github.com/peggyl/go@v0.0.0-20151008231540-ae315999c2d5/src/encoding/pem/pem.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package pem implements the PEM data encoding, which originated in Privacy
     6  // Enhanced Mail. The most common use of PEM encoding today is in TLS keys and
     7  // certificates. See RFC 1421.
     8  package pem
     9  
    10  import (
    11  	"bytes"
    12  	"encoding/base64"
    13  	"errors"
    14  	"io"
    15  	"sort"
    16  	"strings"
    17  )
    18  
    19  // A Block represents a PEM encoded structure.
    20  //
    21  // The encoded form is:
    22  //    -----BEGIN Type-----
    23  //    Headers
    24  //    base64-encoded Bytes
    25  //    -----END Type-----
    26  // where Headers is a possibly empty sequence of Key: Value lines.
    27  type Block struct {
    28  	Type    string            // The type, taken from the preamble (i.e. "RSA PRIVATE KEY").
    29  	Headers map[string]string // Optional headers.
    30  	Bytes   []byte            // The decoded bytes of the contents. Typically a DER encoded ASN.1 structure.
    31  }
    32  
    33  // getLine results the first \r\n or \n delineated line from the given byte
    34  // array. The line does not include trailing whitespace or the trailing new
    35  // line bytes. The remainder of the byte array (also not including the new line
    36  // bytes) is also returned and this will always be smaller than the original
    37  // argument.
    38  func getLine(data []byte) (line, rest []byte) {
    39  	i := bytes.Index(data, []byte{'\n'})
    40  	var j int
    41  	if i < 0 {
    42  		i = len(data)
    43  		j = i
    44  	} else {
    45  		j = i + 1
    46  		if i > 0 && data[i-1] == '\r' {
    47  			i--
    48  		}
    49  	}
    50  	return bytes.TrimRight(data[0:i], " \t"), data[j:]
    51  }
    52  
    53  // removeWhitespace returns a copy of its input with all spaces, tab and
    54  // newline characters removed.
    55  func removeWhitespace(data []byte) []byte {
    56  	result := make([]byte, len(data))
    57  	n := 0
    58  
    59  	for _, b := range data {
    60  		if b == ' ' || b == '\t' || b == '\r' || b == '\n' {
    61  			continue
    62  		}
    63  		result[n] = b
    64  		n++
    65  	}
    66  
    67  	return result[0:n]
    68  }
    69  
    70  var pemStart = []byte("\n-----BEGIN ")
    71  var pemEnd = []byte("\n-----END ")
    72  var pemEndOfLine = []byte("-----")
    73  
    74  // Decode will find the next PEM formatted block (certificate, private key
    75  // etc) in the input. It returns that block and the remainder of the input. If
    76  // no PEM data is found, p is nil and the whole of the input is returned in
    77  // rest.
    78  func Decode(data []byte) (p *Block, rest []byte) {
    79  	// pemStart begins with a newline. However, at the very beginning of
    80  	// the byte array, we'll accept the start string without it.
    81  	rest = data
    82  	if bytes.HasPrefix(data, pemStart[1:]) {
    83  		rest = rest[len(pemStart)-1 : len(data)]
    84  	} else if i := bytes.Index(data, pemStart); i >= 0 {
    85  		rest = rest[i+len(pemStart) : len(data)]
    86  	} else {
    87  		return nil, data
    88  	}
    89  
    90  	typeLine, rest := getLine(rest)
    91  	if !bytes.HasSuffix(typeLine, pemEndOfLine) {
    92  		return decodeError(data, rest)
    93  	}
    94  	typeLine = typeLine[0 : len(typeLine)-len(pemEndOfLine)]
    95  
    96  	p = &Block{
    97  		Headers: make(map[string]string),
    98  		Type:    string(typeLine),
    99  	}
   100  
   101  	for {
   102  		// This loop terminates because getLine's second result is
   103  		// always smaller than its argument.
   104  		if len(rest) == 0 {
   105  			return nil, data
   106  		}
   107  		line, next := getLine(rest)
   108  
   109  		i := bytes.Index(line, []byte{':'})
   110  		if i == -1 {
   111  			break
   112  		}
   113  
   114  		// TODO(agl): need to cope with values that spread across lines.
   115  		key, val := line[:i], line[i+1:]
   116  		key = bytes.TrimSpace(key)
   117  		val = bytes.TrimSpace(val)
   118  		p.Headers[string(key)] = string(val)
   119  		rest = next
   120  	}
   121  
   122  	var endIndex int
   123  	// If there were no headers, the END line might occur
   124  	// immediately, without a leading newline.
   125  	if len(p.Headers) == 0 && bytes.HasPrefix(rest, pemEnd[1:]) {
   126  		endIndex = 0
   127  	} else {
   128  		endIndex = bytes.Index(rest, pemEnd)
   129  	}
   130  
   131  	if endIndex < 0 {
   132  		return decodeError(data, rest)
   133  	}
   134  
   135  	base64Data := removeWhitespace(rest[:endIndex])
   136  	p.Bytes = make([]byte, base64.StdEncoding.DecodedLen(len(base64Data)))
   137  	n, err := base64.StdEncoding.Decode(p.Bytes, base64Data)
   138  	if err != nil {
   139  		return decodeError(data, rest)
   140  	}
   141  	p.Bytes = p.Bytes[:n]
   142  
   143  	// the -1 is because we might have only matched pemEnd without the
   144  	// leading newline if the PEM block was empty.
   145  	_, rest = getLine(rest[endIndex+len(pemEnd)-1:])
   146  
   147  	return
   148  }
   149  
   150  func decodeError(data, rest []byte) (*Block, []byte) {
   151  	// If we get here then we have rejected a likely looking, but
   152  	// ultimately invalid PEM block. We need to start over from a new
   153  	// position.  We have consumed the preamble line and will have consumed
   154  	// any lines which could be header lines. However, a valid preamble
   155  	// line is not a valid header line, therefore we cannot have consumed
   156  	// the preamble line for the any subsequent block. Thus, we will always
   157  	// find any valid block, no matter what bytes precede it.
   158  	//
   159  	// For example, if the input is
   160  	//
   161  	//    -----BEGIN MALFORMED BLOCK-----
   162  	//    junk that may look like header lines
   163  	//   or data lines, but no END line
   164  	//
   165  	//    -----BEGIN ACTUAL BLOCK-----
   166  	//    realdata
   167  	//    -----END ACTUAL BLOCK-----
   168  	//
   169  	// we've failed to parse using the first BEGIN line
   170  	// and now will try again, using the second BEGIN line.
   171  	p, rest := Decode(rest)
   172  	if p == nil {
   173  		rest = data
   174  	}
   175  	return p, rest
   176  }
   177  
   178  const pemLineLength = 64
   179  
   180  type lineBreaker struct {
   181  	line [pemLineLength]byte
   182  	used int
   183  	out  io.Writer
   184  }
   185  
   186  var nl = []byte{'\n'}
   187  
   188  func (l *lineBreaker) Write(b []byte) (n int, err error) {
   189  	if l.used+len(b) < pemLineLength {
   190  		copy(l.line[l.used:], b)
   191  		l.used += len(b)
   192  		return len(b), nil
   193  	}
   194  
   195  	n, err = l.out.Write(l.line[0:l.used])
   196  	if err != nil {
   197  		return
   198  	}
   199  	excess := pemLineLength - l.used
   200  	l.used = 0
   201  
   202  	n, err = l.out.Write(b[0:excess])
   203  	if err != nil {
   204  		return
   205  	}
   206  
   207  	n, err = l.out.Write(nl)
   208  	if err != nil {
   209  		return
   210  	}
   211  
   212  	return l.Write(b[excess:])
   213  }
   214  
   215  func (l *lineBreaker) Close() (err error) {
   216  	if l.used > 0 {
   217  		_, err = l.out.Write(l.line[0:l.used])
   218  		if err != nil {
   219  			return
   220  		}
   221  		_, err = l.out.Write(nl)
   222  	}
   223  
   224  	return
   225  }
   226  
   227  func writeHeader(out io.Writer, k, v string) error {
   228  	_, err := out.Write([]byte(k + ": " + v + "\n"))
   229  	return err
   230  }
   231  
   232  func Encode(out io.Writer, b *Block) error {
   233  	if _, err := out.Write(pemStart[1:]); err != nil {
   234  		return err
   235  	}
   236  	if _, err := out.Write([]byte(b.Type + "-----\n")); err != nil {
   237  		return err
   238  	}
   239  
   240  	if len(b.Headers) > 0 {
   241  		const procType = "Proc-Type"
   242  		h := make([]string, 0, len(b.Headers))
   243  		hasProcType := false
   244  		for k := range b.Headers {
   245  			if k == procType {
   246  				hasProcType = true
   247  				continue
   248  			}
   249  			h = append(h, k)
   250  		}
   251  		// The Proc-Type header must be written first.
   252  		// See RFC 1421, section 4.6.1.1
   253  		if hasProcType {
   254  			if err := writeHeader(out, procType, b.Headers[procType]); err != nil {
   255  				return err
   256  			}
   257  		}
   258  		// For consistency of output, write other headers sorted by key.
   259  		sort.Strings(h)
   260  		for _, k := range h {
   261  			if strings.Contains(k, ":") {
   262  				return errors.New("pem: cannot encode a header key that contains a colon")
   263  			}
   264  			if err := writeHeader(out, k, b.Headers[k]); err != nil {
   265  				return err
   266  			}
   267  		}
   268  		if _, err := out.Write(nl); err != nil {
   269  			return err
   270  		}
   271  	}
   272  
   273  	var breaker lineBreaker
   274  	breaker.out = out
   275  
   276  	b64 := base64.NewEncoder(base64.StdEncoding, &breaker)
   277  	if _, err := b64.Write(b.Bytes); err != nil {
   278  		return err
   279  	}
   280  	b64.Close()
   281  	breaker.Close()
   282  
   283  	if _, err := out.Write(pemEnd[1:]); err != nil {
   284  		return err
   285  	}
   286  	_, err := out.Write([]byte(b.Type + "-----\n"))
   287  	return err
   288  }
   289  
   290  func EncodeToMemory(b *Block) []byte {
   291  	var buf bytes.Buffer
   292  	Encode(&buf, b)
   293  	return buf.Bytes()
   294  }