1843 if !inheritTime { 1844 _g_.m.p.ptr().schedtick++ 1845 } 1846 _g_.m.curg = gp 1847 gp.m = _g_.m 1848 1849 // Check whether the profiler needs to be turned on or off. 1850 hz := sched.profilehz 1851 if _g_.m.profilehz != hz { 1852 resetcpuprofiler(hz) 1853 } 1854 1855 if trace.enabled { 1856 // GoSysExit has to happen when we have a P, but before GoStart. 1857 // So we emit it here. 1858 if gp.syscallsp != 0 && gp.sysblocktraced { 1859 traceGoSysExit(gp.sysexitticks) 1860 } 1861 traceGoStart() 1862 } 1863 1864 gogo(&gp.sched) 1865 } 1866 1867 // Finds a runnable goroutine to execute. 1868 // Tries to steal from other P's, get g from global queue, poll network. 1869 func findrunnable() (gp *g, inheritTime bool) { 1870 _g_ := getg() 1871 1872 // The conditions here and in handoffp must agree: if 1873 // findrunnable would return a G to run, handoffp must start 1874 // an M. 1875 1876 top: 1877 _p_ := _g_.m.p.ptr() 1878 if sched.gcwaiting != 0 { 1879 gcstopm() 1880 goto top 1881 } 1882 if _p_.runSafePointFn != 0 { 1883 runSafePointFn() 1884 } 1885 if fingwait && fingwake { 1886 if gp := wakefing(); gp != nil { 1887 ready(gp, 0, true) 1888 } 1889 } 1890 1891 // local runq 1892 if gp, inheritTime := runqget(_p_); gp != nil { 1893 return gp, inheritTime 1894 } 1895 1896 // global runq 1897 if sched.runqsize != 0 { 1898 lock(&sched.lock) 1899 gp := globrunqget(_p_, 0) 1900 unlock(&sched.lock) 1901 if gp != nil { 1902 return gp, false 1903 } 1904 } 1905 1906 // Poll network. 1907 // This netpoll is only an optimization before we resort to stealing. 1908 // We can safely skip it if there a thread blocked in netpoll already. 1909 // If there is any kind of logical race with that blocked thread 1910 // (e.g. it has already returned from netpoll, but does not set lastpoll yet), 1911 // this thread will do blocking netpoll below anyway. 1912 if netpollinited() && sched.lastpoll != 0 { 1913 if gp := netpoll(false); gp != nil { // non-blocking 1914 // netpoll returns list of goroutines linked by schedlink. 1915 injectglist(gp.schedlink.ptr()) 1916 casgstatus(gp, _Gwaiting, _Grunnable) 1917 if trace.enabled { 1918 traceGoUnpark(gp, 0) 1919 } 1920 return gp, false 1921 } 1922 } 1923 1924 // Steal work from other P's. 1925 procs := uint32(gomaxprocs) 1926 if atomic.Load(&sched.npidle) == procs-1 { 1927 // Either GOMAXPROCS=1 or everybody, except for us, is idle already. 1928 // New work can appear from returning syscall/cgocall, network or timers. 1929 // Neither of that submits to local run queues, so no point in stealing. 1930 goto stop 1931 } 1932 // If number of spinning M's >= number of busy P's, block. 1933 // This is necessary to prevent excessive CPU consumption 1934 // when GOMAXPROCS>>1 but the program parallelism is low. 1935 if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) { 1936 goto stop 1937 } 1938 if !_g_.m.spinning { 1939 _g_.m.spinning = true 1940 atomic.Xadd(&sched.nmspinning, 1) 1941 } 1942 for i := 0; i < 4; i++ { 1943 for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() { 1944 if sched.gcwaiting != 0 { 1945 goto top 1946 } 1947 stealRunNextG := i > 2 // first look for ready queues with more than 1 g 1948 if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil { 1949 return gp, false 1950 } 1951 } 1952 } 1953 1954 stop: 1955 1956 // We have nothing to do. If we're in the GC mark phase, can 1957 // safely scan and blacken objects, and have work to do, run 1958 // idle-time marking rather than give up the P. 1959 if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) { 1960 _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode 1961 gp := _p_.gcBgMarkWorker.ptr() 1962 casgstatus(gp, _Gwaiting, _Grunnable) 1963 if trace.enabled { 1964 traceGoUnpark(gp, 0) 1965 } 1966 return gp, false 1967 } 1968 1969 // return P and block 1970 lock(&sched.lock) 1971 if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 { 1972 unlock(&sched.lock) 1973 goto top 1974 } 1975 if sched.runqsize != 0 { 1976 gp := globrunqget(_p_, 0) 1977 unlock(&sched.lock) 1978 return gp, false 1979 } 1980 if releasep() != _p_ { 1981 throw("findrunnable: wrong p") 1982 } 1983 pidleput(_p_) 1984 unlock(&sched.lock) 1985 1986 // Delicate dance: thread transitions from spinning to non-spinning state, 1987 // potentially concurrently with submission of new goroutines. We must 1988 // drop nmspinning first and then check all per-P queues again (with 1989 // #StoreLoad memory barrier in between). If we do it the other way around, 1990 // another thread can submit a goroutine after we've checked all run queues 1991 // but before we drop nmspinning; as the result nobody will unpark a thread 1992 // to run the goroutine. 1993 // If we discover new work below, we need to restore m.spinning as a signal 1994 // for resetspinning to unpark a new worker thread (because there can be more 1995 // than one starving goroutine). However, if after discovering new work 1996 // we also observe no idle Ps, it is OK to just park the current thread: 1997 // the system is fully loaded so no spinning threads are required. 1998 // Also see "Worker thread parking/unparking" comment at the top of the file. 1999 wasSpinning := _g_.m.spinning 2000 if _g_.m.spinning { 2001 _g_.m.spinning = false 2002 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2003 throw("findrunnable: negative nmspinning") 2004 } 2005 } 2006 2007 // check all runqueues once again 2008 for i := 0; i < int(gomaxprocs); i++ { 2009 _p_ := allp[i] 2010 if _p_ != nil && !runqempty(_p_) { 2011 lock(&sched.lock) 2012 _p_ = pidleget() 2013 unlock(&sched.lock) 2014 if _p_ != nil { 2015 acquirep(_p_) 2016 if wasSpinning { 2017 _g_.m.spinning = true 2018 atomic.Xadd(&sched.nmspinning, 1) 2019 } 2020 goto top 2021 } 2022 break 2023 } 2024 } 2025 2026 // poll network 2027 if netpollinited() && atomic.Xchg64(&sched.lastpoll, 0) != 0 { 2028 if _g_.m.p != 0 { 2029 throw("findrunnable: netpoll with p") 2030 } 2031 if _g_.m.spinning { 2032 throw("findrunnable: netpoll with spinning") 2033 } 2034 gp := netpoll(true) // block until new work is available 2035 atomic.Store64(&sched.lastpoll, uint64(nanotime())) 2036 if gp != nil { 2037 lock(&sched.lock) 2038 _p_ = pidleget() 2039 unlock(&sched.lock) 2040 if _p_ != nil { 2041 acquirep(_p_) 2042 injectglist(gp.schedlink.ptr()) 2043 casgstatus(gp, _Gwaiting, _Grunnable) 2044 if trace.enabled { 2045 traceGoUnpark(gp, 0) 2046 } 2047 return gp, false 2048 } 2049 injectglist(gp) 2050 } 2051 } 2052 stopm() 2053 goto top 2054 } 2055 2056 func resetspinning() { 2057 _g_ := getg() 2058 if !_g_.m.spinning { 2059 throw("resetspinning: not a spinning m") 2060 } 2061 _g_.m.spinning = false 2062 nmspinning := atomic.Xadd(&sched.nmspinning, -1) 2063 if int32(nmspinning) < 0 { 2064 throw("findrunnable: negative nmspinning") 2065 } 2066 // M wakeup policy is deliberately somewhat conservative, so check if we 2067 // need to wakeup another P here. See "Worker thread parking/unparking" 2068 // comment at the top of the file for details. 2069 if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 { 2070 wakep() 2071 } 2072 } 2073 2074 // Injects the list of runnable G's into the scheduler. 2075 // Can run concurrently with GC. 2076 func injectglist(glist *g) { 2077 if glist == nil { 2078 return 2079 } 2080 if trace.enabled { 2081 for gp := glist; gp != nil; gp = gp.schedlink.ptr() { 2082 traceGoUnpark(gp, 0) 2083 } 2084 } 2085 lock(&sched.lock) 2086 var n int 2087 for n = 0; glist != nil; n++ { 2088 gp := glist 2089 glist = gp.schedlink.ptr() 2090 casgstatus(gp, _Gwaiting, _Grunnable) 2091 globrunqput(gp) 2092 } 2093 unlock(&sched.lock) 2094 for ; n != 0 && sched.npidle != 0; n-- { 2095 startm(nil, false) 2096 } 2097 } 2098 2099 // One round of scheduler: find a runnable goroutine and execute it. 2100 // Never returns. 2101 func schedule() { 2102 _g_ := getg() 2103 2104 if _g_.m.locks != 0 { 2105 throw("schedule: holding locks") 2106 } 2107 2108 if _g_.m.lockedg != nil { 2109 stoplockedm() 2110 execute(_g_.m.lockedg, false) // Never returns. 2111 } 2112 2113 top: 2114 if sched.gcwaiting != 0 { 2115 gcstopm() 2116 goto top 2117 } 2118 if _g_.m.p.ptr().runSafePointFn != 0 { 2119 runSafePointFn() 2120 } 2121 2122 var gp *g 2123 var inheritTime bool 2124 if trace.enabled || trace.shutdown { 2125 gp = traceReader() 2126 if gp != nil { 2127 casgstatus(gp, _Gwaiting, _Grunnable) 2128 traceGoUnpark(gp, 0) 2129 } 2130 } 2131 if gp == nil && gcBlackenEnabled != 0 { 2132 gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) 2133 } 2134 if gp == nil { 2135 // Check the global runnable queue once in a while to ensure fairness. 2136 // Otherwise two goroutines can completely occupy the local runqueue 2137 // by constantly respawning each other. 2138 if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { 2139 lock(&sched.lock) 2140 gp = globrunqget(_g_.m.p.ptr(), 1) 2141 unlock(&sched.lock) 2142 } 2143 } 2144 if gp == nil { 2145 gp, inheritTime = runqget(_g_.m.p.ptr()) 2146 if gp != nil && _g_.m.spinning { 2147 throw("schedule: spinning with local work") 2148 } 2149 } 2150 if gp == nil { 2151 gp, inheritTime = findrunnable() // blocks until work is available 2152 } 2153 2154 // This thread is going to run a goroutine and is not spinning anymore, 2155 // so if it was marked as spinning we need to reset it now and potentially 2156 // start a new spinning M. 2157 if _g_.m.spinning { 2158 resetspinning() 2159 } 2160 2161 if gp.lockedm != nil { 2162 // Hands off own p to the locked m, 2163 // then blocks waiting for a new p. 2164 startlockedm(gp) 2165 goto top 2166 } 2167 2168 execute(gp, inheritTime) 2169 } 2170 2171 // dropg removes the association between m and the current goroutine m->curg (gp for short). 2172 // Typically a caller sets gp's status away from Grunning and then 2173 // immediately calls dropg to finish the job. The caller is also responsible 2174 // for arranging that gp will be restarted using ready at an 2175 // appropriate time. After calling dropg and arranging for gp to be 2176 // readied later, the caller can do other work but eventually should 2177 // call schedule to restart the scheduling of goroutines on this m. 2178 func dropg() { 2179 _g_ := getg() 2180 2181 setMNoWB(&_g_.m.curg.m, nil) 2182 setGNoWB(&_g_.m.curg, nil) 2183 } 2184 2185 func parkunlock_c(gp *g, lock unsafe.Pointer) bool { 2186 unlock((*mutex)(lock)) 2187 return true 2188 } 2189 2190 // park continuation on g0. 2191 func park_m(gp *g) { 2192 _g_ := getg() 2193 2194 if trace.enabled { 2195 traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp) 2196 } 2197 2198 casgstatus(gp, _Grunning, _Gwaiting) 2199 dropg() 2200 2201 if _g_.m.waitunlockf != nil { 2202 fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf)) 2203 ok := fn(gp, _g_.m.waitlock) 2204 _g_.m.waitunlockf = nil 2205 _g_.m.waitlock = nil 2206 if !ok { 2207 if trace.enabled { 2208 traceGoUnpark(gp, 2) 2209 } 2210 casgstatus(gp, _Gwaiting, _Grunnable) 2211 execute(gp, true) // Schedule it back, never returns. 2212 } 2213 } 2214 schedule() 2215 } 2216 2217 func goschedImpl(gp *g) { 2218 status := readgstatus(gp) 2219 if status&^_Gscan != _Grunning { 2220 dumpgstatus(gp) 2221 throw("bad g status") 2222 } 2223 casgstatus(gp, _Grunning, _Grunnable) 2224 dropg() 2225 lock(&sched.lock) 2226 globrunqput(gp) 2227 unlock(&sched.lock) 2228 2229 schedule() 2230 } 2231 2232 // Gosched continuation on g0. 2233 func gosched_m(gp *g) { 2234 if trace.enabled { 2235 traceGoSched() 2236 } 2237 goschedImpl(gp) 2238 } 2239 2240 func gopreempt_m(gp *g) { 2241 if trace.enabled { 2242 traceGoPreempt() 2243 } 2244 goschedImpl(gp) 2245 } 2246 2247 // Finishes execution of the current goroutine. 2248 func goexit1() { 2249 if raceenabled { 2250 racegoend() 2251 } 2252 if trace.enabled { 2253 traceGoEnd() 2254 } 2255 mcall(goexit0) 2256 } 2257 2258 // goexit continuation on g0. 2259 func goexit0(gp *g) { 2260 _g_ := getg() 2261 2262 casgstatus(gp, _Grunning, _Gdead) 2263 if isSystemGoroutine(gp) { 2264 atomic.Xadd(&sched.ngsys, -1) 2265 } 2266 gp.m = nil 2267 gp.lockedm = nil 2268 _g_.m.lockedg = nil 2269 gp.paniconfault = false 2270 gp._defer = nil // should be true already but just in case. 2271 gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. 2272 gp.writebuf = nil 2273 gp.waitreason = "" 2274 gp.param = nil 2275 2276 // Note that gp's stack scan is now "valid" because it has no 2277 // stack. We could dequeueRescan, but that takes a lock and 2278 // isn't really necessary. 2279 gp.gcscanvalid = true 2280 dropg() 2281 2282 if _g_.m.locked&^_LockExternal != 0 { 2283 print("invalid m->locked = ", _g_.m.locked, "\n") 2284 throw("internal lockOSThread error") 2285 } 2286 _g_.m.locked = 0 2287 gfput(_g_.m.p.ptr(), gp) 2288 schedule() 2289 } 2290 2291 // save updates getg().sched to refer to pc and sp so that a following 2292 // gogo will restore pc and sp. 2293 // 2294 // save must not have write barriers because invoking a write barrier 2295 // can clobber getg().sched. 2296 // 2297 //go:nosplit 2298 //go:nowritebarrierrec 2299 func save(pc, sp uintptr) { 2300 _g_ := getg() 2301 2302 _g_.sched.pc = pc 2303 _g_.sched.sp = sp 2304 _g_.sched.lr = 0 2305 _g_.sched.ret = 0 2306 _g_.sched.g = guintptr(unsafe.Pointer(_g_)) 2307 // We need to ensure ctxt is zero, but can't have a write 2308 // barrier here. However, it should always already be zero. 2309 // Assert that. 2310 if _g_.sched.ctxt != nil { 2311 badctxt() 2312 } 2313 } 2314 2315 // The goroutine g is about to enter a system call. 2316 // Record that it's not using the cpu anymore. 2317 // This is called only from the go syscall library and cgocall, 2318 // not from the low-level system calls used by the runtime. 2319 // 2320 // Entersyscall cannot split the stack: the gosave must 2321 // make g->sched refer to the caller's stack segment, because 2322 // entersyscall is going to return immediately after. 2323 // 2324 // Nothing entersyscall calls can split the stack either. 2325 // We cannot safely move the stack during an active call to syscall, 2326 // because we do not know which of the uintptr arguments are 2327 // really pointers (back into the stack). 2328 // In practice, this means that we make the fast path run through 2329 // entersyscall doing no-split things, and the slow path has to use systemstack 2330 // to run bigger things on the system stack. 2331 // 2332 // reentersyscall is the entry point used by cgo callbacks, where explicitly 2333 // saved SP and PC are restored. This is needed when exitsyscall will be called 2334 // from a function further up in the call stack than the parent, as g->syscallsp 2335 // must always point to a valid stack frame. entersyscall below is the normal 2336 // entry point for syscalls, which obtains the SP and PC from the caller. 2337 // 2338 // Syscall tracing: 2339 // At the start of a syscall we emit traceGoSysCall to capture the stack trace. 2340 // If the syscall does not block, that is it, we do not emit any other events. 2341 // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; 2342 // when syscall returns we emit traceGoSysExit and when the goroutine starts running 2343 // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. 2344 // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, 2345 // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), 2346 // whoever emits traceGoSysBlock increments p.syscalltick afterwards; 2347 // and we wait for the increment before emitting traceGoSysExit. 2348 // Note that the increment is done even if tracing is not enabled, 2349 // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. 2350 // 2351 //go:nosplit 2352 func reentersyscall(pc, sp uintptr) { 2353 _g_ := getg() 2354 2355 // Disable preemption because during this function g is in Gsyscall status, 2356 // but can have inconsistent g->sched, do not let GC observe it. 2357 _g_.m.locks++ 2358 2359 // Entersyscall must not call any function that might split/grow the stack. 2360 // (See details in comment above.) 2361 // Catch calls that might, by replacing the stack guard with something that 2362 // will trip any stack check and leaving a flag to tell newstack to die. 2363 _g_.stackguard0 = stackPreempt 2364 _g_.throwsplit = true 2365 2366 // Leave SP around for GC and traceback. 2367 save(pc, sp) 2368 _g_.syscallsp = sp 2369 _g_.syscallpc = pc 2370 casgstatus(_g_, _Grunning, _Gsyscall) 2371 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2372 systemstack(func() { 2373 print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2374 throw("entersyscall") 2375 }) 2376 } 2377 2378 if trace.enabled { 2379 systemstack(traceGoSysCall) 2380 // systemstack itself clobbers g.sched.{pc,sp} and we might 2381 // need them later when the G is genuinely blocked in a 2382 // syscall 2383 save(pc, sp) 2384 } 2385 2386 if atomic.Load(&sched.sysmonwait) != 0 { 2387 systemstack(entersyscall_sysmon) 2388 save(pc, sp) 2389 } 2390 2391 if _g_.m.p.ptr().runSafePointFn != 0 { 2392 // runSafePointFn may stack split if run on this stack 2393 systemstack(runSafePointFn) 2394 save(pc, sp) 2395 } 2396 2397 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2398 _g_.sysblocktraced = true 2399 _g_.m.mcache = nil 2400 _g_.m.p.ptr().m = 0 2401 atomic.Store(&_g_.m.p.ptr().status, _Psyscall) 2402 if sched.gcwaiting != 0 { 2403 systemstack(entersyscall_gcwait) 2404 save(pc, sp) 2405 } 2406 2407 // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). 2408 // We set _StackGuard to StackPreempt so that first split stack check calls morestack. 2409 // Morestack detects this case and throws. 2410 _g_.stackguard0 = stackPreempt 2411 _g_.m.locks-- 2412 } 2413 2414 // Standard syscall entry used by the go syscall library and normal cgo calls. 2415 //go:nosplit 2416 func entersyscall(dummy int32) { 2417 reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) 2418 } 2419 2420 func entersyscall_sysmon() { 2421 lock(&sched.lock) 2422 if atomic.Load(&sched.sysmonwait) != 0 { 2423 atomic.Store(&sched.sysmonwait, 0) 2424 notewakeup(&sched.sysmonnote) 2425 } 2426 unlock(&sched.lock) 2427 } 2428 2429 func entersyscall_gcwait() { 2430 _g_ := getg() 2431 _p_ := _g_.m.p.ptr() 2432 2433 lock(&sched.lock) 2434 if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) { 2435 if trace.enabled { 2436 traceGoSysBlock(_p_) 2437 traceProcStop(_p_) 2438 } 2439 _p_.syscalltick++ 2440 if sched.stopwait--; sched.stopwait == 0 { 2441 notewakeup(&sched.stopnote) 2442 } 2443 } 2444 unlock(&sched.lock) 2445 } 2446 2447 // The same as entersyscall(), but with a hint that the syscall is blocking. 2448 //go:nosplit 2449 func entersyscallblock(dummy int32) { 2450 _g_ := getg() 2451 2452 _g_.m.locks++ // see comment in entersyscall 2453 _g_.throwsplit = true 2454 _g_.stackguard0 = stackPreempt // see comment in entersyscall 2455 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2456 _g_.sysblocktraced = true 2457 _g_.m.p.ptr().syscalltick++ 2458 2459 // Leave SP around for GC and traceback. 2460 pc := getcallerpc(unsafe.Pointer(&dummy)) 2461 sp := getcallersp(unsafe.Pointer(&dummy)) 2462 save(pc, sp) 2463 _g_.syscallsp = _g_.sched.sp 2464 _g_.syscallpc = _g_.sched.pc 2465 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2466 sp1 := sp 2467 sp2 := _g_.sched.sp 2468 sp3 := _g_.syscallsp 2469 systemstack(func() { 2470 print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2471 throw("entersyscallblock") 2472 }) 2473 } 2474 casgstatus(_g_, _Grunning, _Gsyscall) 2475 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2476 systemstack(func() { 2477 print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2478 throw("entersyscallblock") 2479 }) 2480 } 2481 2482 systemstack(entersyscallblock_handoff) 2483 2484 // Resave for traceback during blocked call. 2485 save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) 2486 2487 _g_.m.locks-- 2488 } 2489 2490 func entersyscallblock_handoff() { 2491 if trace.enabled { 2492 traceGoSysCall() 2493 traceGoSysBlock(getg().m.p.ptr()) 2494 } 2495 handoffp(releasep()) 2496 } 2497 2498 // The goroutine g exited its system call. 2499 // Arrange for it to run on a cpu again. 2500 // This is called only from the go syscall library, not 2501 // from the low-level system calls used by the runtime. 2502 // 2503 // Write barriers are not allowed because our P may have been stolen. 2504 // 2505 //go:nosplit 2506 //go:nowritebarrierrec 2507 func exitsyscall(dummy int32) { 2508 _g_ := getg() 2509 2510 _g_.m.locks++ // see comment in entersyscall 2511 if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp { 2512 // throw calls print which may try to grow the stack, 2513 // but throwsplit == true so the stack can not be grown; 2514 // use systemstack to avoid that possible problem. 2515 systemstack(func() { 2516 throw("exitsyscall: syscall frame is no longer valid") 2517 }) 2518 } 2519 2520 _g_.waitsince = 0 2521 oldp := _g_.m.p.ptr() 2522 if exitsyscallfast() { 2523 if _g_.m.mcache == nil { 2524 throw("lost mcache") 2525 } 2526 if trace.enabled { 2527 if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 2528 systemstack(traceGoStart) 2529 } 2530 } 2531 // There's a cpu for us, so we can run. 2532 _g_.m.p.ptr().syscalltick++ 2533 // We need to cas the status and scan before resuming... 2534 casgstatus(_g_, _Gsyscall, _Grunning) 2535 2536 // Garbage collector isn't running (since we are), 2537 // so okay to clear syscallsp. 2538 _g_.syscallsp = 0 2539 _g_.m.locks-- 2540 if _g_.preempt { 2541 // restore the preemption request in case we've cleared it in newstack 2542 _g_.stackguard0 = stackPreempt 2543 } else { 2544 // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock 2545 _g_.stackguard0 = _g_.stack.lo + _StackGuard 2546 } 2547 _g_.throwsplit = false 2548 return 2549 } 2550 2551 _g_.sysexitticks = 0 2552 if trace.enabled { 2553 // Wait till traceGoSysBlock event is emitted. 2554 // This ensures consistency of the trace (the goroutine is started after it is blocked). 2555 for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { 2556 osyield() 2557 } 2558 // We can't trace syscall exit right now because we don't have a P. 2559 // Tracing code can invoke write barriers that cannot run without a P. 2560 // So instead we remember the syscall exit time and emit the event 2561 // in execute when we have a P. 2562 _g_.sysexitticks = cputicks() 2563 } 2564 2565 _g_.m.locks-- 2566 2567 // Call the scheduler. 2568 mcall(exitsyscall0) 2569 2570 if _g_.m.mcache == nil { 2571 throw("lost mcache") 2572 } 2573 2574 // Scheduler returned, so we're allowed to run now. 2575 // Delete the syscallsp information that we left for 2576 // the garbage collector during the system call. 2577 // Must wait until now because until gosched returns 2578 // we don't know for sure that the garbage collector 2579 // is not running. 2580 _g_.syscallsp = 0 2581 _g_.m.p.ptr().syscalltick++ 2582 _g_.throwsplit = false 2583 } 2584 2585 //go:nosplit 2586 func exitsyscallfast() bool { 2587 _g_ := getg() 2588 2589 // Freezetheworld sets stopwait but does not retake P's. 2590 if sched.stopwait == freezeStopWait { 2591 _g_.m.mcache = nil 2592 _g_.m.p = 0 2593 return false 2594 } 2595 2596 // Try to re-acquire the last P. 2597 if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) { 2598 // There's a cpu for us, so we can run. 2599 exitsyscallfast_reacquired() 2600 return true 2601 } 2602 2603 // Try to get any other idle P. 2604 oldp := _g_.m.p.ptr() 2605 _g_.m.mcache = nil 2606 _g_.m.p = 0 2607 if sched.pidle != 0 { 2608 var ok bool 2609 systemstack(func() { 2610 ok = exitsyscallfast_pidle() 2611 if ok && trace.enabled { 2612 if oldp != nil { 2613 // Wait till traceGoSysBlock event is emitted. 2614 // This ensures consistency of the trace (the goroutine is started after it is blocked). 2615 for oldp.syscalltick == _g_.m.syscalltick { 2616 osyield() 2617 } 2618 } 2619 traceGoSysExit(0) 2620 } 2621 }) 2622 if ok { 2623 return true 2624 } 2625 } 2626 return false 2627 } 2628 2629 // exitsyscallfast_reacquired is the exitsyscall path on which this G 2630 // has successfully reacquired the P it was running on before the 2631 // syscall. 2632 // 2633 // This function is allowed to have write barriers because exitsyscall 2634 // has acquired a P at this point. 2635 // 2636 //go:yeswritebarrierrec 2637 //go:nosplit 2638 func exitsyscallfast_reacquired() { 2639 _g_ := getg() 2640 _g_.m.mcache = _g_.m.p.ptr().mcache 2641 _g_.m.p.ptr().m.set(_g_.m) 2642 if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 2643 if trace.enabled { 2644 // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). 2645 // traceGoSysBlock for this syscall was already emitted, 2646 // but here we effectively retake the p from the new syscall running on the same p. 2647 systemstack(func() { 2648 // Denote blocking of the new syscall. 2649 traceGoSysBlock(_g_.m.p.ptr()) 2650 // Denote completion of the current syscall. 2651 traceGoSysExit(0) 2652 }) 2653 } 2654 _g_.m.p.ptr().syscalltick++ 2655 } 2656 } 2657 2658 func exitsyscallfast_pidle() bool { 2659 lock(&sched.lock) 2660 _p_ := pidleget() 2661 if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 { 2662 atomic.Store(&sched.sysmonwait, 0) 2663 notewakeup(&sched.sysmonnote) 2664 } 2665 unlock(&sched.lock) 2666 if _p_ != nil { 2667 acquirep(_p_) 2668 return true 2669 } 2670 return false 2671 } 2672 2673 // exitsyscall slow path on g0. 2674 // Failed to acquire P, enqueue gp as runnable. 2675 // 2676 //go:nowritebarrierrec 2677 func exitsyscall0(gp *g) { 2678 _g_ := getg() 2679 2680 casgstatus(gp, _Gsyscall, _Grunnable) 2681 dropg() 2682 lock(&sched.lock) 2683 _p_ := pidleget() 2684 if _p_ == nil { 2685 globrunqput(gp) 2686 } else if atomic.Load(&sched.sysmonwait) != 0 { 2687 atomic.Store(&sched.sysmonwait, 0) 2688 notewakeup(&sched.sysmonnote) 2689 } 2690 unlock(&sched.lock) 2691 if _p_ != nil { 2692 acquirep(_p_) 2693 execute(gp, false) // Never returns. 2694 } 2695 if _g_.m.lockedg != nil { 2696 // Wait until another thread schedules gp and so m again. 2697 stoplockedm() 2698 execute(gp, false) // Never returns. 2699 } 2700 stopm() 2701 schedule() // Never returns. 2702 } 2703 2704 func beforefork() { 2705 gp := getg().m.curg 2706 2707 // Fork can hang if preempted with signals frequently enough (see issue 5517). 2708 // Ensure that we stay on the same M where we disable profiling. 2709 gp.m.locks++ 2710 if gp.m.profilehz != 0 { 2711 resetcpuprofiler(0) 2712 } 2713 2714 // This function is called before fork in syscall package. 2715 // Code between fork and exec must not allocate memory nor even try to grow stack. 2716 // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. 2717 // runtime_AfterFork will undo this in parent process, but not in child. 2718 gp.stackguard0 = stackFork 2719 } 2720 2721 // Called from syscall package before fork. 2722 //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork 2723 //go:nosplit 2724 func syscall_runtime_BeforeFork() { 2725 systemstack(beforefork) 2726 } 2727 2728 func afterfork() { 2729 gp := getg().m.curg 2730 2731 // See the comment in beforefork. 2732 gp.stackguard0 = gp.stack.lo + _StackGuard 2733 2734 hz := sched.profilehz 2735 if hz != 0 { 2736 resetcpuprofiler(hz) 2737 } 2738 gp.m.locks-- 2739 } 2740 2741 // Called from syscall package after fork in parent. 2742 //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork 2743 //go:nosplit 2744 func syscall_runtime_AfterFork() { 2745 systemstack(afterfork) 2746 } 2747 2748 // Allocate a new g, with a stack big enough for stacksize bytes. 2749 func malg(stacksize int32) *g { 2750 newg := new(g) 2751 if stacksize >= 0 { 2752 stacksize = round2(_StackSystem + stacksize) 2753 systemstack(func() { 2754 newg.stack, newg.stkbar = stackalloc(uint32(stacksize)) 2755 }) 2756 newg.stackguard0 = newg.stack.lo + _StackGuard 2757 newg.stackguard1 = ^uintptr(0) 2758 newg.stackAlloc = uintptr(stacksize) 2759 } 2760 return newg 2761 } 2762 2763 // Create a new g running fn with siz bytes of arguments. 2764 // Put it on the queue of g's waiting to run. 2765 // The compiler turns a go statement into a call to this. 2766 // Cannot split the stack because it assumes that the arguments 2767 // are available sequentially after &fn; they would not be 2768 // copied if a stack split occurred. 2769 //go:nosplit 2770 func newproc(siz int32, fn *funcval) { 2771 argp := add(unsafe.Pointer(&fn), sys.PtrSize) 2772 pc := getcallerpc(unsafe.Pointer(&siz)) 2773 systemstack(func() { 2774 newproc1(fn, (*uint8)(argp), siz, 0, pc) 2775 }) 2776 } 2777 2778 // Create a new g running fn with narg bytes of arguments starting 2779 // at argp and returning nret bytes of results. callerpc is the 2780 // address of the go statement that created this. The new g is put 2781 // on the queue of g's waiting to run. 2782 func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g { 2783 _g_ := getg() 2784 2785 if fn == nil { 2786 _g_.m.throwing = -1 // do not dump full stacks 2787 throw("go of nil func value") 2788 } 2789 _g_.m.locks++ // disable preemption because it can be holding p in a local var 2790 siz := narg + nret 2791 siz = (siz + 7) &^ 7 2792 2793 // We could allocate a larger initial stack if necessary. 2794 // Not worth it: this is almost always an error. 2795 // 4*sizeof(uintreg): extra space added below 2796 // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). 2797 if siz >= _StackMin-4*sys.RegSize-sys.RegSize { 2798 throw("newproc: function arguments too large for new goroutine") 2799 } 2800 2801 _p_ := _g_.m.p.ptr() 2802 newg := gfget(_p_) 2803 if newg == nil { 2804 newg = malg(_StackMin) 2805 casgstatus(newg, _Gidle, _Gdead) 2806 newg.gcRescan = -1 2807 allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. 2808 } 2809 if newg.stack.hi == 0 { 2810 throw("newproc1: newg missing stack") 2811 } 2812 2813 if readgstatus(newg) != _Gdead { 2814 throw("newproc1: new g is not Gdead") 2815 } 2816 2817 totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame 2818 totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign 2819 sp := newg.stack.hi - totalSize 2820 spArg := sp 2821 if usesLR { 2822 // caller's LR 2823 *(*uintptr)(unsafe.Pointer(sp)) = 0 2824 prepGoExitFrame(sp) 2825 spArg += sys.MinFrameSize 2826 } 2827 if narg > 0 { 2828 memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg)) 2829 // This is a stack-to-stack copy. If write barriers 2830 // are enabled and the source stack is grey (the 2831 // destination is always black), then perform a 2832 // barrier copy. We do this *after* the memmove 2833 // because the destination stack may have garbage on 2834 // it. 2835 if writeBarrier.needed && !_g_.m.curg.gcscandone { 2836 f := findfunc(fn.fn) 2837 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) 2838 // We're in the prologue, so it's always stack map index 0. 2839 bv := stackmapdata(stkmap, 0) 2840 bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata) 2841 } 2842 } 2843 2844 memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) 2845 newg.sched.sp = sp 2846 newg.stktopsp = sp 2847 newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function 2848 newg.sched.g = guintptr(unsafe.Pointer(newg)) 2849 gostartcallfn(&newg.sched, fn) 2850 newg.gopc = callerpc 2851 newg.startpc = fn.fn 2852 if isSystemGoroutine(newg) { 2853 atomic.Xadd(&sched.ngsys, +1) 2854 } 2855 // The stack is dirty from the argument frame, so queue it for 2856 // scanning. Do this before setting it to runnable so we still 2857 // own the G. If we're recycling a G, it may already be on the 2858 // rescan list. 2859 if newg.gcRescan == -1 { 2860 queueRescan(newg) 2861 } else { 2862 // The recycled G is already on the rescan list. Just 2863 // mark the stack dirty. 2864 newg.gcscanvalid = false 2865 } 2866 casgstatus(newg, _Gdead, _Grunnable) 2867 2868 if _p_.goidcache == _p_.goidcacheend { 2869 // Sched.goidgen is the last allocated id, 2870 // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. 2871 // At startup sched.goidgen=0, so main goroutine receives goid=1. 2872 _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch) 2873 _p_.goidcache -= _GoidCacheBatch - 1 2874 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch 2875 } 2876 newg.goid = int64(_p_.goidcache) 2877 _p_.goidcache++ 2878 if raceenabled { 2879 newg.racectx = racegostart(callerpc) 2880 } 2881 if trace.enabled { 2882 traceGoCreate(newg, newg.startpc) 2883 } 2884 runqput(_p_, newg, true) 2885 2886 if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && runtimeInitTime != 0 { 2887 wakep() 2888 } 2889 _g_.m.locks-- 2890 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 2891 _g_.stackguard0 = stackPreempt 2892 } 2893 return newg 2894 } 2895 2896 // Put on gfree list. 2897 // If local list is too long, transfer a batch to the global list. 2898 func gfput(_p_ *p, gp *g) { 2899 if readgstatus(gp) != _Gdead { 2900 throw("gfput: bad status (not Gdead)") 2901 } 2902 2903 stksize := gp.stackAlloc 2904 2905 if stksize != _FixedStack { 2906 // non-standard stack size - free it. 2907 stackfree(gp.stack, gp.stackAlloc) 2908 gp.stack.lo = 0 2909 gp.stack.hi = 0 2910 gp.stackguard0 = 0 2911 gp.stkbar = nil 2912 gp.stkbarPos = 0 2913 } else { 2914 // Reset stack barriers. 2915 gp.stkbar = gp.stkbar[:0] 2916 gp.stkbarPos = 0 2917 } 2918 2919 gp.schedlink.set(_p_.gfree) 2920 _p_.gfree = gp 2921 _p_.gfreecnt++ 2922 if _p_.gfreecnt >= 64 { 2923 lock(&sched.gflock) 2924 for _p_.gfreecnt >= 32 { 2925 _p_.gfreecnt-- 2926 gp = _p_.gfree 2927 _p_.gfree = gp.schedlink.ptr() 2928 if gp.stack.lo == 0 { 2929 gp.schedlink.set(sched.gfreeNoStack) 2930 sched.gfreeNoStack = gp 2931 } else { 2932 gp.schedlink.set(sched.gfreeStack) 2933 sched.gfreeStack = gp 2934 } 2935 sched.ngfree++ 2936 } 2937 unlock(&sched.gflock) 2938 } 2939 } 2940 2941 // Get from gfree list. 2942 // If local list is empty, grab a batch from global list. 2943 func gfget(_p_ *p) *g { 2944 retry: 2945 gp := _p_.gfree 2946 if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) { 2947 lock(&sched.gflock) 2948 for _p_.gfreecnt < 32 { 2949 if sched.gfreeStack != nil { 2950 // Prefer Gs with stacks. 2951 gp = sched.gfreeStack 2952 sched.gfreeStack = gp.schedlink.ptr() 2953 } else if sched.gfreeNoStack != nil { 2954 gp = sched.gfreeNoStack 2955 sched.gfreeNoStack = gp.schedlink.ptr() 2956 } else { 2957 break 2958 } 2959 _p_.gfreecnt++ 2960 sched.ngfree-- 2961 gp.schedlink.set(_p_.gfree) 2962 _p_.gfree = gp 2963 } 2964 unlock(&sched.gflock) 2965 goto retry 2966 } 2967 if gp != nil { 2968 _p_.gfree = gp.schedlink.ptr() 2969 _p_.gfreecnt-- 2970 if gp.stack.lo == 0 { 2971 // Stack was deallocated in gfput. Allocate a new one. 2972 systemstack(func() { 2973 gp.stack, gp.stkbar = stackalloc(_FixedStack) 2974 }) 2975 gp.stackguard0 = gp.stack.lo + _StackGuard 2976 gp.stackAlloc = _FixedStack 2977 } else { 2978 if raceenabled { 2979 racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc) 2980 } 2981 if msanenabled { 2982 msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc) 2983 } 2984 } 2985 } 2986 return gp 2987 } 2988 2989 // Purge all cached G's from gfree list to the global list. 2990 func gfpurge(_p_ *p) { 2991 lock(&sched.gflock) 2992 for _p_.gfreecnt != 0 { 2993 _p_.gfreecnt-- 2994 gp := _p_.gfree 2995 _p_.gfree = gp.schedlink.ptr() 2996 if gp.stack.lo == 0 { 2997 gp.schedlink.set(sched.gfreeNoStack) 2998 sched.gfreeNoStack = gp 2999 } else { 3000 gp.schedlink.set(sched.gfreeStack) 3001 sched.gfreeStack = gp 3002 } 3003 sched.ngfree++ 3004 } 3005 unlock(&sched.gflock) 3006 } 3007 3008 // Breakpoint executes a breakpoint trap. 3009 func Breakpoint() { 3010 breakpoint() 3011 } 3012 3013 // dolockOSThread is called by LockOSThread and lockOSThread below 3014 // after they modify m.locked. Do not allow preemption during this call, 3015 // or else the m might be different in this function than in the caller. 3016 //go:nosplit 3017 func dolockOSThread() { 3018 _g_ := getg() 3019 _g_.m.lockedg = _g_ 3020 _g_.lockedm = _g_.m 3021 } 3022 3023 //go:nosplit 3024 3025 // LockOSThread wires the calling goroutine to its current operating system thread. 3026 // Until the calling goroutine exits or calls UnlockOSThread, it will always 3027 // execute in that thread, and no other goroutine can. 3028 func LockOSThread() { 3029 getg().m.locked |= _LockExternal 3030 dolockOSThread() 3031 } 3032 3033 //go:nosplit 3034 func lockOSThread() { 3035 getg().m.locked += _LockInternal 3036 dolockOSThread() 3037 } 3038 3039 // dounlockOSThread is called by UnlockOSThread and unlockOSThread below 3040 // after they update m->locked. Do not allow preemption during this call, 3041 // or else the m might be in different in this function than in the caller. 3042 //go:nosplit 3043 func dounlockOSThread() { 3044 _g_ := getg() 3045 if _g_.m.locked != 0 { 3046 return 3047 } 3048 _g_.m.lockedg = nil 3049 _g_.lockedm = nil 3050 } 3051 3052 //go:nosplit 3053 3054 // UnlockOSThread unwires the calling goroutine from its fixed operating system thread. 3055 // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op. 3056 func UnlockOSThread() { 3057 getg().m.locked &^= _LockExternal 3058 dounlockOSThread() 3059 } 3060 3061 //go:nosplit 3062 func unlockOSThread() { 3063 _g_ := getg() 3064 if _g_.m.locked < _LockInternal { 3065 systemstack(badunlockosthread) 3066 } 3067 _g_.m.locked -= _LockInternal 3068 dounlockOSThread() 3069 } 3070 3071 func badunlockosthread() { 3072 throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") 3073 } 3074 3075 func gcount() int32 { 3076 n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys)) 3077 for i := 0; ; i++ { 3078 _p_ := allp[i] 3079 if _p_ == nil { 3080 break 3081 } 3082 n -= _p_.gfreecnt 3083 } 3084 3085 // All these variables can be changed concurrently, so the result can be inconsistent. 3086 // But at least the current goroutine is running. 3087 if n < 1 { 3088 n = 1 3089 } 3090 return n 3091 } 3092 3093 func mcount() int32 { 3094 return sched.mcount 3095 } 3096 3097 var prof struct { 3098 lock uint32 3099 hz int32 3100 } 3101 3102 func _System() { _System() } 3103 func _ExternalCode() { _ExternalCode() } 3104 func _GC() { _GC() } 3105 3106 // Called if we receive a SIGPROF signal. 3107 // Called by the signal handler, may run during STW. 3108 //go:nowritebarrierrec 3109 func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { 3110 if prof.hz == 0 { 3111 return 3112 } 3113 3114 // Profiling runs concurrently with GC, so it must not allocate. 3115 mp.mallocing++ 3116 3117 // Define that a "user g" is a user-created goroutine, and a "system g" 3118 // is one that is m->g0 or m->gsignal. 3119 // 3120 // We might be interrupted for profiling halfway through a 3121 // goroutine switch. The switch involves updating three (or four) values: 3122 // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, 3123 // because once it gets updated the new g is running. 3124 // 3125 // When switching from a user g to a system g, LR is not considered live, 3126 // so the update only affects g, SP, and PC. Since PC must be last, there 3127 // the possible partial transitions in ordinary execution are (1) g alone is updated, 3128 // (2) both g and SP are updated, and (3) SP alone is updated. 3129 // If SP or g alone is updated, we can detect the partial transition by checking 3130 // whether the SP is within g's stack bounds. (We could also require that SP 3131 // be changed only after g, but the stack bounds check is needed by other 3132 // cases, so there is no need to impose an additional requirement.) 3133 // 3134 // There is one exceptional transition to a system g, not in ordinary execution. 3135 // When a signal arrives, the operating system starts the signal handler running 3136 // with an updated PC and SP. The g is updated last, at the beginning of the 3137 // handler. There are two reasons this is okay. First, until g is updated the 3138 // g and SP do not match, so the stack bounds check detects the partial transition. 3139 // Second, signal handlers currently run with signals disabled, so a profiling 3140 // signal cannot arrive during the handler. 3141 // 3142 // When switching from a system g to a user g, there are three possibilities. 3143 // 3144 // First, it may be that the g switch has no PC update, because the SP 3145 // either corresponds to a user g throughout (as in asmcgocall) 3146 // or because it has been arranged to look like a user g frame 3147 // (as in cgocallback_gofunc). In this case, since the entire 3148 // transition is a g+SP update, a partial transition updating just one of 3149 // those will be detected by the stack bounds check. 3150 // 3151 // Second, when returning from a signal handler, the PC and SP updates 3152 // are performed by the operating system in an atomic update, so the g 3153 // update must be done before them. The stack bounds check detects 3154 // the partial transition here, and (again) signal handlers run with signals 3155 // disabled, so a profiling signal cannot arrive then anyway. 3156 // 3157 // Third, the common case: it may be that the switch updates g, SP, and PC 3158 // separately. If the PC is within any of the functions that does this, 3159 // we don't ask for a traceback. C.F. the function setsSP for more about this. 3160 // 3161 // There is another apparently viable approach, recorded here in case 3162 // the "PC within setsSP function" check turns out not to be usable. 3163 // It would be possible to delay the update of either g or SP until immediately 3164 // before the PC update instruction. Then, because of the stack bounds check, 3165 // the only problematic interrupt point is just before that PC update instruction, 3166 // and the sigprof handler can detect that instruction and simulate stepping past 3167 // it in order to reach a consistent state. On ARM, the update of g must be made 3168 // in two places (in R10 and also in a TLS slot), so the delayed update would 3169 // need to be the SP update. The sigprof handler must read the instruction at 3170 // the current PC and if it was the known instruction (for example, JMP BX or 3171 // MOV R2, PC), use that other register in place of the PC value. 3172 // The biggest drawback to this solution is that it requires that we can tell 3173 // whether it's safe to read from the memory pointed at by PC. 3174 // In a correct program, we can test PC == nil and otherwise read, 3175 // but if a profiling signal happens at the instant that a program executes 3176 // a bad jump (before the program manages to handle the resulting fault) 3177 // the profiling handler could fault trying to read nonexistent memory. 3178 // 3179 // To recap, there are no constraints on the assembly being used for the 3180 // transition. We simply require that g and SP match and that the PC is not 3181 // in gogo. 3182 traceback := true 3183 if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) { 3184 traceback = false 3185 } 3186 var stk [maxCPUProfStack]uintptr 3187 var haveStackLock *g 3188 n := 0 3189 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { 3190 cgoOff := 0 3191 // Check cgoCallersUse to make sure that we are not 3192 // interrupting other code that is fiddling with 3193 // cgoCallers. We are running in a signal handler 3194 // with all signals blocked, so we don't have to worry 3195 // about any other code interrupting us. 3196 if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 { 3197 for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 { 3198 cgoOff++ 3199 } 3200 copy(stk[:], mp.cgoCallers[:cgoOff]) 3201 mp.cgoCallers[0] = 0 3202 } 3203 3204 // Collect Go stack that leads to the cgo call. 3205 if gcTryLockStackBarriers(mp.curg) { 3206 haveStackLock = mp.curg 3207 n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0) 3208 } 3209 } else if traceback { 3210 var flags uint = _TraceTrap 3211 if gp.m.curg != nil && gcTryLockStackBarriers(gp.m.curg) { 3212 // It's safe to traceback the user stack. 3213 haveStackLock = gp.m.curg 3214 flags |= _TraceJumpStack 3215 } 3216 // Traceback is safe if we're on the system stack (if 3217 // necessary, flags will stop it before switching to 3218 // the user stack), or if we locked the user stack. 3219 if gp != gp.m.curg || haveStackLock != nil { 3220 n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, flags) 3221 } 3222 } 3223 if haveStackLock != nil { 3224 gcUnlockStackBarriers(haveStackLock) 3225 } 3226 3227 if n <= 0 { 3228 // Normal traceback is impossible or has failed. 3229 // See if it falls into several common cases. 3230 n = 0 3231 if GOOS == "windows" && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 { 3232 // Libcall, i.e. runtime syscall on windows. 3233 // Collect Go stack that leads to the call. 3234 if gcTryLockStackBarriers(mp.libcallg.ptr()) { 3235 n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0) 3236 gcUnlockStackBarriers(mp.libcallg.ptr()) 3237 } 3238 } 3239 if n == 0 { 3240 // If all of the above has failed, account it against abstract "System" or "GC". 3241 n = 2 3242 // "ExternalCode" is better than "etext". 3243 if pc > firstmoduledata.etext { 3244 pc = funcPC(_ExternalCode) + sys.PCQuantum 3245 } 3246 stk[0] = pc 3247 if mp.preemptoff != "" || mp.helpgc != 0 { 3248 stk[1] = funcPC(_GC) + sys.PCQuantum 3249 } else { 3250 stk[1] = funcPC(_System) + sys.PCQuantum 3251 } 3252 } 3253 } 3254 3255 if prof.hz != 0 { 3256 // Simple cas-lock to coordinate with setcpuprofilerate. 3257 for !atomic.Cas(&prof.lock, 0, 1) { 3258 osyield() 3259 } 3260 if prof.hz != 0 { 3261 cpuprof.add(stk[:n]) 3262 } 3263 atomic.Store(&prof.lock, 0) 3264 } 3265 mp.mallocing-- 3266 } 3267 3268 // If the signal handler receives a SIGPROF signal on a non-Go thread, 3269 // it tries to collect a traceback into sigprofCallers. 3270 // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback. 3271 var sigprofCallers cgoCallers 3272 var sigprofCallersUse uint32 3273 3274 // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, 3275 // and the signal handler collected a stack trace in sigprofCallers. 3276 // When this is called, sigprofCallersUse will be non-zero. 3277 // g is nil, and what we can do is very limited. 3278 //go:nosplit 3279 //go:nowritebarrierrec 3280 func sigprofNonGo() { 3281 if prof.hz != 0 { 3282 n := 0 3283 for n < len(sigprofCallers) && sigprofCallers[n] != 0 { 3284 n++ 3285 } 3286 3287 // Simple cas-lock to coordinate with setcpuprofilerate. 3288 for !atomic.Cas(&prof.lock, 0, 1) { 3289 osyield() 3290 } 3291 if prof.hz != 0 { 3292 cpuprof.addNonGo(sigprofCallers[:n]) 3293 } 3294 atomic.Store(&prof.lock, 0) 3295 } 3296 3297 atomic.Store(&sigprofCallersUse, 0) 3298 } 3299 3300 // sigprofNonGoPC is called when a profiling signal arrived on a 3301 // non-Go thread and we have a single PC value, not a stack trace. 3302 // g is nil, and what we can do is very limited. 3303 //go:nosplit 3304 //go:nowritebarrierrec 3305 func sigprofNonGoPC(pc uintptr) { 3306 if prof.hz != 0 { 3307 pc := []uintptr{ 3308 pc, 3309 funcPC(_ExternalCode) + sys.PCQuantum, 3310 } 3311 3312 // Simple cas-lock to coordinate with setcpuprofilerate. 3313 for !atomic.Cas(&prof.lock, 0, 1) { 3314 osyield() 3315 } 3316 if prof.hz != 0 { 3317 cpuprof.addNonGo(pc) 3318 } 3319 atomic.Store(&prof.lock, 0) 3320 } 3321 } 3322 3323 // Reports whether a function will set the SP 3324 // to an absolute value. Important that 3325 // we don't traceback when these are at the bottom 3326 // of the stack since we can't be sure that we will 3327 // find the caller. 3328 // 3329 // If the function is not on the bottom of the stack 3330 // we assume that it will have set it up so that traceback will be consistent, 3331 // either by being a traceback terminating function 3332 // or putting one on the stack at the right offset. 3333 func setsSP(pc uintptr) bool { 3334 f := findfunc(pc) 3335 if f == nil { 3336 // couldn't find the function for this PC, 3337 // so assume the worst and stop traceback 3338 return true 3339 } 3340 switch f.entry { 3341 case gogoPC, systemstackPC, mcallPC, morestackPC: 3342 return true 3343 } 3344 return false 3345 } 3346 3347 // Arrange to call fn with a traceback hz times a second. 3348 func setcpuprofilerate_m(hz int32) { 3349 // Force sane arguments. 3350 if hz < 0 { 3351 hz = 0 3352 } 3353 3354 // Disable preemption, otherwise we can be rescheduled to another thread 3355 // that has profiling enabled. 3356 _g_ := getg() 3357 _g_.m.locks++ 3358 3359 // Stop profiler on this thread so that it is safe to lock prof. 3360 // if a profiling signal came in while we had prof locked, 3361 // it would deadlock. 3362 resetcpuprofiler(0) 3363 3364 for !atomic.Cas(&prof.lock, 0, 1) { 3365 osyield() 3366 } 3367 prof.hz = hz 3368 atomic.Store(&prof.lock, 0) 3369 3370 lock(&sched.lock) 3371 sched.profilehz = hz 3372 unlock(&sched.lock) 3373 3374 if hz != 0 { 3375 resetcpuprofiler(hz) 3376 } 3377 3378 _g_.m.locks-- 3379 } 3380 3381 // Change number of processors. The world is stopped, sched is locked. 3382 // gcworkbufs are not being modified by either the GC or 3383 // the write barrier code. 3384 // Returns list of Ps with local work, they need to be scheduled by the caller. 3385 func procresize(nprocs int32) *p { 3386 old := gomaxprocs 3387 if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs { 3388 throw("procresize: invalid arg") 3389 } 3390 if trace.enabled { 3391 traceGomaxprocs(nprocs) 3392 } 3393 3394 // update statistics 3395 now := nanotime() 3396 if sched.procresizetime != 0 { 3397 sched.totaltime += int64(old) * (now - sched.procresizetime) 3398 } 3399 sched.procresizetime = now 3400 3401 // initialize new P's 3402 for i := int32(0); i < nprocs; i++ { 3403 pp := allp[i] 3404 if pp == nil { 3405 pp = new(p) 3406 pp.id = i 3407 pp.status = _Pgcstop 3408 pp.sudogcache = pp.sudogbuf[:0] 3409 for i := range pp.deferpool { 3410 pp.deferpool[i] = pp.deferpoolbuf[i][:0] 3411 } 3412 atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) 3413 } 3414 if pp.mcache == nil { 3415 if old == 0 && i == 0 { 3416 if getg().m.mcache == nil { 3417 throw("missing mcache?") 3418 } 3419 pp.mcache = getg().m.mcache // bootstrap 3420 } else { 3421 pp.mcache = allocmcache() 3422 } 3423 } 3424 if raceenabled && pp.racectx == 0 { 3425 if old == 0 && i == 0 { 3426 pp.racectx = raceprocctx0 3427 raceprocctx0 = 0 // bootstrap 3428 } else { 3429 pp.racectx = raceproccreate() 3430 } 3431 } 3432 } 3433 3434 // free unused P's 3435 for i := nprocs; i < old; i++ { 3436 p := allp[i] 3437 if trace.enabled { 3438 if p == getg().m.p.ptr() { 3439 // moving to p[0], pretend that we were descheduled 3440 // and then scheduled again to keep the trace sane. 3441 traceGoSched() 3442 traceProcStop(p) 3443 } 3444 } 3445 // move all runnable goroutines to the global queue 3446 for p.runqhead != p.runqtail { 3447 // pop from tail of local queue 3448 p.runqtail-- 3449 gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr() 3450 // push onto head of global queue 3451 globrunqputhead(gp) 3452 } 3453 if p.runnext != 0 { 3454 globrunqputhead(p.runnext.ptr()) 3455 p.runnext = 0 3456 } 3457 // if there's a background worker, make it runnable and put 3458 // it on the global queue so it can clean itself up 3459 if gp := p.gcBgMarkWorker.ptr(); gp != nil { 3460 casgstatus(gp, _Gwaiting, _Grunnable) 3461 if trace.enabled { 3462 traceGoUnpark(gp, 0) 3463 } 3464 globrunqput(gp) 3465 // This assignment doesn't race because the 3466 // world is stopped. 3467 p.gcBgMarkWorker.set(nil) 3468 } 3469 for i := range p.sudogbuf { 3470 p.sudogbuf[i] = nil 3471 } 3472 p.sudogcache = p.sudogbuf[:0] 3473 for i := range p.deferpool { 3474 for j := range p.deferpoolbuf[i] { 3475 p.deferpoolbuf[i][j] = nil 3476 } 3477 p.deferpool[i] = p.deferpoolbuf[i][:0] 3478 } 3479 freemcache(p.mcache) 3480 p.mcache = nil 3481 gfpurge(p) 3482 traceProcFree(p) 3483 if raceenabled { 3484 raceprocdestroy(p.racectx) 3485 p.racectx = 0 3486 } 3487 p.status = _Pdead 3488 // can't free P itself because it can be referenced by an M in syscall 3489 } 3490 3491 _g_ := getg() 3492 if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { 3493 // continue to use the current P 3494 _g_.m.p.ptr().status = _Prunning 3495 } else { 3496 // release the current P and acquire allp[0] 3497 if _g_.m.p != 0 { 3498 _g_.m.p.ptr().m = 0 3499 } 3500 _g_.m.p = 0 3501 _g_.m.mcache = nil 3502 p := allp[0] 3503 p.m = 0 3504 p.status = _Pidle 3505 acquirep(p) 3506 if trace.enabled { 3507 traceGoStart() 3508 } 3509 } 3510 var runnablePs *p 3511 for i := nprocs - 1; i >= 0; i-- { 3512 p := allp[i] 3513 if _g_.m.p.ptr() == p { 3514 continue 3515 } 3516 p.status = _Pidle 3517 if runqempty(p) { 3518 pidleput(p) 3519 } else { 3520 p.m.set(mget()) 3521 p.link.set(runnablePs) 3522 runnablePs = p 3523 } 3524 } 3525 stealOrder.reset(uint32(nprocs)) 3526 var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 3527 atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) 3528 return runnablePs 3529 } 3530 3531 // Associate p and the current m. 3532 // 3533 // This function is allowed to have write barriers even if the caller 3534 // isn't because it immediately acquires _p_. 3535 // 3536 //go:yeswritebarrierrec 3537 func acquirep(_p_ *p) { 3538 // Do the part that isn't allowed to have write barriers. 3539 acquirep1(_p_) 3540 3541 // have p; write barriers now allowed 3542 _g_ := getg() 3543 _g_.m.mcache = _p_.mcache 3544 3545 if trace.enabled { 3546 traceProcStart() 3547 } 3548 } 3549 3550 // acquirep1 is the first step of acquirep, which actually acquires 3551 // _p_. This is broken out so we can disallow write barriers for this 3552 // part, since we don't yet have a P. 3553 // 3554 //go:nowritebarrierrec 3555 func acquirep1(_p_ *p) { 3556 _g_ := getg() 3557 3558 if _g_.m.p != 0 || _g_.m.mcache != nil { 3559 throw("acquirep: already in go") 3560 } 3561 if _p_.m != 0 || _p_.status != _Pidle { 3562 id := int32(0) 3563 if _p_.m != 0 { 3564 id = _p_.m.ptr().id 3565 } 3566 print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") 3567 throw("acquirep: invalid p state") 3568 } 3569 _g_.m.p.set(_p_) 3570 _p_.m.set(_g_.m) 3571 _p_.status = _Prunning 3572 } 3573 3574 // Disassociate p and the current m. 3575 func releasep() *p { 3576 _g_ := getg() 3577 3578 if _g_.m.p == 0 || _g_.m.mcache == nil { 3579 throw("releasep: invalid arg") 3580 } 3581 _p_ := _g_.m.p.ptr() 3582 if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning { 3583 print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n") 3584 throw("releasep: invalid p state") 3585 } 3586 if trace.enabled { 3587 traceProcStop(_g_.m.p.ptr()) 3588 } 3589 _g_.m.p = 0 3590 _g_.m.mcache = nil 3591 _p_.m = 0 3592 _p_.status = _Pidle 3593 return _p_ 3594 } 3595 3596 func incidlelocked(v int32) { 3597 lock(&sched.lock) 3598 sched.nmidlelocked += v 3599 if v > 0 { 3600 checkdead() 3601 } 3602 unlock(&sched.lock) 3603 } 3604 3605 // Check for deadlock situation. 3606 // The check is based on number of running M's, if 0 -> deadlock. 3607 func checkdead() { 3608 // For -buildmode=c-shared or -buildmode=c-archive it's OK if 3609 // there are no running goroutines. The calling program is 3610 // assumed to be running. 3611 if islibrary || isarchive { 3612 return 3613 } 3614 3615 // If we are dying because of a signal caught on an already idle thread, 3616 // freezetheworld will cause all running threads to block. 3617 // And runtime will essentially enter into deadlock state, 3618 // except that there is a thread that will call exit soon. 3619 if panicking > 0 { 3620 return 3621 } 3622 3623 // -1 for sysmon 3624 run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1 3625 if run > 0 { 3626 return 3627 } 3628 if run < 0 { 3629 print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n") 3630 throw("checkdead: inconsistent counts") 3631 } 3632 3633 grunning := 0 3634 lock(&allglock) 3635 for i := 0; i < len(allgs); i++ { 3636 gp := allgs[i] 3637 if isSystemGoroutine(gp) { 3638 continue 3639 } 3640 s := readgstatus(gp) 3641 switch s &^ _Gscan { 3642 case _Gwaiting: 3643 grunning++ 3644 case _Grunnable, 3645 _Grunning, 3646 _Gsyscall: 3647 unlock(&allglock) 3648 print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") 3649 throw("checkdead: runnable g") 3650 } 3651 } 3652 unlock(&allglock) 3653 if grunning == 0 { // possible if main goroutine calls runtime·Goexit() 3654 throw("no goroutines (main called runtime.Goexit) - deadlock!") 3655 } 3656 3657 // Maybe jump time forward for playground. 3658 gp := timejump() 3659 if gp != nil { 3660 casgstatus(gp, _Gwaiting, _Grunnable) 3661 globrunqput(gp) 3662 _p_ := pidleget() 3663 if _p_ == nil { 3664 throw("checkdead: no p for timer") 3665 } 3666 mp := mget() 3667 if mp == nil { 3668 // There should always be a free M since 3669 // nothing is running. 3670 throw("checkdead: no m for timer") 3671 } 3672 mp.nextp.set(_p_) 3673 notewakeup(&mp.park) 3674 return 3675 } 3676 3677 getg().m.throwing = -1 // do not dump full stacks 3678 throw("all goroutines are asleep - deadlock!") 3679 } 3680 3681 // forcegcperiod is the maximum time in nanoseconds between garbage 3682 // collections. If we go this long without a garbage collection, one 3683 // is forced to run. 3684 // 3685 // This is a variable for testing purposes. It normally doesn't change. 3686 var forcegcperiod int64 = 2 * 60 * 1e9 3687 3688 // Always runs without a P, so write barriers are not allowed. 3689 // 3690 //go:nowritebarrierrec 3691 func sysmon() { 3692 // If a heap span goes unused for 5 minutes after a garbage collection, 3693 // we hand it back to the operating system. 3694 scavengelimit := int64(5 * 60 * 1e9) 3695 3696 if debug.scavenge > 0 { 3697 // Scavenge-a-lot for testing. 3698 forcegcperiod = 10 * 1e6 3699 scavengelimit = 20 * 1e6 3700 } 3701 3702 lastscavenge := nanotime() 3703 nscavenge := 0 3704 3705 lasttrace := int64(0) 3706 idle := 0 // how many cycles in succession we had not wokeup somebody 3707 delay := uint32(0) 3708 for { 3709 if idle == 0 { // start with 20us sleep... 3710 delay = 20 3711 } else if idle > 50 { // start doubling the sleep after 1ms... 3712 delay *= 2 3713 } 3714 if delay > 10*1000 { // up to 10ms 3715 delay = 10 * 1000 3716 } 3717 usleep(delay) 3718 if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { 3719 lock(&sched.lock) 3720 if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) { 3721 atomic.Store(&sched.sysmonwait, 1) 3722 unlock(&sched.lock) 3723 // Make wake-up period small enough 3724 // for the sampling to be correct. 3725 maxsleep := forcegcperiod / 2 3726 if scavengelimit < forcegcperiod { 3727 maxsleep = scavengelimit / 2 3728 } 3729 notetsleep(&sched.sysmonnote, maxsleep) 3730 lock(&sched.lock) 3731 atomic.Store(&sched.sysmonwait, 0) 3732 noteclear(&sched.sysmonnote) 3733 idle = 0 3734 delay = 20 3735 } 3736 unlock(&sched.lock) 3737 } 3738 // poll network if not polled for more than 10ms 3739 lastpoll := int64(atomic.Load64(&sched.lastpoll)) 3740 now := nanotime() 3741 unixnow := unixnanotime() 3742 if lastpoll != 0 && lastpoll+10*1000*1000 < now { 3743 atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) 3744 gp := netpoll(false) // non-blocking - returns list of goroutines 3745 if gp != nil { 3746 // Need to decrement number of idle locked M's 3747 // (pretending that one more is running) before injectglist. 3748 // Otherwise it can lead to the following situation: 3749 // injectglist grabs all P's but before it starts M's to run the P's, 3750 // another M returns from syscall, finishes running its G, 3751 // observes that there is no work to do and no other running M's 3752 // and reports deadlock. 3753 incidlelocked(-1) 3754 injectglist(gp) 3755 incidlelocked(1) 3756 } 3757 } 3758 // retake P's blocked in syscalls 3759 // and preempt long running G's 3760 if retake(now) != 0 { 3761 idle = 0 3762 } else { 3763 idle++ 3764 } 3765 // check if we need to force a GC 3766 lastgc := int64(atomic.Load64(&memstats.last_gc)) 3767 if gcphase == _GCoff && lastgc != 0 && unixnow-lastgc > forcegcperiod && atomic.Load(&forcegc.idle) != 0 { 3768 lock(&forcegc.lock) 3769 forcegc.idle = 0 3770 forcegc.g.schedlink = 0 3771 injectglist(forcegc.g) 3772 unlock(&forcegc.lock) 3773 } 3774 // scavenge heap once in a while 3775 if lastscavenge+scavengelimit/2 < now { 3776 mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit)) 3777 lastscavenge = now 3778 nscavenge++ 3779 } 3780 if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { 3781 lasttrace = now 3782 schedtrace(debug.scheddetail > 0) 3783 } 3784 } 3785 } 3786 3787 var pdesc [_MaxGomaxprocs]struct { 3788 schedtick uint32 3789 schedwhen int64 3790 syscalltick uint32 3791 syscallwhen int64 3792 } 3793 3794 // forcePreemptNS is the time slice given to a G before it is 3795 // preempted. 3796 const forcePreemptNS = 10 * 1000 * 1000 // 10ms 3797 3798 func retake(now int64) uint32 { 3799 n := 0 3800 for i := int32(0); i < gomaxprocs; i++ { 3801 _p_ := allp[i] 3802 if _p_ == nil { 3803 continue 3804 } 3805 pd := &pdesc[i] 3806 s := _p_.status 3807 if s == _Psyscall { 3808 // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). 3809 t := int64(_p_.syscalltick) 3810 if int64(pd.syscalltick) != t { 3811 pd.syscalltick = uint32(t) 3812 pd.syscallwhen = now 3813 continue 3814 } 3815 // On the one hand we don't want to retake Ps if there is no other work to do, 3816 // but on the other hand we want to retake them eventually 3817 // because they can prevent the sysmon thread from deep sleep. 3818 if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { 3819 continue 3820 } 3821 // Need to decrement number of idle locked M's 3822 // (pretending that one more is running) before the CAS. 3823 // Otherwise the M from which we retake can exit the syscall, 3824 // increment nmidle and report deadlock. 3825 incidlelocked(-1) 3826 if atomic.Cas(&_p_.status, s, _Pidle) { 3827 if trace.enabled { 3828 traceGoSysBlock(_p_) 3829 traceProcStop(_p_) 3830 } 3831 n++ 3832 _p_.syscalltick++ 3833 handoffp(_p_) 3834 } 3835 incidlelocked(1) 3836 } else if s == _Prunning { 3837 // Preempt G if it's running for too long. 3838 t := int64(_p_.schedtick) 3839 if int64(pd.schedtick) != t { 3840 pd.schedtick = uint32(t) 3841 pd.schedwhen = now 3842 continue 3843 } 3844 if pd.schedwhen+forcePreemptNS > now { 3845 continue 3846 } 3847 preemptone(_p_) 3848 } 3849 } 3850 return uint32(n) 3851 } 3852 3853 // Tell all goroutines that they have been preempted and they should stop. 3854 // This function is purely best-effort. It can fail to inform a goroutine if a 3855 // processor just started running it. 3856 // No locks need to be held. 3857 // Returns true if preemption request was issued to at least one goroutine. 3858 func preemptall() bool { 3859 res := false 3860 for i := int32(0); i < gomaxprocs; i++ { 3861 _p_ := allp[i] 3862 if _p_ == nil || _p_.status != _Prunning { 3863 continue 3864 } 3865 if preemptone(_p_) { 3866 res = true 3867 } 3868 } 3869 return res 3870 } 3871 3872 // Tell the goroutine running on processor P to stop. 3873 // This function is purely best-effort. It can incorrectly fail to inform the 3874 // goroutine. It can send inform the wrong goroutine. Even if it informs the 3875 // correct goroutine, that goroutine might ignore the request if it is 3876 // simultaneously executing newstack. 3877 // No lock needs to be held. 3878 // Returns true if preemption request was issued. 3879 // The actual preemption will happen at some point in the future 3880 // and will be indicated by the gp->status no longer being 3881 // Grunning 3882 func preemptone(_p_ *p) bool { 3883 mp := _p_.m.ptr() 3884 if mp == nil || mp == getg().m { 3885 return false 3886 } 3887 gp := mp.curg 3888 if gp == nil || gp == mp.g0 { 3889 return false 3890 } 3891 3892 gp.preempt = true 3893 3894 // Every call in a go routine checks for stack overflow by 3895 // comparing the current stack pointer to gp->stackguard0. 3896 // Setting gp->stackguard0 to StackPreempt folds 3897 // preemption into the normal stack overflow check. 3898 gp.stackguard0 = stackPreempt 3899 return true 3900 } 3901 3902 var starttime int64 3903 3904 func schedtrace(detailed bool) { 3905 now := nanotime() 3906 if starttime == 0 { 3907 starttime = now 3908 } 3909 3910 lock(&sched.lock) 3911 print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) 3912 if detailed { 3913 print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") 3914 } 3915 // We must be careful while reading data from P's, M's and G's. 3916 // Even if we hold schedlock, most data can be changed concurrently. 3917 // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. 3918 for i := int32(0); i < gomaxprocs; i++ { 3919 _p_ := allp[i] 3920 if _p_ == nil { 3921 continue 3922 } 3923 mp := _p_.m.ptr() 3924 h := atomic.Load(&_p_.runqhead) 3925 t := atomic.Load(&_p_.runqtail) 3926 if detailed { 3927 id := int32(-1) 3928 if mp != nil { 3929 id = mp.id 3930 } 3931 print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n") 3932 } else { 3933 // In non-detailed mode format lengths of per-P run queues as: 3934 // [len1 len2 len3 len4] 3935 print(" ") 3936 if i == 0 { 3937 print("[") 3938 } 3939 print(t - h) 3940 if i == gomaxprocs-1 { 3941 print("]\n") 3942 } 3943 } 3944 } 3945 3946 if !detailed { 3947 unlock(&sched.lock) 3948 return 3949 } 3950 3951 for mp := allm; mp != nil; mp = mp.alllink { 3952 _p_ := mp.p.ptr() 3953 gp := mp.curg 3954 lockedg := mp.lockedg 3955 id1 := int32(-1) 3956 if _p_ != nil { 3957 id1 = _p_.id 3958 } 3959 id2 := int64(-1) 3960 if gp != nil { 3961 id2 = gp.goid 3962 } 3963 id3 := int64(-1) 3964 if lockedg != nil { 3965 id3 = lockedg.goid 3966 } 3967 print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n") 3968 } 3969 3970 lock(&allglock) 3971 for gi := 0; gi < len(allgs); gi++ { 3972 gp := allgs[gi] 3973 mp := gp.m 3974 lockedm := gp.lockedm 3975 id1 := int32(-1) 3976 if mp != nil { 3977 id1 = mp.id 3978 } 3979 id2 := int32(-1) 3980 if lockedm != nil { 3981 id2 = lockedm.id 3982 } 3983 print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n") 3984 } 3985 unlock(&allglock) 3986 unlock(&sched.lock) 3987 } 3988 3989 // Put mp on midle list. 3990 // Sched must be locked. 3991 // May run during STW, so write barriers are not allowed. 3992 //go:nowritebarrierrec 3993 func mput(mp *m) { 3994 mp.schedlink = sched.midle 3995 sched.midle.set(mp) 3996 sched.nmidle++ 3997 checkdead() 3998 } 3999 4000 // Try to get an m from midle list. 4001 // Sched must be locked. 4002 // May run during STW, so write barriers are not allowed. 4003 //go:nowritebarrierrec 4004 func mget() *m { 4005 mp := sched.midle.ptr() 4006 if mp != nil { 4007 sched.midle = mp.schedlink 4008 sched.nmidle-- 4009 } 4010 return mp 4011 } 4012 4013 // Put gp on the global runnable queue. 4014 // Sched must be locked. 4015 // May run during STW, so write barriers are not allowed. 4016 //go:nowritebarrierrec 4017 func globrunqput(gp *g) { 4018 gp.schedlink = 0 4019 if sched.runqtail != 0 { 4020 sched.runqtail.ptr().schedlink.set(gp) 4021 } else { 4022 sched.runqhead.set(gp) 4023 } 4024 sched.runqtail.set(gp) 4025 sched.runqsize++ 4026 } 4027 4028 // Put gp at the head of the global runnable queue. 4029 // Sched must be locked. 4030 // May run during STW, so write barriers are not allowed. 4031 //go:nowritebarrierrec 4032 func globrunqputhead(gp *g) { 4033 gp.schedlink = sched.runqhead 4034 sched.runqhead.set(gp) 4035 if sched.runqtail == 0 { 4036 sched.runqtail.set(gp) 4037 } 4038 sched.runqsize++ 4039 } 4040 4041 // Put a batch of runnable goroutines on the global runnable queue. 4042 // Sched must be locked. 4043 func globrunqputbatch(ghead *g, gtail *g, n int32) { 4044 gtail.schedlink = 0 4045 if sched.runqtail != 0 { 4046 sched.runqtail.ptr().schedlink.set(ghead) 4047 } else { 4048 sched.runqhead.set(ghead) 4049 } 4050 sched.runqtail.set(gtail) 4051 sched.runqsize += n 4052 } 4053 4054 // Try get a batch of G's from the global runnable queue. 4055 // Sched must be locked. 4056 func globrunqget(_p_ *p, max int32) *g { 4057 if sched.runqsize == 0 { 4058 return nil 4059 } 4060 4061 n := sched.runqsize/gomaxprocs + 1 4062 if n > sched.runqsize { 4063 n = sched.runqsize 4064 } 4065 if max > 0 && n > max { 4066 n = max 4067 } 4068 if n > int32(len(_p_.runq))/2 { 4069 n = int32(len(_p_.runq)) / 2 4070 } 4071 4072 sched.runqsize -= n 4073 if sched.runqsize == 0 { 4074 sched.runqtail = 0 4075 } 4076 4077 gp := sched.runqhead.ptr() 4078 sched.runqhead = gp.schedlink 4079 n-- 4080 for ; n > 0; n-- { 4081 gp1 := sched.runqhead.ptr() 4082 sched.runqhead = gp1.schedlink 4083 runqput(_p_, gp1, false) 4084 } 4085 return gp 4086 } 4087 4088 // Put p to on _Pidle list. 4089 // Sched must be locked. 4090 // May run during STW, so write barriers are not allowed. 4091 //go:nowritebarrierrec 4092 func pidleput(_p_ *p) { 4093 if !runqempty(_p_) { 4094 throw("pidleput: P has non-empty run queue") 4095 } 4096 _p_.link = sched.pidle 4097 sched.pidle.set(_p_) 4098 atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic 4099 } 4100 4101 // Try get a p from _Pidle list. 4102 // Sched must be locked. 4103 // May run during STW, so write barriers are not allowed. 4104 //go:nowritebarrierrec 4105 func pidleget() *p { 4106 _p_ := sched.pidle.ptr() 4107 if _p_ != nil { 4108 sched.pidle = _p_.link 4109 atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic 4110 } 4111 return _p_ 4112 } 4113 4114 // runqempty returns true if _p_ has no Gs on its local run queue. 4115 // It never returns true spuriously. 4116 func runqempty(_p_ *p) bool { 4117 // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail, 4118 // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext. 4119 // Simply observing that runqhead == runqtail and then observing that runqnext == nil 4120 // does not mean the queue is empty. 4121 for { 4122 head := atomic.Load(&_p_.runqhead) 4123 tail := atomic.Load(&_p_.runqtail) 4124 runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext))) 4125 if tail == atomic.Load(&_p_.runqtail) { 4126 return head == tail && runnext == 0 4127 } 4128 } 4129 } 4130 4131 // To shake out latent assumptions about scheduling order, 4132 // we introduce some randomness into scheduling decisions 4133 // when running with the race detector. 4134 // The need for this was made obvious by changing the 4135 // (deterministic) scheduling order in Go 1.5 and breaking 4136 // many poorly-written tests. 4137 // With the randomness here, as long as the tests pass 4138 // consistently with -race, they shouldn't have latent scheduling 4139 // assumptions. 4140 const randomizeScheduler = raceenabled 4141 4142 // runqput tries to put g on the local runnable queue. 4143 // If next if false, runqput adds g to the tail of the runnable queue. 4144 // If next is true, runqput puts g in the _p_.runnext slot. 4145 // If the run queue is full, runnext puts g on the global queue. 4146 // Executed only by the owner P. 4147 func runqput(_p_ *p, gp *g, next bool) { 4148 if randomizeScheduler && next && fastrand()%2 == 0 { 4149 next = false 4150 } 4151 4152 if next { 4153 retryNext: 4154 oldnext := _p_.runnext 4155 if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { 4156 goto retryNext 4157 } 4158 if oldnext == 0 { 4159 return 4160 } 4161 // Kick the old runnext out to the regular run queue. 4162 gp = oldnext.ptr() 4163 } 4164 4165 retry: 4166 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers 4167 t := _p_.runqtail 4168 if t-h < uint32(len(_p_.runq)) { 4169 _p_.runq[t%uint32(len(_p_.runq))].set(gp) 4170 atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption 4171 return 4172 } 4173 if runqputslow(_p_, gp, h, t) { 4174 return 4175 } 4176 // the queue is not full, now the put above must succeed 4177 goto retry 4178 } 4179 4180 // Put g and a batch of work from local runnable queue on global queue. 4181 // Executed only by the owner P. 4182 func runqputslow(_p_ *p, gp *g, h, t uint32) bool { 4183 var batch [len(_p_.runq)/2 + 1]*g 4184 4185 // First, grab a batch from local queue. 4186 n := t - h 4187 n = n / 2 4188 if n != uint32(len(_p_.runq)/2) { 4189 throw("runqputslow: queue is not full") 4190 } 4191 for i := uint32(0); i < n; i++ { 4192 batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr() 4193 } 4194 if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 4195 return false 4196 } 4197 batch[n] = gp 4198 4199 if randomizeScheduler { 4200 for i := uint32(1); i <= n; i++ { 4201 j := fastrand() % (i + 1) 4202 batch[i], batch[j] = batch[j], batch[i] 4203 } 4204 } 4205 4206 // Link the goroutines. 4207 for i := uint32(0); i < n; i++ { 4208 batch[i].schedlink.set(batch[i+1]) 4209 } 4210 4211 // Now put the batch on global queue. 4212 lock(&sched.lock) 4213 globrunqputbatch(batch[0], batch[n], int32(n+1)) 4214 unlock(&sched.lock) 4215 return true 4216 } 4217 4218 // Get g from local runnable queue. 4219 // If inheritTime is true, gp should inherit the remaining time in the 4220 // current time slice. Otherwise, it should start a new time slice. 4221 // Executed only by the owner P. 4222 func runqget(_p_ *p) (gp *g, inheritTime bool) { 4223 // If there's a runnext, it's the next G to run. 4224 for { 4225 next := _p_.runnext 4226 if next == 0 { 4227 break 4228 } 4229 if _p_.runnext.cas(next, 0) { 4230 return next.ptr(), true 4231 } 4232 } 4233 4234 for { 4235 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers 4236 t := _p_.runqtail 4237 if t == h { 4238 return nil, false 4239 } 4240 gp := _p_.runq[h%uint32(len(_p_.runq))].ptr() 4241 if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume 4242 return gp, false 4243 } 4244 } 4245 } 4246 4247 // Grabs a batch of goroutines from _p_'s runnable queue into batch. 4248 // Batch is a ring buffer starting at batchHead. 4249 // Returns number of grabbed goroutines. 4250 // Can be executed by any P. 4251 func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 { 4252 for { 4253 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers 4254 t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer 4255 n := t - h 4256 n = n - n/2 4257 if n == 0 { 4258 if stealRunNextG { 4259 // Try to steal from _p_.runnext. 4260 if next := _p_.runnext; next != 0 { 4261 // Sleep to ensure that _p_ isn't about to run the g we 4262 // are about to steal. 4263 // The important use case here is when the g running on _p_ 4264 // ready()s another g and then almost immediately blocks. 4265 // Instead of stealing runnext in this window, back off 4266 // to give _p_ a chance to schedule runnext. This will avoid 4267 // thrashing gs between different Ps. 4268 // A sync chan send/recv takes ~50ns as of time of writing, 4269 // so 3us gives ~50x overshoot. 4270 if GOOS != "windows" { 4271 usleep(3) 4272 } else { 4273 // On windows system timer granularity is 1-15ms, 4274 // which is way too much for this optimization. 4275 // So just yield. 4276 osyield() 4277 } 4278 if !_p_.runnext.cas(next, 0) { 4279 continue 4280 } 4281 batch[batchHead%uint32(len(batch))] = next 4282 return 1 4283 } 4284 } 4285 return 0 4286 } 4287 if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t 4288 continue 4289 } 4290 for i := uint32(0); i < n; i++ { 4291 g := _p_.runq[(h+i)%uint32(len(_p_.runq))] 4292 batch[(batchHead+i)%uint32(len(batch))] = g 4293 } 4294 if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 4295 return n 4296 } 4297 } 4298 } 4299 4300 // Steal half of elements from local runnable queue of p2 4301 // and put onto local runnable queue of p. 4302 // Returns one of the stolen elements (or nil if failed). 4303 func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { 4304 t := _p_.runqtail 4305 n := runqgrab(p2, &_p_.runq, t, stealRunNextG) 4306 if n == 0 { 4307 return nil 4308 } 4309 n-- 4310 gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr() 4311 if n == 0 { 4312 return gp 4313 } 4314 h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers 4315 if t-h+n >= uint32(len(_p_.runq)) { 4316 throw("runqsteal: runq overflow") 4317 } 4318 atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption 4319 return gp 4320 } 4321 4322 //go:linkname setMaxThreads runtime/debug.setMaxThreads 4323 func setMaxThreads(in int) (out int) { 4324 lock(&sched.lock) 4325 out = int(sched.maxmcount) 4326 if in > 0x7fffffff { // MaxInt32 4327 sched.maxmcount = 0x7fffffff 4328 } else { 4329 sched.maxmcount = int32(in) 4330 } 4331 checkmcount() 4332 unlock(&sched.lock) 4333 return 4334 } 4335 4336 func haveexperiment(name string) bool { 4337 if name == "framepointer" { 4338 return framepointer_enabled // set by linker 4339 } 4340 x := sys.Goexperiment 4341 for x != "" { 4342 xname := "" 4343 i := index(x, ",") 4344 if i < 0 { 4345 xname, x = x, "" 4346 } else { 4347 xname, x = x[:i], x[i+1:] 4348 } 4349 if xname == name { 4350 return true 4351 } 4352 if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name { 4353 return false 4354 } 4355 } 4356 return false 4357 } 4358 4359 //go:nosplit 4360 func procPin() int { 4361 _g_ := getg() 4362 mp := _g_.m 4363 4364 mp.locks++ 4365 return int(mp.p.ptr().id) 4366 } 4367 4368 //go:nosplit 4369 func procUnpin() { 4370 _g_ := getg() 4371 _g_.m.locks-- 4372 } 4373 4374 //go:linkname sync_runtime_procPin sync.runtime_procPin 4375 //go:nosplit 4376 func sync_runtime_procPin() int { 4377 return procPin() 4378 } 4379 4380 //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin 4381 //go:nosplit 4382 func sync_runtime_procUnpin() { 4383 procUnpin() 4384 } 4385 4386 //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin 4387 //go:nosplit 4388 func sync_atomic_runtime_procPin() int { 4389 return procPin() 4390 } 4391 4392 //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin 4393 //go:nosplit 4394 func sync_atomic_runtime_procUnpin() { 4395 procUnpin() 4396 } 4397 4398 // Active spinning for sync.Mutex. 4399 //go:linkname sync_runtime_canSpin sync.runtime_canSpin 4400 //go:nosplit 4401 func sync_runtime_canSpin(i int) bool { 4402 // sync.Mutex is cooperative, so we are conservative with spinning. 4403 // Spin only few times and only if running on a multicore machine and 4404 // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. 4405 // As opposed to runtime mutex we don't do passive spinning here, 4406 // because there can be work on global runq on on other Ps. 4407 if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { 4408 return false 4409 } 4410 if p := getg().m.p.ptr(); !runqempty(p) { 4411 return false 4412 } 4413 return true 4414 } 4415 4416 //go:linkname sync_runtime_doSpin sync.runtime_doSpin 4417 //go:nosplit 4418 func sync_runtime_doSpin() { 4419 procyield(active_spin_cnt) 4420 } 4421 4422 var stealOrder randomOrder 4423 4424 // randomOrder/randomEnum are helper types for randomized work stealing. 4425 // They allow to enumerate all Ps in different pseudo-random orders without repetitions. 4426 // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS 4427 // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration. 4428 type randomOrder struct { 4429 count uint32 4430 coprimes []uint32 4431 } 4432 4433 type randomEnum struct { 4434 i uint32 4435 count uint32 4436 pos uint32 4437 inc uint32 4438 } 4439 4440 func (ord *randomOrder) reset(count uint32) { 4441 ord.count = count 4442 ord.coprimes = ord.coprimes[:0] 4443 for i := uint32(1); i <= count; i++ { 4444 if gcd(i, count) == 1 { 4445 ord.coprimes = append(ord.coprimes, i) 4446 } 4447 } 4448 } 4449 4450 func (ord *randomOrder) start(i uint32) randomEnum { 4451 return randomEnum{ 4452 count: ord.count, 4453 pos: i % ord.count, 4454 inc: ord.coprimes[i%uint32(len(ord.coprimes))], 4455 } 4456 } 4457 4458 func (enum *randomEnum) done() bool { 4459 return enum.i == enum.count 4460 } 4461 4462 func (enum *randomEnum) next() { 4463 enum.i++ 4464 enum.pos = (enum.pos + enum.inc) % enum.count 4465 } 4466 4467 func (enum *randomEnum) position() uint32 { 4468 return enum.pos 4469 } 4470 4471 func gcd(a, b uint32) uint32 { 4472 for b != 0 { 4473 a, b = b, a%b 4474 } 4475 return a 4476 }