github.com/peggyl/go@v0.0.0-20151008231540-ae315999c2d5/src/compress/flate/inflate.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package flate implements the DEFLATE compressed data format, described in
     6  // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
     7  // formats.
     8  package flate
     9  
    10  import (
    11  	"bufio"
    12  	"io"
    13  	"strconv"
    14  	"sync"
    15  )
    16  
    17  const (
    18  	maxCodeLen = 16    // max length of Huffman code
    19  	maxHist    = 32768 // max history required
    20  	// The next three numbers come from the RFC section 3.2.7, with the
    21  	// additional proviso in section 3.2.5 which implies that distance codes
    22  	// 30 and 31 should never occur in compressed data.
    23  	maxNumLit  = 286
    24  	maxNumDist = 30
    25  	numCodes   = 19 // number of codes in Huffman meta-code
    26  )
    27  
    28  // Initialize the fixedHuffmanDecoder only once upon first use.
    29  var fixedOnce sync.Once
    30  var fixedHuffmanDecoder huffmanDecoder
    31  
    32  // A CorruptInputError reports the presence of corrupt input at a given offset.
    33  type CorruptInputError int64
    34  
    35  func (e CorruptInputError) Error() string {
    36  	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
    37  }
    38  
    39  // An InternalError reports an error in the flate code itself.
    40  type InternalError string
    41  
    42  func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
    43  
    44  // A ReadError reports an error encountered while reading input.
    45  type ReadError struct {
    46  	Offset int64 // byte offset where error occurred
    47  	Err    error // error returned by underlying Read
    48  }
    49  
    50  func (e *ReadError) Error() string {
    51  	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    52  }
    53  
    54  // A WriteError reports an error encountered while writing output.
    55  type WriteError struct {
    56  	Offset int64 // byte offset where error occurred
    57  	Err    error // error returned by underlying Write
    58  }
    59  
    60  func (e *WriteError) Error() string {
    61  	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    62  }
    63  
    64  // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
    65  // to switch to a new underlying Reader. This permits reusing a ReadCloser
    66  // instead of allocating a new one.
    67  type Resetter interface {
    68  	// Reset discards any buffered data and resets the Resetter as if it was
    69  	// newly initialized with the given reader.
    70  	Reset(r io.Reader, dict []byte) error
    71  }
    72  
    73  // The data structure for decoding Huffman tables is based on that of
    74  // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
    75  // For codes smaller than the table width, there are multiple entries
    76  // (each combination of trailing bits has the same value). For codes
    77  // larger than the table width, the table contains a link to an overflow
    78  // table. The width of each entry in the link table is the maximum code
    79  // size minus the chunk width.
    80  //
    81  // Note that you can do a lookup in the table even without all bits
    82  // filled. Since the extra bits are zero, and the DEFLATE Huffman codes
    83  // have the property that shorter codes come before longer ones, the
    84  // bit length estimate in the result is a lower bound on the actual
    85  // number of bits.
    86  //
    87  // See the following:
    88  //	http://www.gzip.org/algorithm.txt
    89  
    90  // chunk & 15 is number of bits
    91  // chunk >> 4 is value, including table link
    92  
    93  const (
    94  	huffmanChunkBits  = 9
    95  	huffmanNumChunks  = 1 << huffmanChunkBits
    96  	huffmanCountMask  = 15
    97  	huffmanValueShift = 4
    98  )
    99  
   100  type huffmanDecoder struct {
   101  	min      int                      // the minimum code length
   102  	chunks   [huffmanNumChunks]uint32 // chunks as described above
   103  	links    [][]uint32               // overflow links
   104  	linkMask uint32                   // mask the width of the link table
   105  }
   106  
   107  // Initialize Huffman decoding tables from array of code lengths.
   108  // Following this function, h is guaranteed to be initialized into a complete
   109  // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
   110  // degenerate case where the tree has only a single symbol with length 1. Empty
   111  // trees are permitted.
   112  func (h *huffmanDecoder) init(bits []int) bool {
   113  	// Sanity enables additional runtime tests during Huffman
   114  	// table construction.  It's intended to be used during
   115  	// development to supplement the currently ad-hoc unit tests.
   116  	const sanity = false
   117  
   118  	if h.min != 0 {
   119  		*h = huffmanDecoder{}
   120  	}
   121  
   122  	// Count number of codes of each length,
   123  	// compute min and max length.
   124  	var count [maxCodeLen]int
   125  	var min, max int
   126  	for _, n := range bits {
   127  		if n == 0 {
   128  			continue
   129  		}
   130  		if min == 0 || n < min {
   131  			min = n
   132  		}
   133  		if n > max {
   134  			max = n
   135  		}
   136  		count[n]++
   137  	}
   138  
   139  	// Empty tree. The decompressor.huffSym function will fail later if the tree
   140  	// is used. Technically, an empty tree is only valid for the HDIST tree and
   141  	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
   142  	// is guaranteed to fail since it will attempt to use the tree to decode the
   143  	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
   144  	// guaranteed to fail later since the compressed data section must be
   145  	// composed of at least one symbol (the end-of-block marker).
   146  	if max == 0 {
   147  		return true
   148  	}
   149  
   150  	code := 0
   151  	var nextcode [maxCodeLen]int
   152  	for i := min; i <= max; i++ {
   153  		code <<= 1
   154  		nextcode[i] = code
   155  		code += count[i]
   156  	}
   157  
   158  	// Check that the coding is complete (i.e., that we've
   159  	// assigned all 2-to-the-max possible bit sequences).
   160  	// Exception: To be compatible with zlib, we also need to
   161  	// accept degenerate single-code codings.  See also
   162  	// TestDegenerateHuffmanCoding.
   163  	if code != 1<<uint(max) && !(code == 1 && max == 1) {
   164  		return false
   165  	}
   166  
   167  	h.min = min
   168  	if max > huffmanChunkBits {
   169  		numLinks := 1 << (uint(max) - huffmanChunkBits)
   170  		h.linkMask = uint32(numLinks - 1)
   171  
   172  		// create link tables
   173  		link := nextcode[huffmanChunkBits+1] >> 1
   174  		h.links = make([][]uint32, huffmanNumChunks-link)
   175  		for j := uint(link); j < huffmanNumChunks; j++ {
   176  			reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
   177  			reverse >>= uint(16 - huffmanChunkBits)
   178  			off := j - uint(link)
   179  			if sanity && h.chunks[reverse] != 0 {
   180  				panic("impossible: overwriting existing chunk")
   181  			}
   182  			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
   183  			h.links[off] = make([]uint32, numLinks)
   184  		}
   185  	}
   186  
   187  	for i, n := range bits {
   188  		if n == 0 {
   189  			continue
   190  		}
   191  		code := nextcode[n]
   192  		nextcode[n]++
   193  		chunk := uint32(i<<huffmanValueShift | n)
   194  		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
   195  		reverse >>= uint(16 - n)
   196  		if n <= huffmanChunkBits {
   197  			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
   198  				// We should never need to overwrite
   199  				// an existing chunk.  Also, 0 is
   200  				// never a valid chunk, because the
   201  				// lower 4 "count" bits should be
   202  				// between 1 and 15.
   203  				if sanity && h.chunks[off] != 0 {
   204  					panic("impossible: overwriting existing chunk")
   205  				}
   206  				h.chunks[off] = chunk
   207  			}
   208  		} else {
   209  			j := reverse & (huffmanNumChunks - 1)
   210  			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
   211  				// Longer codes should have been
   212  				// associated with a link table above.
   213  				panic("impossible: not an indirect chunk")
   214  			}
   215  			value := h.chunks[j] >> huffmanValueShift
   216  			linktab := h.links[value]
   217  			reverse >>= huffmanChunkBits
   218  			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
   219  				if sanity && linktab[off] != 0 {
   220  					panic("impossible: overwriting existing chunk")
   221  				}
   222  				linktab[off] = chunk
   223  			}
   224  		}
   225  	}
   226  
   227  	if sanity {
   228  		// Above we've sanity checked that we never overwrote
   229  		// an existing entry.  Here we additionally check that
   230  		// we filled the tables completely.
   231  		for i, chunk := range h.chunks {
   232  			if chunk == 0 {
   233  				// As an exception, in the degenerate
   234  				// single-code case, we allow odd
   235  				// chunks to be missing.
   236  				if code == 1 && i%2 == 1 {
   237  					continue
   238  				}
   239  				panic("impossible: missing chunk")
   240  			}
   241  		}
   242  		for _, linktab := range h.links {
   243  			for _, chunk := range linktab {
   244  				if chunk == 0 {
   245  					panic("impossible: missing chunk")
   246  				}
   247  			}
   248  		}
   249  	}
   250  
   251  	return true
   252  }
   253  
   254  // The actual read interface needed by NewReader.
   255  // If the passed in io.Reader does not also have ReadByte,
   256  // the NewReader will introduce its own buffering.
   257  type Reader interface {
   258  	io.Reader
   259  	io.ByteReader
   260  }
   261  
   262  // Decompress state.
   263  type decompressor struct {
   264  	// Input source.
   265  	r       Reader
   266  	roffset int64
   267  	woffset int64
   268  
   269  	// Input bits, in top of b.
   270  	b  uint32
   271  	nb uint
   272  
   273  	// Huffman decoders for literal/length, distance.
   274  	h1, h2 huffmanDecoder
   275  
   276  	// Length arrays used to define Huffman codes.
   277  	bits     *[maxNumLit + maxNumDist]int
   278  	codebits *[numCodes]int
   279  
   280  	// Output history, buffer.
   281  	hist  *[maxHist]byte
   282  	hp    int  // current output position in buffer
   283  	hw    int  // have written hist[0:hw] already
   284  	hfull bool // buffer has filled at least once
   285  
   286  	// Temporary buffer (avoids repeated allocation).
   287  	buf [4]byte
   288  
   289  	// Next step in the decompression,
   290  	// and decompression state.
   291  	step     func(*decompressor)
   292  	final    bool
   293  	err      error
   294  	toRead   []byte
   295  	hl, hd   *huffmanDecoder
   296  	copyLen  int
   297  	copyDist int
   298  }
   299  
   300  func (f *decompressor) nextBlock() {
   301  	if f.final {
   302  		if f.hw != f.hp {
   303  			f.flush((*decompressor).nextBlock)
   304  			return
   305  		}
   306  		f.err = io.EOF
   307  		return
   308  	}
   309  	for f.nb < 1+2 {
   310  		if f.err = f.moreBits(); f.err != nil {
   311  			return
   312  		}
   313  	}
   314  	f.final = f.b&1 == 1
   315  	f.b >>= 1
   316  	typ := f.b & 3
   317  	f.b >>= 2
   318  	f.nb -= 1 + 2
   319  	switch typ {
   320  	case 0:
   321  		f.dataBlock()
   322  	case 1:
   323  		// compressed, fixed Huffman tables
   324  		f.hl = &fixedHuffmanDecoder
   325  		f.hd = nil
   326  		f.huffmanBlock()
   327  	case 2:
   328  		// compressed, dynamic Huffman tables
   329  		if f.err = f.readHuffman(); f.err != nil {
   330  			break
   331  		}
   332  		f.hl = &f.h1
   333  		f.hd = &f.h2
   334  		f.huffmanBlock()
   335  	default:
   336  		// 3 is reserved.
   337  		f.err = CorruptInputError(f.roffset)
   338  	}
   339  }
   340  
   341  func (f *decompressor) Read(b []byte) (int, error) {
   342  	for {
   343  		if len(f.toRead) > 0 {
   344  			n := copy(b, f.toRead)
   345  			f.toRead = f.toRead[n:]
   346  			return n, nil
   347  		}
   348  		if f.err != nil {
   349  			return 0, f.err
   350  		}
   351  		f.step(f)
   352  	}
   353  }
   354  
   355  func (f *decompressor) Close() error {
   356  	if f.err == io.EOF {
   357  		return nil
   358  	}
   359  	return f.err
   360  }
   361  
   362  // RFC 1951 section 3.2.7.
   363  // Compression with dynamic Huffman codes
   364  
   365  var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
   366  
   367  func (f *decompressor) readHuffman() error {
   368  	// HLIT[5], HDIST[5], HCLEN[4].
   369  	for f.nb < 5+5+4 {
   370  		if err := f.moreBits(); err != nil {
   371  			return err
   372  		}
   373  	}
   374  	nlit := int(f.b&0x1F) + 257
   375  	if nlit > maxNumLit {
   376  		return CorruptInputError(f.roffset)
   377  	}
   378  	f.b >>= 5
   379  	ndist := int(f.b&0x1F) + 1
   380  	if ndist > maxNumDist {
   381  		return CorruptInputError(f.roffset)
   382  	}
   383  	f.b >>= 5
   384  	nclen := int(f.b&0xF) + 4
   385  	// numCodes is 19, so nclen is always valid.
   386  	f.b >>= 4
   387  	f.nb -= 5 + 5 + 4
   388  
   389  	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
   390  	for i := 0; i < nclen; i++ {
   391  		for f.nb < 3 {
   392  			if err := f.moreBits(); err != nil {
   393  				return err
   394  			}
   395  		}
   396  		f.codebits[codeOrder[i]] = int(f.b & 0x7)
   397  		f.b >>= 3
   398  		f.nb -= 3
   399  	}
   400  	for i := nclen; i < len(codeOrder); i++ {
   401  		f.codebits[codeOrder[i]] = 0
   402  	}
   403  	if !f.h1.init(f.codebits[0:]) {
   404  		return CorruptInputError(f.roffset)
   405  	}
   406  
   407  	// HLIT + 257 code lengths, HDIST + 1 code lengths,
   408  	// using the code length Huffman code.
   409  	for i, n := 0, nlit+ndist; i < n; {
   410  		x, err := f.huffSym(&f.h1)
   411  		if err != nil {
   412  			return err
   413  		}
   414  		if x < 16 {
   415  			// Actual length.
   416  			f.bits[i] = x
   417  			i++
   418  			continue
   419  		}
   420  		// Repeat previous length or zero.
   421  		var rep int
   422  		var nb uint
   423  		var b int
   424  		switch x {
   425  		default:
   426  			return InternalError("unexpected length code")
   427  		case 16:
   428  			rep = 3
   429  			nb = 2
   430  			if i == 0 {
   431  				return CorruptInputError(f.roffset)
   432  			}
   433  			b = f.bits[i-1]
   434  		case 17:
   435  			rep = 3
   436  			nb = 3
   437  			b = 0
   438  		case 18:
   439  			rep = 11
   440  			nb = 7
   441  			b = 0
   442  		}
   443  		for f.nb < nb {
   444  			if err := f.moreBits(); err != nil {
   445  				return err
   446  			}
   447  		}
   448  		rep += int(f.b & uint32(1<<nb-1))
   449  		f.b >>= nb
   450  		f.nb -= nb
   451  		if i+rep > n {
   452  			return CorruptInputError(f.roffset)
   453  		}
   454  		for j := 0; j < rep; j++ {
   455  			f.bits[i] = b
   456  			i++
   457  		}
   458  	}
   459  
   460  	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
   461  		return CorruptInputError(f.roffset)
   462  	}
   463  
   464  	return nil
   465  }
   466  
   467  // Decode a single Huffman block from f.
   468  // hl and hd are the Huffman states for the lit/length values
   469  // and the distance values, respectively.  If hd == nil, using the
   470  // fixed distance encoding associated with fixed Huffman blocks.
   471  func (f *decompressor) huffmanBlock() {
   472  	for {
   473  		v, err := f.huffSym(f.hl)
   474  		if err != nil {
   475  			f.err = err
   476  			return
   477  		}
   478  		var n uint // number of bits extra
   479  		var length int
   480  		switch {
   481  		case v < 256:
   482  			f.hist[f.hp] = byte(v)
   483  			f.hp++
   484  			if f.hp == len(f.hist) {
   485  				// After the flush, continue this loop.
   486  				f.flush((*decompressor).huffmanBlock)
   487  				return
   488  			}
   489  			continue
   490  		case v == 256:
   491  			// Done with huffman block; read next block.
   492  			f.step = (*decompressor).nextBlock
   493  			return
   494  		// otherwise, reference to older data
   495  		case v < 265:
   496  			length = v - (257 - 3)
   497  			n = 0
   498  		case v < 269:
   499  			length = v*2 - (265*2 - 11)
   500  			n = 1
   501  		case v < 273:
   502  			length = v*4 - (269*4 - 19)
   503  			n = 2
   504  		case v < 277:
   505  			length = v*8 - (273*8 - 35)
   506  			n = 3
   507  		case v < 281:
   508  			length = v*16 - (277*16 - 67)
   509  			n = 4
   510  		case v < 285:
   511  			length = v*32 - (281*32 - 131)
   512  			n = 5
   513  		case v < maxNumLit:
   514  			length = 258
   515  			n = 0
   516  		default:
   517  			f.err = CorruptInputError(f.roffset)
   518  			return
   519  		}
   520  		if n > 0 {
   521  			for f.nb < n {
   522  				if err = f.moreBits(); err != nil {
   523  					f.err = err
   524  					return
   525  				}
   526  			}
   527  			length += int(f.b & uint32(1<<n-1))
   528  			f.b >>= n
   529  			f.nb -= n
   530  		}
   531  
   532  		var dist int
   533  		if f.hd == nil {
   534  			for f.nb < 5 {
   535  				if err = f.moreBits(); err != nil {
   536  					f.err = err
   537  					return
   538  				}
   539  			}
   540  			dist = int(reverseByte[(f.b&0x1F)<<3])
   541  			f.b >>= 5
   542  			f.nb -= 5
   543  		} else {
   544  			if dist, err = f.huffSym(f.hd); err != nil {
   545  				f.err = err
   546  				return
   547  			}
   548  		}
   549  
   550  		switch {
   551  		case dist < 4:
   552  			dist++
   553  		case dist < maxNumDist:
   554  			nb := uint(dist-2) >> 1
   555  			// have 1 bit in bottom of dist, need nb more.
   556  			extra := (dist & 1) << nb
   557  			for f.nb < nb {
   558  				if err = f.moreBits(); err != nil {
   559  					f.err = err
   560  					return
   561  				}
   562  			}
   563  			extra |= int(f.b & uint32(1<<nb-1))
   564  			f.b >>= nb
   565  			f.nb -= nb
   566  			dist = 1<<(nb+1) + 1 + extra
   567  		default:
   568  			f.err = CorruptInputError(f.roffset)
   569  			return
   570  		}
   571  
   572  		// Copy history[-dist:-dist+length] into output.
   573  		if dist > len(f.hist) {
   574  			f.err = InternalError("bad history distance")
   575  			return
   576  		}
   577  
   578  		// No check on length; encoding can be prescient.
   579  		if !f.hfull && dist > f.hp {
   580  			f.err = CorruptInputError(f.roffset)
   581  			return
   582  		}
   583  
   584  		f.copyLen, f.copyDist = length, dist
   585  		if f.copyHist() {
   586  			return
   587  		}
   588  	}
   589  }
   590  
   591  // copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
   592  // It reports whether the f.hist buffer is full.
   593  func (f *decompressor) copyHist() bool {
   594  	p := f.hp - f.copyDist
   595  	if p < 0 {
   596  		p += len(f.hist)
   597  	}
   598  	for f.copyLen > 0 {
   599  		n := f.copyLen
   600  		if x := len(f.hist) - f.hp; n > x {
   601  			n = x
   602  		}
   603  		if x := len(f.hist) - p; n > x {
   604  			n = x
   605  		}
   606  		forwardCopy(f.hist[:], f.hp, p, n)
   607  		p += n
   608  		f.hp += n
   609  		f.copyLen -= n
   610  		if f.hp == len(f.hist) {
   611  			// After flush continue copying out of history.
   612  			f.flush((*decompressor).copyHuff)
   613  			return true
   614  		}
   615  		if p == len(f.hist) {
   616  			p = 0
   617  		}
   618  	}
   619  	return false
   620  }
   621  
   622  func (f *decompressor) copyHuff() {
   623  	if f.copyHist() {
   624  		return
   625  	}
   626  	f.huffmanBlock()
   627  }
   628  
   629  // Copy a single uncompressed data block from input to output.
   630  func (f *decompressor) dataBlock() {
   631  	// Uncompressed.
   632  	// Discard current half-byte.
   633  	f.nb = 0
   634  	f.b = 0
   635  
   636  	// Length then ones-complement of length.
   637  	nr, err := io.ReadFull(f.r, f.buf[0:4])
   638  	f.roffset += int64(nr)
   639  	if err != nil {
   640  		if err == io.EOF {
   641  			err = io.ErrUnexpectedEOF
   642  		}
   643  		f.err = &ReadError{f.roffset, err}
   644  		return
   645  	}
   646  	n := int(f.buf[0]) | int(f.buf[1])<<8
   647  	nn := int(f.buf[2]) | int(f.buf[3])<<8
   648  	if uint16(nn) != uint16(^n) {
   649  		f.err = CorruptInputError(f.roffset)
   650  		return
   651  	}
   652  
   653  	if n == 0 {
   654  		// 0-length block means sync
   655  		f.flush((*decompressor).nextBlock)
   656  		return
   657  	}
   658  
   659  	f.copyLen = n
   660  	f.copyData()
   661  }
   662  
   663  // copyData copies f.copyLen bytes from the underlying reader into f.hist.
   664  // It pauses for reads when f.hist is full.
   665  func (f *decompressor) copyData() {
   666  	n := f.copyLen
   667  	for n > 0 {
   668  		m := len(f.hist) - f.hp
   669  		if m > n {
   670  			m = n
   671  		}
   672  		m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
   673  		f.roffset += int64(m)
   674  		if err != nil {
   675  			if err == io.EOF {
   676  				err = io.ErrUnexpectedEOF
   677  			}
   678  			f.err = &ReadError{f.roffset, err}
   679  			return
   680  		}
   681  		n -= m
   682  		f.hp += m
   683  		if f.hp == len(f.hist) {
   684  			f.copyLen = n
   685  			f.flush((*decompressor).copyData)
   686  			return
   687  		}
   688  	}
   689  	f.step = (*decompressor).nextBlock
   690  }
   691  
   692  func (f *decompressor) setDict(dict []byte) {
   693  	if len(dict) > len(f.hist) {
   694  		// Will only remember the tail.
   695  		dict = dict[len(dict)-len(f.hist):]
   696  	}
   697  
   698  	f.hp = copy(f.hist[:], dict)
   699  	if f.hp == len(f.hist) {
   700  		f.hp = 0
   701  		f.hfull = true
   702  	}
   703  	f.hw = f.hp
   704  }
   705  
   706  func (f *decompressor) moreBits() error {
   707  	c, err := f.r.ReadByte()
   708  	if err != nil {
   709  		if err == io.EOF {
   710  			err = io.ErrUnexpectedEOF
   711  		}
   712  		return err
   713  	}
   714  	f.roffset++
   715  	f.b |= uint32(c) << f.nb
   716  	f.nb += 8
   717  	return nil
   718  }
   719  
   720  // Read the next Huffman-encoded symbol from f according to h.
   721  func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
   722  	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
   723  	// with single element, huffSym must error on these two edge cases. In both
   724  	// cases, the chunks slice will be 0 for the invalid sequence, leading it
   725  	// satisfy the n == 0 check below.
   726  	n := uint(h.min)
   727  	for {
   728  		for f.nb < n {
   729  			if err := f.moreBits(); err != nil {
   730  				return 0, err
   731  			}
   732  		}
   733  		chunk := h.chunks[f.b&(huffmanNumChunks-1)]
   734  		n = uint(chunk & huffmanCountMask)
   735  		if n > huffmanChunkBits {
   736  			chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
   737  			n = uint(chunk & huffmanCountMask)
   738  		}
   739  		if n <= f.nb {
   740  			if n == 0 {
   741  				f.err = CorruptInputError(f.roffset)
   742  				return 0, f.err
   743  			}
   744  			f.b >>= n
   745  			f.nb -= n
   746  			return int(chunk >> huffmanValueShift), nil
   747  		}
   748  	}
   749  }
   750  
   751  // Flush any buffered output to the underlying writer.
   752  func (f *decompressor) flush(step func(*decompressor)) {
   753  	f.toRead = f.hist[f.hw:f.hp]
   754  	f.woffset += int64(f.hp - f.hw)
   755  	f.hw = f.hp
   756  	if f.hp == len(f.hist) {
   757  		f.hp = 0
   758  		f.hw = 0
   759  		f.hfull = true
   760  	}
   761  	f.step = step
   762  }
   763  
   764  func makeReader(r io.Reader) Reader {
   765  	if rr, ok := r.(Reader); ok {
   766  		return rr
   767  	}
   768  	return bufio.NewReader(r)
   769  }
   770  
   771  func fixedHuffmanDecoderInit() {
   772  	fixedOnce.Do(func() {
   773  		// These come from the RFC section 3.2.6.
   774  		var bits [288]int
   775  		for i := 0; i < 144; i++ {
   776  			bits[i] = 8
   777  		}
   778  		for i := 144; i < 256; i++ {
   779  			bits[i] = 9
   780  		}
   781  		for i := 256; i < 280; i++ {
   782  			bits[i] = 7
   783  		}
   784  		for i := 280; i < 288; i++ {
   785  			bits[i] = 8
   786  		}
   787  		fixedHuffmanDecoder.init(bits[:])
   788  	})
   789  }
   790  
   791  func (f *decompressor) Reset(r io.Reader, dict []byte) error {
   792  	*f = decompressor{
   793  		r:        makeReader(r),
   794  		bits:     f.bits,
   795  		codebits: f.codebits,
   796  		hist:     f.hist,
   797  		step:     (*decompressor).nextBlock,
   798  	}
   799  	if dict != nil {
   800  		f.setDict(dict)
   801  	}
   802  	return nil
   803  }
   804  
   805  // NewReader returns a new ReadCloser that can be used
   806  // to read the uncompressed version of r.
   807  // If r does not also implement io.ByteReader,
   808  // the decompressor may read more data than necessary from r.
   809  // It is the caller's responsibility to call Close on the ReadCloser
   810  // when finished reading.
   811  //
   812  // The ReadCloser returned by NewReader also implements Resetter.
   813  func NewReader(r io.Reader) io.ReadCloser {
   814  	fixedHuffmanDecoderInit()
   815  
   816  	var f decompressor
   817  	f.r = makeReader(r)
   818  	f.hist = new([maxHist]byte)
   819  	f.bits = new([maxNumLit + maxNumDist]int)
   820  	f.codebits = new([numCodes]int)
   821  	f.step = (*decompressor).nextBlock
   822  	return &f
   823  }
   824  
   825  // NewReaderDict is like NewReader but initializes the reader
   826  // with a preset dictionary.  The returned Reader behaves as if
   827  // the uncompressed data stream started with the given dictionary,
   828  // which has already been read.  NewReaderDict is typically used
   829  // to read data compressed by NewWriterDict.
   830  //
   831  // The ReadCloser returned by NewReader also implements Resetter.
   832  func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
   833  	fixedHuffmanDecoderInit()
   834  
   835  	var f decompressor
   836  	f.r = makeReader(r)
   837  	f.hist = new([maxHist]byte)
   838  	f.bits = new([maxNumLit + maxNumDist]int)
   839  	f.codebits = new([numCodes]int)
   840  	f.step = (*decompressor).nextBlock
   841  	f.setDict(dict)
   842  	return &f
   843  }