github.com/peggyl/go@v0.0.0-20151008231540-ae315999c2d5/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go.  If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions.  In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit.  Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import "unsafe"
    83  
    84  // Call from Go to C.
    85  //go:nosplit
    86  func cgocall(fn, arg unsafe.Pointer) int32 {
    87  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    88  		throw("cgocall unavailable")
    89  	}
    90  
    91  	if fn == nil {
    92  		throw("cgocall nil")
    93  	}
    94  
    95  	if raceenabled {
    96  		racereleasemerge(unsafe.Pointer(&racecgosync))
    97  	}
    98  
    99  	/*
   100  	 * Lock g to m to ensure we stay on the same stack if we do a
   101  	 * cgo callback. Add entry to defer stack in case of panic.
   102  	 */
   103  	lockOSThread()
   104  	mp := getg().m
   105  	mp.ncgocall++
   106  	mp.ncgo++
   107  	defer endcgo(mp)
   108  
   109  	/*
   110  	 * Announce we are entering a system call
   111  	 * so that the scheduler knows to create another
   112  	 * M to run goroutines while we are in the
   113  	 * foreign code.
   114  	 *
   115  	 * The call to asmcgocall is guaranteed not to
   116  	 * split the stack and does not allocate memory,
   117  	 * so it is safe to call while "in a system call", outside
   118  	 * the $GOMAXPROCS accounting.
   119  	 */
   120  	entersyscall(0)
   121  	errno := asmcgocall(fn, arg)
   122  	exitsyscall(0)
   123  
   124  	return errno
   125  }
   126  
   127  //go:nosplit
   128  func endcgo(mp *m) {
   129  	mp.ncgo--
   130  
   131  	if raceenabled {
   132  		raceacquire(unsafe.Pointer(&racecgosync))
   133  	}
   134  
   135  	unlockOSThread() // invalidates mp
   136  }
   137  
   138  // Helper functions for cgo code.
   139  
   140  func cmalloc(n uintptr) unsafe.Pointer {
   141  	var args struct {
   142  		n   uint64
   143  		ret unsafe.Pointer
   144  	}
   145  	args.n = uint64(n)
   146  	cgocall(_cgo_malloc, unsafe.Pointer(&args))
   147  	if args.ret == nil {
   148  		throw("C malloc failed")
   149  	}
   150  	return args.ret
   151  }
   152  
   153  func cfree(p unsafe.Pointer) {
   154  	cgocall(_cgo_free, p)
   155  }
   156  
   157  // Call from C back to Go.
   158  //go:nosplit
   159  func cgocallbackg() {
   160  	gp := getg()
   161  	if gp != gp.m.curg {
   162  		println("runtime: bad g in cgocallback")
   163  		exit(2)
   164  	}
   165  
   166  	// Save current syscall parameters, so m.syscall can be
   167  	// used again if callback decide to make syscall.
   168  	syscall := gp.m.syscall
   169  
   170  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   171  	// stack. However, since we're returning to an earlier stack frame and
   172  	// need to pair with the entersyscall() call made by cgocall, we must
   173  	// save syscall* and let reentersyscall restore them.
   174  	savedsp := unsafe.Pointer(gp.syscallsp)
   175  	savedpc := gp.syscallpc
   176  	exitsyscall(0) // coming out of cgo call
   177  	cgocallbackg1()
   178  	// going back to cgo call
   179  	reentersyscall(savedpc, uintptr(savedsp))
   180  
   181  	gp.m.syscall = syscall
   182  }
   183  
   184  func cgocallbackg1() {
   185  	gp := getg()
   186  	if gp.m.needextram {
   187  		gp.m.needextram = false
   188  		systemstack(newextram)
   189  	}
   190  
   191  	if gp.m.ncgo == 0 {
   192  		// The C call to Go came from a thread not currently running
   193  		// any Go. In the case of -buildmode=c-archive or c-shared,
   194  		// this call may be coming in before package initialization
   195  		// is complete. Wait until it is.
   196  		<-main_init_done
   197  	}
   198  
   199  	// Add entry to defer stack in case of panic.
   200  	restore := true
   201  	defer unwindm(&restore)
   202  
   203  	if raceenabled {
   204  		raceacquire(unsafe.Pointer(&racecgosync))
   205  	}
   206  
   207  	type args struct {
   208  		fn      *funcval
   209  		arg     unsafe.Pointer
   210  		argsize uintptr
   211  	}
   212  	var cb *args
   213  
   214  	// Location of callback arguments depends on stack frame layout
   215  	// and size of stack frame of cgocallback_gofunc.
   216  	sp := gp.m.g0.sched.sp
   217  	switch GOARCH {
   218  	default:
   219  		throw("cgocallbackg is unimplemented on arch")
   220  	case "arm":
   221  		// On arm, stack frame is two words and there's a saved LR between
   222  		// SP and the stack frame and between the stack frame and the arguments.
   223  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   224  	case "arm64":
   225  		// On arm64, stack frame is four words and there's a saved LR between
   226  		// SP and the stack frame and between the stack frame and the arguments.
   227  		cb = (*args)(unsafe.Pointer(sp + 5*ptrSize))
   228  	case "amd64":
   229  		// On amd64, stack frame is one word, plus caller PC.
   230  		if framepointer_enabled {
   231  			// In this case, there's also saved BP.
   232  			cb = (*args)(unsafe.Pointer(sp + 3*ptrSize))
   233  			break
   234  		}
   235  		cb = (*args)(unsafe.Pointer(sp + 2*ptrSize))
   236  	case "386":
   237  		// On 386, stack frame is three words, plus caller PC.
   238  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   239  	case "ppc64", "ppc64le":
   240  		// On ppc64, stack frame is two words and there's a
   241  		// saved LR between SP and the stack frame and between
   242  		// the stack frame and the arguments.
   243  		cb = (*args)(unsafe.Pointer(sp + 4*ptrSize))
   244  	}
   245  
   246  	// Invoke callback.
   247  	// NOTE(rsc): passing nil for argtype means that the copying of the
   248  	// results back into cb.arg happens without any corresponding write barriers.
   249  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   250  	// hold any pointers that the GC can find anyway - the write barrier
   251  	// would be a no-op.
   252  	reflectcall(nil, unsafe.Pointer(cb.fn), unsafe.Pointer(cb.arg), uint32(cb.argsize), 0)
   253  
   254  	if raceenabled {
   255  		racereleasemerge(unsafe.Pointer(&racecgosync))
   256  	}
   257  
   258  	// Do not unwind m->g0->sched.sp.
   259  	// Our caller, cgocallback, will do that.
   260  	restore = false
   261  }
   262  
   263  func unwindm(restore *bool) {
   264  	if !*restore {
   265  		return
   266  	}
   267  	// Restore sp saved by cgocallback during
   268  	// unwind of g's stack (see comment at top of file).
   269  	mp := acquirem()
   270  	sched := &mp.g0.sched
   271  	switch GOARCH {
   272  	default:
   273  		throw("unwindm not implemented")
   274  	case "386", "amd64":
   275  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp))
   276  	case "arm":
   277  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 4))
   278  	case "arm64":
   279  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   280  	case "ppc64", "ppc64le":
   281  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 8))
   282  	}
   283  	releasem(mp)
   284  }
   285  
   286  // called from assembly
   287  func badcgocallback() {
   288  	throw("misaligned stack in cgocallback")
   289  }
   290  
   291  // called from (incomplete) assembly
   292  func cgounimpl() {
   293  	throw("cgo not implemented")
   294  }
   295  
   296  var racecgosync uint64 // represents possible synchronization in C code