github.com/peggyl/go@v0.0.0-20151008231540-ae315999c2d5/src/crypto/ecdsa/ecdsa.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
     6  // defined in FIPS 186-3.
     7  //
     8  // This implementation  derives the nonce from an AES-CTR CSPRNG keyed by
     9  // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
    10  // a result of Coron; the AES-CTR stream is IRO under standard assumptions.
    11  package ecdsa
    12  
    13  // References:
    14  //   [NSA]: Suite B implementer's guide to FIPS 186-3,
    15  //     http://www.nsa.gov/ia/_files/ecdsa.pdf
    16  //   [SECG]: SECG, SEC1
    17  //     http://www.secg.org/sec1-v2.pdf
    18  
    19  import (
    20  	"crypto"
    21  	"crypto/aes"
    22  	"crypto/cipher"
    23  	"crypto/elliptic"
    24  	"crypto/sha512"
    25  	"encoding/asn1"
    26  	"io"
    27  	"math/big"
    28  )
    29  
    30  const (
    31  	aesIV = "IV for ECDSA CTR"
    32  )
    33  
    34  // PublicKey represents an ECDSA public key.
    35  type PublicKey struct {
    36  	elliptic.Curve
    37  	X, Y *big.Int
    38  }
    39  
    40  // PrivateKey represents a ECDSA private key.
    41  type PrivateKey struct {
    42  	PublicKey
    43  	D *big.Int
    44  }
    45  
    46  type ecdsaSignature struct {
    47  	R, S *big.Int
    48  }
    49  
    50  // Public returns the public key corresponding to priv.
    51  func (priv *PrivateKey) Public() crypto.PublicKey {
    52  	return &priv.PublicKey
    53  }
    54  
    55  // Sign signs msg with priv, reading randomness from rand. This method is
    56  // intended to support keys where the private part is kept in, for example, a
    57  // hardware module. Common uses should use the Sign function in this package
    58  // directly.
    59  func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
    60  	r, s, err := Sign(rand, priv, msg)
    61  	if err != nil {
    62  		return nil, err
    63  	}
    64  
    65  	return asn1.Marshal(ecdsaSignature{r, s})
    66  }
    67  
    68  var one = new(big.Int).SetInt64(1)
    69  
    70  // randFieldElement returns a random element of the field underlying the given
    71  // curve using the procedure given in [NSA] A.2.1.
    72  func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
    73  	params := c.Params()
    74  	b := make([]byte, params.BitSize/8+8)
    75  	_, err = io.ReadFull(rand, b)
    76  	if err != nil {
    77  		return
    78  	}
    79  
    80  	k = new(big.Int).SetBytes(b)
    81  	n := new(big.Int).Sub(params.N, one)
    82  	k.Mod(k, n)
    83  	k.Add(k, one)
    84  	return
    85  }
    86  
    87  // GenerateKey generates a public and private key pair.
    88  func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
    89  	k, err := randFieldElement(c, rand)
    90  	if err != nil {
    91  		return
    92  	}
    93  
    94  	priv = new(PrivateKey)
    95  	priv.PublicKey.Curve = c
    96  	priv.D = k
    97  	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
    98  	return
    99  }
   100  
   101  // hashToInt converts a hash value to an integer. There is some disagreement
   102  // about how this is done. [NSA] suggests that this is done in the obvious
   103  // manner, but [SECG] truncates the hash to the bit-length of the curve order
   104  // first. We follow [SECG] because that's what OpenSSL does. Additionally,
   105  // OpenSSL right shifts excess bits from the number if the hash is too large
   106  // and we mirror that too.
   107  func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
   108  	orderBits := c.Params().N.BitLen()
   109  	orderBytes := (orderBits + 7) / 8
   110  	if len(hash) > orderBytes {
   111  		hash = hash[:orderBytes]
   112  	}
   113  
   114  	ret := new(big.Int).SetBytes(hash)
   115  	excess := len(hash)*8 - orderBits
   116  	if excess > 0 {
   117  		ret.Rsh(ret, uint(excess))
   118  	}
   119  	return ret
   120  }
   121  
   122  // fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
   123  // This has better constant-time properties than Euclid's method (implemented
   124  // in math/big.Int.ModInverse) although math/big itself isn't strictly
   125  // constant-time so it's not perfect.
   126  func fermatInverse(k, N *big.Int) *big.Int {
   127  	two := big.NewInt(2)
   128  	nMinus2 := new(big.Int).Sub(N, two)
   129  	return new(big.Int).Exp(k, nMinus2, N)
   130  }
   131  
   132  // Sign signs an arbitrary length hash (which should be the result of hashing a
   133  // larger message) using the private key, priv. It returns the signature as a
   134  // pair of integers. The security of the private key depends on the entropy of
   135  // rand.
   136  func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
   137  	// Get max(log2(q) / 2, 256) bits of entropy from rand.
   138  	entropylen := (priv.Curve.Params().BitSize + 7) / 16
   139  	if entropylen > 32 {
   140  		entropylen = 32
   141  	}
   142  	entropy := make([]byte, entropylen)
   143  	_, err = io.ReadFull(rand, entropy)
   144  	if err != nil {
   145  		return
   146  	}
   147  
   148  	// Initialize an SHA-512 hash context; digest ...
   149  	md := sha512.New()
   150  	md.Write(priv.D.Bytes()) // the private key,
   151  	md.Write(entropy)        // the entropy,
   152  	md.Write(hash)           // and the input hash;
   153  	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
   154  	// which is an indifferentiable MAC.
   155  
   156  	// Create an AES-CTR instance to use as a CSPRNG.
   157  	block, err := aes.NewCipher(key)
   158  	if err != nil {
   159  		return nil, nil, err
   160  	}
   161  
   162  	// Create a CSPRNG that xors a stream of zeros with
   163  	// the output of the AES-CTR instance.
   164  	csprng := cipher.StreamReader{
   165  		R: zeroReader,
   166  		S: cipher.NewCTR(block, []byte(aesIV)),
   167  	}
   168  
   169  	// See [NSA] 3.4.1
   170  	c := priv.PublicKey.Curve
   171  	N := c.Params().N
   172  
   173  	var k, kInv *big.Int
   174  	for {
   175  		for {
   176  			k, err = randFieldElement(c, csprng)
   177  			if err != nil {
   178  				r = nil
   179  				return
   180  			}
   181  
   182  			kInv = fermatInverse(k, N)
   183  			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
   184  			r.Mod(r, N)
   185  			if r.Sign() != 0 {
   186  				break
   187  			}
   188  		}
   189  
   190  		e := hashToInt(hash, c)
   191  		s = new(big.Int).Mul(priv.D, r)
   192  		s.Add(s, e)
   193  		s.Mul(s, kInv)
   194  		s.Mod(s, N)
   195  		if s.Sign() != 0 {
   196  			break
   197  		}
   198  	}
   199  
   200  	return
   201  }
   202  
   203  // Verify verifies the signature in r, s of hash using the public key, pub. Its
   204  // return value records whether the signature is valid.
   205  func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
   206  	// See [NSA] 3.4.2
   207  	c := pub.Curve
   208  	N := c.Params().N
   209  
   210  	if r.Sign() == 0 || s.Sign() == 0 {
   211  		return false
   212  	}
   213  	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
   214  		return false
   215  	}
   216  	e := hashToInt(hash, c)
   217  	w := new(big.Int).ModInverse(s, N)
   218  
   219  	u1 := e.Mul(e, w)
   220  	u1.Mod(u1, N)
   221  	u2 := w.Mul(r, w)
   222  	u2.Mod(u2, N)
   223  
   224  	x1, y1 := c.ScalarBaseMult(u1.Bytes())
   225  	x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
   226  	x, y := c.Add(x1, y1, x2, y2)
   227  	if x.Sign() == 0 && y.Sign() == 0 {
   228  		return false
   229  	}
   230  	x.Mod(x, N)
   231  	return x.Cmp(r) == 0
   232  }
   233  
   234  type zr struct {
   235  	io.Reader
   236  }
   237  
   238  // Read replaces the contents of dst with zeros.
   239  func (z *zr) Read(dst []byte) (n int, err error) {
   240  	for i := range dst {
   241  		dst[i] = 0
   242  	}
   243  	return len(dst), nil
   244  }
   245  
   246  var zeroReader = &zr{}