github.com/peggyl/go@v0.0.0-20151008231540-ae315999c2d5/src/runtime/proc1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import "unsafe"
     8  
     9  var (
    10  	m0 m
    11  	g0 g
    12  )
    13  
    14  // Goroutine scheduler
    15  // The scheduler's job is to distribute ready-to-run goroutines over worker threads.
    16  //
    17  // The main concepts are:
    18  // G - goroutine.
    19  // M - worker thread, or machine.
    20  // P - processor, a resource that is required to execute Go code.
    21  //     M must have an associated P to execute Go code, however it can be
    22  //     blocked or in a syscall w/o an associated P.
    23  //
    24  // Design doc at https://golang.org/s/go11sched.
    25  
    26  const (
    27  	// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
    28  	// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
    29  	_GoidCacheBatch = 16
    30  )
    31  
    32  // The bootstrap sequence is:
    33  //
    34  //	call osinit
    35  //	call schedinit
    36  //	make & queue new G
    37  //	call runtime·mstart
    38  //
    39  // The new G calls runtime·main.
    40  func schedinit() {
    41  	// raceinit must be the first call to race detector.
    42  	// In particular, it must be done before mallocinit below calls racemapshadow.
    43  	_g_ := getg()
    44  	if raceenabled {
    45  		_g_.racectx = raceinit()
    46  	}
    47  
    48  	sched.maxmcount = 10000
    49  
    50  	// Cache the framepointer experiment.  This affects stack unwinding.
    51  	framepointer_enabled = haveexperiment("framepointer")
    52  
    53  	tracebackinit()
    54  	moduledataverify()
    55  	stackinit()
    56  	mallocinit()
    57  	mcommoninit(_g_.m)
    58  
    59  	goargs()
    60  	goenvs()
    61  	parsedebugvars()
    62  	gcinit()
    63  
    64  	sched.lastpoll = uint64(nanotime())
    65  	procs := int(ncpu)
    66  	if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
    67  		if n > _MaxGomaxprocs {
    68  			n = _MaxGomaxprocs
    69  		}
    70  		procs = n
    71  	}
    72  	if procresize(int32(procs)) != nil {
    73  		throw("unknown runnable goroutine during bootstrap")
    74  	}
    75  
    76  	if buildVersion == "" {
    77  		// Condition should never trigger.  This code just serves
    78  		// to ensure runtime·buildVersion is kept in the resulting binary.
    79  		buildVersion = "unknown"
    80  	}
    81  }
    82  
    83  func dumpgstatus(gp *g) {
    84  	_g_ := getg()
    85  	print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
    86  	print("runtime:  g:  g=", _g_, ", goid=", _g_.goid, ",  g->atomicstatus=", readgstatus(_g_), "\n")
    87  }
    88  
    89  func checkmcount() {
    90  	// sched lock is held
    91  	if sched.mcount > sched.maxmcount {
    92  		print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
    93  		throw("thread exhaustion")
    94  	}
    95  }
    96  
    97  func mcommoninit(mp *m) {
    98  	_g_ := getg()
    99  
   100  	// g0 stack won't make sense for user (and is not necessary unwindable).
   101  	if _g_ != _g_.m.g0 {
   102  		callers(1, mp.createstack[:])
   103  	}
   104  
   105  	mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
   106  	if mp.fastrand == 0 {
   107  		mp.fastrand = 0x49f6428a
   108  	}
   109  
   110  	lock(&sched.lock)
   111  	mp.id = sched.mcount
   112  	sched.mcount++
   113  	checkmcount()
   114  	mpreinit(mp)
   115  	if mp.gsignal != nil {
   116  		mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
   117  	}
   118  
   119  	// Add to allm so garbage collector doesn't free g->m
   120  	// when it is just in a register or thread-local storage.
   121  	mp.alllink = allm
   122  
   123  	// NumCgoCall() iterates over allm w/o schedlock,
   124  	// so we need to publish it safely.
   125  	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
   126  	unlock(&sched.lock)
   127  }
   128  
   129  // Mark gp ready to run.
   130  func ready(gp *g, traceskip int) {
   131  	if trace.enabled {
   132  		traceGoUnpark(gp, traceskip)
   133  	}
   134  
   135  	status := readgstatus(gp)
   136  
   137  	// Mark runnable.
   138  	_g_ := getg()
   139  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
   140  	if status&^_Gscan != _Gwaiting {
   141  		dumpgstatus(gp)
   142  		throw("bad g->status in ready")
   143  	}
   144  
   145  	// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
   146  	casgstatus(gp, _Gwaiting, _Grunnable)
   147  	runqput(_g_.m.p.ptr(), gp, true)
   148  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
   149  		wakep()
   150  	}
   151  	_g_.m.locks--
   152  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   153  		_g_.stackguard0 = stackPreempt
   154  	}
   155  }
   156  
   157  func gcprocs() int32 {
   158  	// Figure out how many CPUs to use during GC.
   159  	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
   160  	lock(&sched.lock)
   161  	n := gomaxprocs
   162  	if n > ncpu {
   163  		n = ncpu
   164  	}
   165  	if n > _MaxGcproc {
   166  		n = _MaxGcproc
   167  	}
   168  	if n > sched.nmidle+1 { // one M is currently running
   169  		n = sched.nmidle + 1
   170  	}
   171  	unlock(&sched.lock)
   172  	return n
   173  }
   174  
   175  func needaddgcproc() bool {
   176  	lock(&sched.lock)
   177  	n := gomaxprocs
   178  	if n > ncpu {
   179  		n = ncpu
   180  	}
   181  	if n > _MaxGcproc {
   182  		n = _MaxGcproc
   183  	}
   184  	n -= sched.nmidle + 1 // one M is currently running
   185  	unlock(&sched.lock)
   186  	return n > 0
   187  }
   188  
   189  func helpgc(nproc int32) {
   190  	_g_ := getg()
   191  	lock(&sched.lock)
   192  	pos := 0
   193  	for n := int32(1); n < nproc; n++ { // one M is currently running
   194  		if allp[pos].mcache == _g_.m.mcache {
   195  			pos++
   196  		}
   197  		mp := mget()
   198  		if mp == nil {
   199  			throw("gcprocs inconsistency")
   200  		}
   201  		mp.helpgc = n
   202  		mp.p.set(allp[pos])
   203  		mp.mcache = allp[pos].mcache
   204  		pos++
   205  		notewakeup(&mp.park)
   206  	}
   207  	unlock(&sched.lock)
   208  }
   209  
   210  // freezeStopWait is a large value that freezetheworld sets
   211  // sched.stopwait to in order to request that all Gs permanently stop.
   212  const freezeStopWait = 0x7fffffff
   213  
   214  // Similar to stopTheWorld but best-effort and can be called several times.
   215  // There is no reverse operation, used during crashing.
   216  // This function must not lock any mutexes.
   217  func freezetheworld() {
   218  	// stopwait and preemption requests can be lost
   219  	// due to races with concurrently executing threads,
   220  	// so try several times
   221  	for i := 0; i < 5; i++ {
   222  		// this should tell the scheduler to not start any new goroutines
   223  		sched.stopwait = freezeStopWait
   224  		atomicstore(&sched.gcwaiting, 1)
   225  		// this should stop running goroutines
   226  		if !preemptall() {
   227  			break // no running goroutines
   228  		}
   229  		usleep(1000)
   230  	}
   231  	// to be sure
   232  	usleep(1000)
   233  	preemptall()
   234  	usleep(1000)
   235  }
   236  
   237  func isscanstatus(status uint32) bool {
   238  	if status == _Gscan {
   239  		throw("isscanstatus: Bad status Gscan")
   240  	}
   241  	return status&_Gscan == _Gscan
   242  }
   243  
   244  // All reads and writes of g's status go through readgstatus, casgstatus
   245  // castogscanstatus, casfrom_Gscanstatus.
   246  //go:nosplit
   247  func readgstatus(gp *g) uint32 {
   248  	return atomicload(&gp.atomicstatus)
   249  }
   250  
   251  // Ownership of gscanvalid:
   252  //
   253  // If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
   254  // then gp owns gp.gscanvalid, and other goroutines must not modify it.
   255  //
   256  // Otherwise, a second goroutine can lock the scan state by setting _Gscan
   257  // in the status bit and then modify gscanvalid, and then unlock the scan state.
   258  //
   259  // Note that the first condition implies an exception to the second:
   260  // if a second goroutine changes gp's status to _Grunning|_Gscan,
   261  // that second goroutine still does not have the right to modify gscanvalid.
   262  
   263  // The Gscanstatuses are acting like locks and this releases them.
   264  // If it proves to be a performance hit we should be able to make these
   265  // simple atomic stores but for now we are going to throw if
   266  // we see an inconsistent state.
   267  func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
   268  	success := false
   269  
   270  	// Check that transition is valid.
   271  	switch oldval {
   272  	default:
   273  		print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   274  		dumpgstatus(gp)
   275  		throw("casfrom_Gscanstatus:top gp->status is not in scan state")
   276  	case _Gscanrunnable,
   277  		_Gscanwaiting,
   278  		_Gscanrunning,
   279  		_Gscansyscall:
   280  		if newval == oldval&^_Gscan {
   281  			success = cas(&gp.atomicstatus, oldval, newval)
   282  		}
   283  	case _Gscanenqueue:
   284  		if newval == _Gwaiting {
   285  			success = cas(&gp.atomicstatus, oldval, newval)
   286  		}
   287  	}
   288  	if !success {
   289  		print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   290  		dumpgstatus(gp)
   291  		throw("casfrom_Gscanstatus: gp->status is not in scan state")
   292  	}
   293  	if newval == _Grunning {
   294  		gp.gcscanvalid = false
   295  	}
   296  }
   297  
   298  // This will return false if the gp is not in the expected status and the cas fails.
   299  // This acts like a lock acquire while the casfromgstatus acts like a lock release.
   300  func castogscanstatus(gp *g, oldval, newval uint32) bool {
   301  	switch oldval {
   302  	case _Grunnable,
   303  		_Gwaiting,
   304  		_Gsyscall:
   305  		if newval == oldval|_Gscan {
   306  			return cas(&gp.atomicstatus, oldval, newval)
   307  		}
   308  	case _Grunning:
   309  		if newval == _Gscanrunning || newval == _Gscanenqueue {
   310  			return cas(&gp.atomicstatus, oldval, newval)
   311  		}
   312  	}
   313  	print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
   314  	throw("castogscanstatus")
   315  	panic("not reached")
   316  }
   317  
   318  // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
   319  // and casfrom_Gscanstatus instead.
   320  // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
   321  // put it in the Gscan state is finished.
   322  //go:nosplit
   323  func casgstatus(gp *g, oldval, newval uint32) {
   324  	if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
   325  		systemstack(func() {
   326  			print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
   327  			throw("casgstatus: bad incoming values")
   328  		})
   329  	}
   330  
   331  	if oldval == _Grunning && gp.gcscanvalid {
   332  		// If oldvall == _Grunning, then the actual status must be
   333  		// _Grunning or _Grunning|_Gscan; either way,
   334  		// we own gp.gcscanvalid, so it's safe to read.
   335  		// gp.gcscanvalid must not be true when we are running.
   336  		print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
   337  		throw("casgstatus")
   338  	}
   339  
   340  	// loop if gp->atomicstatus is in a scan state giving
   341  	// GC time to finish and change the state to oldval.
   342  	for !cas(&gp.atomicstatus, oldval, newval) {
   343  		if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
   344  			systemstack(func() {
   345  				throw("casgstatus: waiting for Gwaiting but is Grunnable")
   346  			})
   347  		}
   348  		// Help GC if needed.
   349  		// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
   350  		// 	gp.preemptscan = false
   351  		// 	systemstack(func() {
   352  		// 		gcphasework(gp)
   353  		// 	})
   354  		// }
   355  	}
   356  	if newval == _Grunning {
   357  		gp.gcscanvalid = false
   358  	}
   359  }
   360  
   361  // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
   362  // Returns old status. Cannot call casgstatus directly, because we are racing with an
   363  // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
   364  // it might have become Grunnable by the time we get to the cas. If we called casgstatus,
   365  // it would loop waiting for the status to go back to Gwaiting, which it never will.
   366  //go:nosplit
   367  func casgcopystack(gp *g) uint32 {
   368  	for {
   369  		oldstatus := readgstatus(gp) &^ _Gscan
   370  		if oldstatus != _Gwaiting && oldstatus != _Grunnable {
   371  			throw("copystack: bad status, not Gwaiting or Grunnable")
   372  		}
   373  		if cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
   374  			return oldstatus
   375  		}
   376  	}
   377  }
   378  
   379  // scang blocks until gp's stack has been scanned.
   380  // It might be scanned by scang or it might be scanned by the goroutine itself.
   381  // Either way, the stack scan has completed when scang returns.
   382  func scang(gp *g) {
   383  	// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
   384  	// Nothing is racing with us now, but gcscandone might be set to true left over
   385  	// from an earlier round of stack scanning (we scan twice per GC).
   386  	// We use gcscandone to record whether the scan has been done during this round.
   387  	// It is important that the scan happens exactly once: if called twice,
   388  	// the installation of stack barriers will detect the double scan and die.
   389  
   390  	gp.gcscandone = false
   391  
   392  	// Endeavor to get gcscandone set to true,
   393  	// either by doing the stack scan ourselves or by coercing gp to scan itself.
   394  	// gp.gcscandone can transition from false to true when we're not looking
   395  	// (if we asked for preemption), so any time we lock the status using
   396  	// castogscanstatus we have to double-check that the scan is still not done.
   397  	for !gp.gcscandone {
   398  		switch s := readgstatus(gp); s {
   399  		default:
   400  			dumpgstatus(gp)
   401  			throw("stopg: invalid status")
   402  
   403  		case _Gdead:
   404  			// No stack.
   405  			gp.gcscandone = true
   406  
   407  		case _Gcopystack:
   408  			// Stack being switched. Go around again.
   409  
   410  		case _Grunnable, _Gsyscall, _Gwaiting:
   411  			// Claim goroutine by setting scan bit.
   412  			// Racing with execution or readying of gp.
   413  			// The scan bit keeps them from running
   414  			// the goroutine until we're done.
   415  			if castogscanstatus(gp, s, s|_Gscan) {
   416  				if !gp.gcscandone {
   417  					// Coordinate with traceback
   418  					// in sigprof.
   419  					for !cas(&gp.stackLock, 0, 1) {
   420  						osyield()
   421  					}
   422  					scanstack(gp)
   423  					atomicstore(&gp.stackLock, 0)
   424  					gp.gcscandone = true
   425  				}
   426  				restartg(gp)
   427  			}
   428  
   429  		case _Gscanwaiting:
   430  			// newstack is doing a scan for us right now. Wait.
   431  
   432  		case _Grunning:
   433  			// Goroutine running. Try to preempt execution so it can scan itself.
   434  			// The preemption handler (in newstack) does the actual scan.
   435  
   436  			// Optimization: if there is already a pending preemption request
   437  			// (from the previous loop iteration), don't bother with the atomics.
   438  			if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
   439  				break
   440  			}
   441  
   442  			// Ask for preemption and self scan.
   443  			if castogscanstatus(gp, _Grunning, _Gscanrunning) {
   444  				if !gp.gcscandone {
   445  					gp.preemptscan = true
   446  					gp.preempt = true
   447  					gp.stackguard0 = stackPreempt
   448  				}
   449  				casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
   450  			}
   451  		}
   452  	}
   453  
   454  	gp.preemptscan = false // cancel scan request if no longer needed
   455  }
   456  
   457  // The GC requests that this routine be moved from a scanmumble state to a mumble state.
   458  func restartg(gp *g) {
   459  	s := readgstatus(gp)
   460  	switch s {
   461  	default:
   462  		dumpgstatus(gp)
   463  		throw("restartg: unexpected status")
   464  
   465  	case _Gdead:
   466  		// ok
   467  
   468  	case _Gscanrunnable,
   469  		_Gscanwaiting,
   470  		_Gscansyscall:
   471  		casfrom_Gscanstatus(gp, s, s&^_Gscan)
   472  
   473  	// Scan is now completed.
   474  	// Goroutine now needs to be made runnable.
   475  	// We put it on the global run queue; ready blocks on the global scheduler lock.
   476  	case _Gscanenqueue:
   477  		casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
   478  		if gp != getg().m.curg {
   479  			throw("processing Gscanenqueue on wrong m")
   480  		}
   481  		dropg()
   482  		ready(gp, 0)
   483  	}
   484  }
   485  
   486  // stopTheWorld stops all P's from executing goroutines, interrupting
   487  // all goroutines at GC safe points and records reason as the reason
   488  // for the stop. On return, only the current goroutine's P is running.
   489  // stopTheWorld must not be called from a system stack and the caller
   490  // must not hold worldsema. The caller must call startTheWorld when
   491  // other P's should resume execution.
   492  //
   493  // stopTheWorld is safe for multiple goroutines to call at the
   494  // same time. Each will execute its own stop, and the stops will
   495  // be serialized.
   496  //
   497  // This is also used by routines that do stack dumps. If the system is
   498  // in panic or being exited, this may not reliably stop all
   499  // goroutines.
   500  func stopTheWorld(reason string) {
   501  	semacquire(&worldsema, false)
   502  	getg().m.preemptoff = reason
   503  	systemstack(stopTheWorldWithSema)
   504  }
   505  
   506  // startTheWorld undoes the effects of stopTheWorld.
   507  func startTheWorld() {
   508  	systemstack(startTheWorldWithSema)
   509  	// worldsema must be held over startTheWorldWithSema to ensure
   510  	// gomaxprocs cannot change while worldsema is held.
   511  	semrelease(&worldsema)
   512  	getg().m.preemptoff = ""
   513  }
   514  
   515  // Holding worldsema grants an M the right to try to stop the world
   516  // and prevents gomaxprocs from changing concurrently.
   517  var worldsema uint32 = 1
   518  
   519  // stopTheWorldWithSema is the core implementation of stopTheWorld.
   520  // The caller is responsible for acquiring worldsema and disabling
   521  // preemption first and then should stopTheWorldWithSema on the system
   522  // stack:
   523  //
   524  //	semacquire(&worldsema, false)
   525  //	m.preemptoff = "reason"
   526  //	systemstack(stopTheWorldWithSema)
   527  //
   528  // When finished, the caller must either call startTheWorld or undo
   529  // these three operations separately:
   530  //
   531  //	m.preemptoff = ""
   532  //	systemstack(startTheWorldWithSema)
   533  //	semrelease(&worldsema)
   534  //
   535  // It is allowed to acquire worldsema once and then execute multiple
   536  // startTheWorldWithSema/stopTheWorldWithSema pairs.
   537  // Other P's are able to execute between successive calls to
   538  // startTheWorldWithSema and stopTheWorldWithSema.
   539  // Holding worldsema causes any other goroutines invoking
   540  // stopTheWorld to block.
   541  func stopTheWorldWithSema() {
   542  	_g_ := getg()
   543  
   544  	// If we hold a lock, then we won't be able to stop another M
   545  	// that is blocked trying to acquire the lock.
   546  	if _g_.m.locks > 0 {
   547  		throw("stopTheWorld: holding locks")
   548  	}
   549  
   550  	lock(&sched.lock)
   551  	sched.stopwait = gomaxprocs
   552  	atomicstore(&sched.gcwaiting, 1)
   553  	preemptall()
   554  	// stop current P
   555  	_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
   556  	sched.stopwait--
   557  	// try to retake all P's in Psyscall status
   558  	for i := 0; i < int(gomaxprocs); i++ {
   559  		p := allp[i]
   560  		s := p.status
   561  		if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
   562  			if trace.enabled {
   563  				traceGoSysBlock(p)
   564  				traceProcStop(p)
   565  			}
   566  			p.syscalltick++
   567  			sched.stopwait--
   568  		}
   569  	}
   570  	// stop idle P's
   571  	for {
   572  		p := pidleget()
   573  		if p == nil {
   574  			break
   575  		}
   576  		p.status = _Pgcstop
   577  		sched.stopwait--
   578  	}
   579  	wait := sched.stopwait > 0
   580  	unlock(&sched.lock)
   581  
   582  	// wait for remaining P's to stop voluntarily
   583  	if wait {
   584  		for {
   585  			// wait for 100us, then try to re-preempt in case of any races
   586  			if notetsleep(&sched.stopnote, 100*1000) {
   587  				noteclear(&sched.stopnote)
   588  				break
   589  			}
   590  			preemptall()
   591  		}
   592  	}
   593  	if sched.stopwait != 0 {
   594  		throw("stopTheWorld: not stopped")
   595  	}
   596  	for i := 0; i < int(gomaxprocs); i++ {
   597  		p := allp[i]
   598  		if p.status != _Pgcstop {
   599  			throw("stopTheWorld: not stopped")
   600  		}
   601  	}
   602  }
   603  
   604  func mhelpgc() {
   605  	_g_ := getg()
   606  	_g_.m.helpgc = -1
   607  }
   608  
   609  func startTheWorldWithSema() {
   610  	_g_ := getg()
   611  
   612  	_g_.m.locks++        // disable preemption because it can be holding p in a local var
   613  	gp := netpoll(false) // non-blocking
   614  	injectglist(gp)
   615  	add := needaddgcproc()
   616  	lock(&sched.lock)
   617  
   618  	procs := gomaxprocs
   619  	if newprocs != 0 {
   620  		procs = newprocs
   621  		newprocs = 0
   622  	}
   623  	p1 := procresize(procs)
   624  	sched.gcwaiting = 0
   625  	if sched.sysmonwait != 0 {
   626  		sched.sysmonwait = 0
   627  		notewakeup(&sched.sysmonnote)
   628  	}
   629  	unlock(&sched.lock)
   630  
   631  	for p1 != nil {
   632  		p := p1
   633  		p1 = p1.link.ptr()
   634  		if p.m != 0 {
   635  			mp := p.m.ptr()
   636  			p.m = 0
   637  			if mp.nextp != 0 {
   638  				throw("startTheWorld: inconsistent mp->nextp")
   639  			}
   640  			mp.nextp.set(p)
   641  			notewakeup(&mp.park)
   642  		} else {
   643  			// Start M to run P.  Do not start another M below.
   644  			newm(nil, p)
   645  			add = false
   646  		}
   647  	}
   648  
   649  	// Wakeup an additional proc in case we have excessive runnable goroutines
   650  	// in local queues or in the global queue. If we don't, the proc will park itself.
   651  	// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
   652  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 {
   653  		wakep()
   654  	}
   655  
   656  	if add {
   657  		// If GC could have used another helper proc, start one now,
   658  		// in the hope that it will be available next time.
   659  		// It would have been even better to start it before the collection,
   660  		// but doing so requires allocating memory, so it's tricky to
   661  		// coordinate.  This lazy approach works out in practice:
   662  		// we don't mind if the first couple gc rounds don't have quite
   663  		// the maximum number of procs.
   664  		newm(mhelpgc, nil)
   665  	}
   666  	_g_.m.locks--
   667  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   668  		_g_.stackguard0 = stackPreempt
   669  	}
   670  }
   671  
   672  // Called to start an M.
   673  //go:nosplit
   674  func mstart() {
   675  	_g_ := getg()
   676  
   677  	if _g_.stack.lo == 0 {
   678  		// Initialize stack bounds from system stack.
   679  		// Cgo may have left stack size in stack.hi.
   680  		size := _g_.stack.hi
   681  		if size == 0 {
   682  			size = 8192 * stackGuardMultiplier
   683  		}
   684  		_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
   685  		_g_.stack.lo = _g_.stack.hi - size + 1024
   686  	}
   687  	// Initialize stack guards so that we can start calling
   688  	// both Go and C functions with stack growth prologues.
   689  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
   690  	_g_.stackguard1 = _g_.stackguard0
   691  	mstart1()
   692  }
   693  
   694  func mstart1() {
   695  	_g_ := getg()
   696  
   697  	if _g_ != _g_.m.g0 {
   698  		throw("bad runtime·mstart")
   699  	}
   700  
   701  	// Record top of stack for use by mcall.
   702  	// Once we call schedule we're never coming back,
   703  	// so other calls can reuse this stack space.
   704  	gosave(&_g_.m.g0.sched)
   705  	_g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
   706  	asminit()
   707  	minit()
   708  
   709  	// Install signal handlers; after minit so that minit can
   710  	// prepare the thread to be able to handle the signals.
   711  	if _g_.m == &m0 {
   712  		// Create an extra M for callbacks on threads not created by Go.
   713  		if iscgo && !cgoHasExtraM {
   714  			cgoHasExtraM = true
   715  			newextram()
   716  		}
   717  		initsig()
   718  	}
   719  
   720  	if fn := _g_.m.mstartfn; fn != nil {
   721  		fn()
   722  	}
   723  
   724  	if _g_.m.helpgc != 0 {
   725  		_g_.m.helpgc = 0
   726  		stopm()
   727  	} else if _g_.m != &m0 {
   728  		acquirep(_g_.m.nextp.ptr())
   729  		_g_.m.nextp = 0
   730  	}
   731  	schedule()
   732  }
   733  
   734  // forEachP calls fn(p) for every P p when p reaches a GC safe point.
   735  // If a P is currently executing code, this will bring the P to a GC
   736  // safe point and execute fn on that P. If the P is not executing code
   737  // (it is idle or in a syscall), this will call fn(p) directly while
   738  // preventing the P from exiting its state. This does not ensure that
   739  // fn will run on every CPU executing Go code, but it acts as a global
   740  // memory barrier. GC uses this as a "ragged barrier."
   741  //
   742  // The caller must hold worldsema.
   743  func forEachP(fn func(*p)) {
   744  	mp := acquirem()
   745  	_p_ := getg().m.p.ptr()
   746  
   747  	lock(&sched.lock)
   748  	if sched.safePointWait != 0 {
   749  		throw("forEachP: sched.safePointWait != 0")
   750  	}
   751  	sched.safePointWait = gomaxprocs - 1
   752  	sched.safePointFn = fn
   753  
   754  	// Ask all Ps to run the safe point function.
   755  	for _, p := range allp[:gomaxprocs] {
   756  		if p != _p_ {
   757  			atomicstore(&p.runSafePointFn, 1)
   758  		}
   759  	}
   760  	preemptall()
   761  
   762  	// Any P entering _Pidle or _Psyscall from now on will observe
   763  	// p.runSafePointFn == 1 and will call runSafePointFn when
   764  	// changing its status to _Pidle/_Psyscall.
   765  
   766  	// Run safe point function for all idle Ps. sched.pidle will
   767  	// not change because we hold sched.lock.
   768  	for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
   769  		if cas(&p.runSafePointFn, 1, 0) {
   770  			fn(p)
   771  			sched.safePointWait--
   772  		}
   773  	}
   774  
   775  	wait := sched.safePointWait > 0
   776  	unlock(&sched.lock)
   777  
   778  	// Run fn for the current P.
   779  	fn(_p_)
   780  
   781  	// Force Ps currently in _Psyscall into _Pidle and hand them
   782  	// off to induce safe point function execution.
   783  	for i := 0; i < int(gomaxprocs); i++ {
   784  		p := allp[i]
   785  		s := p.status
   786  		if s == _Psyscall && p.runSafePointFn == 1 && cas(&p.status, s, _Pidle) {
   787  			if trace.enabled {
   788  				traceGoSysBlock(p)
   789  				traceProcStop(p)
   790  			}
   791  			p.syscalltick++
   792  			handoffp(p)
   793  		}
   794  	}
   795  
   796  	// Wait for remaining Ps to run fn.
   797  	if wait {
   798  		for {
   799  			// Wait for 100us, then try to re-preempt in
   800  			// case of any races.
   801  			if notetsleep(&sched.safePointNote, 100*1000) {
   802  				noteclear(&sched.safePointNote)
   803  				break
   804  			}
   805  			preemptall()
   806  		}
   807  	}
   808  	if sched.safePointWait != 0 {
   809  		throw("forEachP: not done")
   810  	}
   811  	for i := 0; i < int(gomaxprocs); i++ {
   812  		p := allp[i]
   813  		if p.runSafePointFn != 0 {
   814  			throw("forEachP: P did not run fn")
   815  		}
   816  	}
   817  
   818  	lock(&sched.lock)
   819  	sched.safePointFn = nil
   820  	unlock(&sched.lock)
   821  	releasem(mp)
   822  }
   823  
   824  // runSafePointFn runs the safe point function, if any, for this P.
   825  // This should be called like
   826  //
   827  //     if getg().m.p.runSafePointFn != 0 {
   828  //         runSafePointFn()
   829  //     }
   830  //
   831  // runSafePointFn must be checked on any transition in to _Pidle or
   832  // _Psyscall to avoid a race where forEachP sees that the P is running
   833  // just before the P goes into _Pidle/_Psyscall and neither forEachP
   834  // nor the P run the safe-point function.
   835  func runSafePointFn() {
   836  	p := getg().m.p.ptr()
   837  	// Resolve the race between forEachP running the safe-point
   838  	// function on this P's behalf and this P running the
   839  	// safe-point function directly.
   840  	if !cas(&p.runSafePointFn, 1, 0) {
   841  		return
   842  	}
   843  	sched.safePointFn(p)
   844  	lock(&sched.lock)
   845  	sched.safePointWait--
   846  	if sched.safePointWait == 0 {
   847  		notewakeup(&sched.safePointNote)
   848  	}
   849  	unlock(&sched.lock)
   850  }
   851  
   852  // When running with cgo, we call _cgo_thread_start
   853  // to start threads for us so that we can play nicely with
   854  // foreign code.
   855  var cgoThreadStart unsafe.Pointer
   856  
   857  type cgothreadstart struct {
   858  	g   guintptr
   859  	tls *uint64
   860  	fn  unsafe.Pointer
   861  }
   862  
   863  // Allocate a new m unassociated with any thread.
   864  // Can use p for allocation context if needed.
   865  // fn is recorded as the new m's m.mstartfn.
   866  func allocm(_p_ *p, fn func()) *m {
   867  	_g_ := getg()
   868  	_g_.m.locks++ // disable GC because it can be called from sysmon
   869  	if _g_.m.p == 0 {
   870  		acquirep(_p_) // temporarily borrow p for mallocs in this function
   871  	}
   872  	mp := new(m)
   873  	mp.mstartfn = fn
   874  	mcommoninit(mp)
   875  
   876  	// In case of cgo or Solaris, pthread_create will make us a stack.
   877  	// Windows and Plan 9 will layout sched stack on OS stack.
   878  	if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
   879  		mp.g0 = malg(-1)
   880  	} else {
   881  		mp.g0 = malg(8192 * stackGuardMultiplier)
   882  	}
   883  	mp.g0.m = mp
   884  
   885  	if _p_ == _g_.m.p.ptr() {
   886  		releasep()
   887  	}
   888  	_g_.m.locks--
   889  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   890  		_g_.stackguard0 = stackPreempt
   891  	}
   892  
   893  	return mp
   894  }
   895  
   896  // needm is called when a cgo callback happens on a
   897  // thread without an m (a thread not created by Go).
   898  // In this case, needm is expected to find an m to use
   899  // and return with m, g initialized correctly.
   900  // Since m and g are not set now (likely nil, but see below)
   901  // needm is limited in what routines it can call. In particular
   902  // it can only call nosplit functions (textflag 7) and cannot
   903  // do any scheduling that requires an m.
   904  //
   905  // In order to avoid needing heavy lifting here, we adopt
   906  // the following strategy: there is a stack of available m's
   907  // that can be stolen. Using compare-and-swap
   908  // to pop from the stack has ABA races, so we simulate
   909  // a lock by doing an exchange (via casp) to steal the stack
   910  // head and replace the top pointer with MLOCKED (1).
   911  // This serves as a simple spin lock that we can use even
   912  // without an m. The thread that locks the stack in this way
   913  // unlocks the stack by storing a valid stack head pointer.
   914  //
   915  // In order to make sure that there is always an m structure
   916  // available to be stolen, we maintain the invariant that there
   917  // is always one more than needed. At the beginning of the
   918  // program (if cgo is in use) the list is seeded with a single m.
   919  // If needm finds that it has taken the last m off the list, its job
   920  // is - once it has installed its own m so that it can do things like
   921  // allocate memory - to create a spare m and put it on the list.
   922  //
   923  // Each of these extra m's also has a g0 and a curg that are
   924  // pressed into service as the scheduling stack and current
   925  // goroutine for the duration of the cgo callback.
   926  //
   927  // When the callback is done with the m, it calls dropm to
   928  // put the m back on the list.
   929  //go:nosplit
   930  func needm(x byte) {
   931  	if iscgo && !cgoHasExtraM {
   932  		// Can happen if C/C++ code calls Go from a global ctor.
   933  		// Can not throw, because scheduler is not initialized yet.
   934  		write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
   935  		exit(1)
   936  	}
   937  
   938  	// Lock extra list, take head, unlock popped list.
   939  	// nilokay=false is safe here because of the invariant above,
   940  	// that the extra list always contains or will soon contain
   941  	// at least one m.
   942  	mp := lockextra(false)
   943  
   944  	// Set needextram when we've just emptied the list,
   945  	// so that the eventual call into cgocallbackg will
   946  	// allocate a new m for the extra list. We delay the
   947  	// allocation until then so that it can be done
   948  	// after exitsyscall makes sure it is okay to be
   949  	// running at all (that is, there's no garbage collection
   950  	// running right now).
   951  	mp.needextram = mp.schedlink == 0
   952  	unlockextra(mp.schedlink.ptr())
   953  
   954  	// Install g (= m->g0) and set the stack bounds
   955  	// to match the current stack. We don't actually know
   956  	// how big the stack is, like we don't know how big any
   957  	// scheduling stack is, but we assume there's at least 32 kB,
   958  	// which is more than enough for us.
   959  	setg(mp.g0)
   960  	_g_ := getg()
   961  	_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
   962  	_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
   963  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
   964  
   965  	msigsave(mp)
   966  	// Initialize this thread to use the m.
   967  	asminit()
   968  	minit()
   969  }
   970  
   971  var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
   972  
   973  // newextram allocates an m and puts it on the extra list.
   974  // It is called with a working local m, so that it can do things
   975  // like call schedlock and allocate.
   976  func newextram() {
   977  	// Create extra goroutine locked to extra m.
   978  	// The goroutine is the context in which the cgo callback will run.
   979  	// The sched.pc will never be returned to, but setting it to
   980  	// goexit makes clear to the traceback routines where
   981  	// the goroutine stack ends.
   982  	mp := allocm(nil, nil)
   983  	gp := malg(4096)
   984  	gp.sched.pc = funcPC(goexit) + _PCQuantum
   985  	gp.sched.sp = gp.stack.hi
   986  	gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
   987  	gp.sched.lr = 0
   988  	gp.sched.g = guintptr(unsafe.Pointer(gp))
   989  	gp.syscallpc = gp.sched.pc
   990  	gp.syscallsp = gp.sched.sp
   991  	gp.stktopsp = gp.sched.sp
   992  	// malg returns status as Gidle, change to Gsyscall before adding to allg
   993  	// where GC will see it.
   994  	casgstatus(gp, _Gidle, _Gsyscall)
   995  	gp.m = mp
   996  	mp.curg = gp
   997  	mp.locked = _LockInternal
   998  	mp.lockedg = gp
   999  	gp.lockedm = mp
  1000  	gp.goid = int64(xadd64(&sched.goidgen, 1))
  1001  	if raceenabled {
  1002  		gp.racectx = racegostart(funcPC(newextram))
  1003  	}
  1004  	// put on allg for garbage collector
  1005  	allgadd(gp)
  1006  
  1007  	// Add m to the extra list.
  1008  	mnext := lockextra(true)
  1009  	mp.schedlink.set(mnext)
  1010  	unlockextra(mp)
  1011  }
  1012  
  1013  // dropm is called when a cgo callback has called needm but is now
  1014  // done with the callback and returning back into the non-Go thread.
  1015  // It puts the current m back onto the extra list.
  1016  //
  1017  // The main expense here is the call to signalstack to release the
  1018  // m's signal stack, and then the call to needm on the next callback
  1019  // from this thread. It is tempting to try to save the m for next time,
  1020  // which would eliminate both these costs, but there might not be
  1021  // a next time: the current thread (which Go does not control) might exit.
  1022  // If we saved the m for that thread, there would be an m leak each time
  1023  // such a thread exited. Instead, we acquire and release an m on each
  1024  // call. These should typically not be scheduling operations, just a few
  1025  // atomics, so the cost should be small.
  1026  //
  1027  // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
  1028  // variable using pthread_key_create. Unlike the pthread keys we already use
  1029  // on OS X, this dummy key would never be read by Go code. It would exist
  1030  // only so that we could register at thread-exit-time destructor.
  1031  // That destructor would put the m back onto the extra list.
  1032  // This is purely a performance optimization. The current version,
  1033  // in which dropm happens on each cgo call, is still correct too.
  1034  // We may have to keep the current version on systems with cgo
  1035  // but without pthreads, like Windows.
  1036  func dropm() {
  1037  	// Undo whatever initialization minit did during needm.
  1038  	unminit()
  1039  
  1040  	// Clear m and g, and return m to the extra list.
  1041  	// After the call to setg we can only call nosplit functions
  1042  	// with no pointer manipulation.
  1043  	mp := getg().m
  1044  	mnext := lockextra(true)
  1045  	mp.schedlink.set(mnext)
  1046  
  1047  	setg(nil)
  1048  	unlockextra(mp)
  1049  }
  1050  
  1051  var extram uintptr
  1052  
  1053  // lockextra locks the extra list and returns the list head.
  1054  // The caller must unlock the list by storing a new list head
  1055  // to extram. If nilokay is true, then lockextra will
  1056  // return a nil list head if that's what it finds. If nilokay is false,
  1057  // lockextra will keep waiting until the list head is no longer nil.
  1058  //go:nosplit
  1059  func lockextra(nilokay bool) *m {
  1060  	const locked = 1
  1061  
  1062  	for {
  1063  		old := atomicloaduintptr(&extram)
  1064  		if old == locked {
  1065  			yield := osyield
  1066  			yield()
  1067  			continue
  1068  		}
  1069  		if old == 0 && !nilokay {
  1070  			usleep(1)
  1071  			continue
  1072  		}
  1073  		if casuintptr(&extram, old, locked) {
  1074  			return (*m)(unsafe.Pointer(old))
  1075  		}
  1076  		yield := osyield
  1077  		yield()
  1078  		continue
  1079  	}
  1080  }
  1081  
  1082  //go:nosplit
  1083  func unlockextra(mp *m) {
  1084  	atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
  1085  }
  1086  
  1087  // Create a new m.  It will start off with a call to fn, or else the scheduler.
  1088  // fn needs to be static and not a heap allocated closure.
  1089  // May run with m.p==nil, so write barriers are not allowed.
  1090  //go:nowritebarrier
  1091  func newm(fn func(), _p_ *p) {
  1092  	mp := allocm(_p_, fn)
  1093  	mp.nextp.set(_p_)
  1094  	msigsave(mp)
  1095  	if iscgo {
  1096  		var ts cgothreadstart
  1097  		if _cgo_thread_start == nil {
  1098  			throw("_cgo_thread_start missing")
  1099  		}
  1100  		ts.g.set(mp.g0)
  1101  		ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
  1102  		ts.fn = unsafe.Pointer(funcPC(mstart))
  1103  		asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
  1104  		return
  1105  	}
  1106  	newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
  1107  }
  1108  
  1109  // Stops execution of the current m until new work is available.
  1110  // Returns with acquired P.
  1111  func stopm() {
  1112  	_g_ := getg()
  1113  
  1114  	if _g_.m.locks != 0 {
  1115  		throw("stopm holding locks")
  1116  	}
  1117  	if _g_.m.p != 0 {
  1118  		throw("stopm holding p")
  1119  	}
  1120  	if _g_.m.spinning {
  1121  		_g_.m.spinning = false
  1122  		xadd(&sched.nmspinning, -1)
  1123  	}
  1124  
  1125  retry:
  1126  	lock(&sched.lock)
  1127  	mput(_g_.m)
  1128  	unlock(&sched.lock)
  1129  	notesleep(&_g_.m.park)
  1130  	noteclear(&_g_.m.park)
  1131  	if _g_.m.helpgc != 0 {
  1132  		gchelper()
  1133  		_g_.m.helpgc = 0
  1134  		_g_.m.mcache = nil
  1135  		_g_.m.p = 0
  1136  		goto retry
  1137  	}
  1138  	acquirep(_g_.m.nextp.ptr())
  1139  	_g_.m.nextp = 0
  1140  }
  1141  
  1142  func mspinning() {
  1143  	gp := getg()
  1144  	if !runqempty(gp.m.nextp.ptr()) {
  1145  		// Something (presumably the GC) was readied while the
  1146  		// runtime was starting up this M, so the M is no
  1147  		// longer spinning.
  1148  		if int32(xadd(&sched.nmspinning, -1)) < 0 {
  1149  			throw("mspinning: nmspinning underflowed")
  1150  		}
  1151  	} else {
  1152  		gp.m.spinning = true
  1153  	}
  1154  }
  1155  
  1156  // Schedules some M to run the p (creates an M if necessary).
  1157  // If p==nil, tries to get an idle P, if no idle P's does nothing.
  1158  // May run with m.p==nil, so write barriers are not allowed.
  1159  //go:nowritebarrier
  1160  func startm(_p_ *p, spinning bool) {
  1161  	lock(&sched.lock)
  1162  	if _p_ == nil {
  1163  		_p_ = pidleget()
  1164  		if _p_ == nil {
  1165  			unlock(&sched.lock)
  1166  			if spinning {
  1167  				xadd(&sched.nmspinning, -1)
  1168  			}
  1169  			return
  1170  		}
  1171  	}
  1172  	mp := mget()
  1173  	unlock(&sched.lock)
  1174  	if mp == nil {
  1175  		var fn func()
  1176  		if spinning {
  1177  			fn = mspinning
  1178  		}
  1179  		newm(fn, _p_)
  1180  		return
  1181  	}
  1182  	if mp.spinning {
  1183  		throw("startm: m is spinning")
  1184  	}
  1185  	if mp.nextp != 0 {
  1186  		throw("startm: m has p")
  1187  	}
  1188  	if spinning && !runqempty(_p_) {
  1189  		throw("startm: p has runnable gs")
  1190  	}
  1191  	mp.spinning = spinning
  1192  	mp.nextp.set(_p_)
  1193  	notewakeup(&mp.park)
  1194  }
  1195  
  1196  // Hands off P from syscall or locked M.
  1197  // Always runs without a P, so write barriers are not allowed.
  1198  //go:nowritebarrier
  1199  func handoffp(_p_ *p) {
  1200  	// if it has local work, start it straight away
  1201  	if !runqempty(_p_) || sched.runqsize != 0 {
  1202  		startm(_p_, false)
  1203  		return
  1204  	}
  1205  	// no local work, check that there are no spinning/idle M's,
  1206  	// otherwise our help is not required
  1207  	if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
  1208  		startm(_p_, true)
  1209  		return
  1210  	}
  1211  	lock(&sched.lock)
  1212  	if sched.gcwaiting != 0 {
  1213  		_p_.status = _Pgcstop
  1214  		sched.stopwait--
  1215  		if sched.stopwait == 0 {
  1216  			notewakeup(&sched.stopnote)
  1217  		}
  1218  		unlock(&sched.lock)
  1219  		return
  1220  	}
  1221  	if _p_.runSafePointFn != 0 && cas(&_p_.runSafePointFn, 1, 0) {
  1222  		sched.safePointFn(_p_)
  1223  		sched.safePointWait--
  1224  		if sched.safePointWait == 0 {
  1225  			notewakeup(&sched.safePointNote)
  1226  		}
  1227  	}
  1228  	if sched.runqsize != 0 {
  1229  		unlock(&sched.lock)
  1230  		startm(_p_, false)
  1231  		return
  1232  	}
  1233  	// If this is the last running P and nobody is polling network,
  1234  	// need to wakeup another M to poll network.
  1235  	if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
  1236  		unlock(&sched.lock)
  1237  		startm(_p_, false)
  1238  		return
  1239  	}
  1240  	pidleput(_p_)
  1241  	unlock(&sched.lock)
  1242  }
  1243  
  1244  // Tries to add one more P to execute G's.
  1245  // Called when a G is made runnable (newproc, ready).
  1246  func wakep() {
  1247  	// be conservative about spinning threads
  1248  	if !cas(&sched.nmspinning, 0, 1) {
  1249  		return
  1250  	}
  1251  	startm(nil, true)
  1252  }
  1253  
  1254  // Stops execution of the current m that is locked to a g until the g is runnable again.
  1255  // Returns with acquired P.
  1256  func stoplockedm() {
  1257  	_g_ := getg()
  1258  
  1259  	if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
  1260  		throw("stoplockedm: inconsistent locking")
  1261  	}
  1262  	if _g_.m.p != 0 {
  1263  		// Schedule another M to run this p.
  1264  		_p_ := releasep()
  1265  		handoffp(_p_)
  1266  	}
  1267  	incidlelocked(1)
  1268  	// Wait until another thread schedules lockedg again.
  1269  	notesleep(&_g_.m.park)
  1270  	noteclear(&_g_.m.park)
  1271  	status := readgstatus(_g_.m.lockedg)
  1272  	if status&^_Gscan != _Grunnable {
  1273  		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
  1274  		dumpgstatus(_g_)
  1275  		throw("stoplockedm: not runnable")
  1276  	}
  1277  	acquirep(_g_.m.nextp.ptr())
  1278  	_g_.m.nextp = 0
  1279  }
  1280  
  1281  // Schedules the locked m to run the locked gp.
  1282  // May run during STW, so write barriers are not allowed.
  1283  //go:nowritebarrier
  1284  func startlockedm(gp *g) {
  1285  	_g_ := getg()
  1286  
  1287  	mp := gp.lockedm
  1288  	if mp == _g_.m {
  1289  		throw("startlockedm: locked to me")
  1290  	}
  1291  	if mp.nextp != 0 {
  1292  		throw("startlockedm: m has p")
  1293  	}
  1294  	// directly handoff current P to the locked m
  1295  	incidlelocked(-1)
  1296  	_p_ := releasep()
  1297  	mp.nextp.set(_p_)
  1298  	notewakeup(&mp.park)
  1299  	stopm()
  1300  }
  1301  
  1302  // Stops the current m for stopTheWorld.
  1303  // Returns when the world is restarted.
  1304  func gcstopm() {
  1305  	_g_ := getg()
  1306  
  1307  	if sched.gcwaiting == 0 {
  1308  		throw("gcstopm: not waiting for gc")
  1309  	}
  1310  	if _g_.m.spinning {
  1311  		_g_.m.spinning = false
  1312  		xadd(&sched.nmspinning, -1)
  1313  	}
  1314  	_p_ := releasep()
  1315  	lock(&sched.lock)
  1316  	_p_.status = _Pgcstop
  1317  	sched.stopwait--
  1318  	if sched.stopwait == 0 {
  1319  		notewakeup(&sched.stopnote)
  1320  	}
  1321  	unlock(&sched.lock)
  1322  	stopm()
  1323  }
  1324  
  1325  // Schedules gp to run on the current M.
  1326  // If inheritTime is true, gp inherits the remaining time in the
  1327  // current time slice. Otherwise, it starts a new time slice.
  1328  // Never returns.
  1329  func execute(gp *g, inheritTime bool) {
  1330  	_g_ := getg()
  1331  
  1332  	casgstatus(gp, _Grunnable, _Grunning)
  1333  	gp.waitsince = 0
  1334  	gp.preempt = false
  1335  	gp.stackguard0 = gp.stack.lo + _StackGuard
  1336  	if !inheritTime {
  1337  		_g_.m.p.ptr().schedtick++
  1338  	}
  1339  	_g_.m.curg = gp
  1340  	gp.m = _g_.m
  1341  
  1342  	// Check whether the profiler needs to be turned on or off.
  1343  	hz := sched.profilehz
  1344  	if _g_.m.profilehz != hz {
  1345  		resetcpuprofiler(hz)
  1346  	}
  1347  
  1348  	if trace.enabled {
  1349  		// GoSysExit has to happen when we have a P, but before GoStart.
  1350  		// So we emit it here.
  1351  		if gp.syscallsp != 0 && gp.sysblocktraced {
  1352  			// Since gp.sysblocktraced is true, we must emit an event.
  1353  			// There is a race between the code that initializes sysexitseq
  1354  			// and sysexitticks (in exitsyscall, which runs without a P,
  1355  			// and therefore is not stopped with the rest of the world)
  1356  			// and the code that initializes a new trace.
  1357  			// The recorded sysexitseq and sysexitticks must therefore
  1358  			// be treated as "best effort". If they are valid for this trace,
  1359  			// then great, use them for greater accuracy.
  1360  			// But if they're not valid for this trace, assume that the
  1361  			// trace was started after the actual syscall exit (but before
  1362  			// we actually managed to start the goroutine, aka right now),
  1363  			// and assign a fresh time stamp to keep the log consistent.
  1364  			seq, ts := gp.sysexitseq, gp.sysexitticks
  1365  			if seq == 0 || int64(seq)-int64(trace.seqStart) < 0 {
  1366  				seq, ts = tracestamp()
  1367  			}
  1368  			traceGoSysExit(seq, ts)
  1369  		}
  1370  		traceGoStart()
  1371  	}
  1372  
  1373  	gogo(&gp.sched)
  1374  }
  1375  
  1376  // Finds a runnable goroutine to execute.
  1377  // Tries to steal from other P's, get g from global queue, poll network.
  1378  func findrunnable() (gp *g, inheritTime bool) {
  1379  	_g_ := getg()
  1380  
  1381  top:
  1382  	if sched.gcwaiting != 0 {
  1383  		gcstopm()
  1384  		goto top
  1385  	}
  1386  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1387  		runSafePointFn()
  1388  	}
  1389  	if fingwait && fingwake {
  1390  		if gp := wakefing(); gp != nil {
  1391  			ready(gp, 0)
  1392  		}
  1393  	}
  1394  
  1395  	// local runq
  1396  	if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil {
  1397  		return gp, inheritTime
  1398  	}
  1399  
  1400  	// global runq
  1401  	if sched.runqsize != 0 {
  1402  		lock(&sched.lock)
  1403  		gp := globrunqget(_g_.m.p.ptr(), 0)
  1404  		unlock(&sched.lock)
  1405  		if gp != nil {
  1406  			return gp, false
  1407  		}
  1408  	}
  1409  
  1410  	// Poll network.
  1411  	// This netpoll is only an optimization before we resort to stealing.
  1412  	// We can safely skip it if there a thread blocked in netpoll already.
  1413  	// If there is any kind of logical race with that blocked thread
  1414  	// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
  1415  	// this thread will do blocking netpoll below anyway.
  1416  	if netpollinited() && sched.lastpoll != 0 {
  1417  		if gp := netpoll(false); gp != nil { // non-blocking
  1418  			// netpoll returns list of goroutines linked by schedlink.
  1419  			injectglist(gp.schedlink.ptr())
  1420  			casgstatus(gp, _Gwaiting, _Grunnable)
  1421  			if trace.enabled {
  1422  				traceGoUnpark(gp, 0)
  1423  			}
  1424  			return gp, false
  1425  		}
  1426  	}
  1427  
  1428  	// If number of spinning M's >= number of busy P's, block.
  1429  	// This is necessary to prevent excessive CPU consumption
  1430  	// when GOMAXPROCS>>1 but the program parallelism is low.
  1431  	if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
  1432  		goto stop
  1433  	}
  1434  	if !_g_.m.spinning {
  1435  		_g_.m.spinning = true
  1436  		xadd(&sched.nmspinning, 1)
  1437  	}
  1438  	// random steal from other P's
  1439  	for i := 0; i < int(4*gomaxprocs); i++ {
  1440  		if sched.gcwaiting != 0 {
  1441  			goto top
  1442  		}
  1443  		_p_ := allp[fastrand1()%uint32(gomaxprocs)]
  1444  		var gp *g
  1445  		if _p_ == _g_.m.p.ptr() {
  1446  			gp, _ = runqget(_p_)
  1447  		} else {
  1448  			stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g
  1449  			gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG)
  1450  		}
  1451  		if gp != nil {
  1452  			return gp, false
  1453  		}
  1454  	}
  1455  
  1456  stop:
  1457  
  1458  	// We have nothing to do. If we're in the GC mark phase and can
  1459  	// safely scan and blacken objects, run idle-time marking
  1460  	// rather than give up the P.
  1461  	if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != nil && gcMarkWorkAvailable(_p_) {
  1462  		_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
  1463  		gp := _p_.gcBgMarkWorker
  1464  		casgstatus(gp, _Gwaiting, _Grunnable)
  1465  		if trace.enabled {
  1466  			traceGoUnpark(gp, 0)
  1467  		}
  1468  		return gp, false
  1469  	}
  1470  
  1471  	// return P and block
  1472  	lock(&sched.lock)
  1473  	if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 {
  1474  		unlock(&sched.lock)
  1475  		goto top
  1476  	}
  1477  	if sched.runqsize != 0 {
  1478  		gp := globrunqget(_g_.m.p.ptr(), 0)
  1479  		unlock(&sched.lock)
  1480  		return gp, false
  1481  	}
  1482  	_p_ := releasep()
  1483  	pidleput(_p_)
  1484  	unlock(&sched.lock)
  1485  	if _g_.m.spinning {
  1486  		_g_.m.spinning = false
  1487  		xadd(&sched.nmspinning, -1)
  1488  	}
  1489  
  1490  	// check all runqueues once again
  1491  	for i := 0; i < int(gomaxprocs); i++ {
  1492  		_p_ := allp[i]
  1493  		if _p_ != nil && !runqempty(_p_) {
  1494  			lock(&sched.lock)
  1495  			_p_ = pidleget()
  1496  			unlock(&sched.lock)
  1497  			if _p_ != nil {
  1498  				acquirep(_p_)
  1499  				goto top
  1500  			}
  1501  			break
  1502  		}
  1503  	}
  1504  
  1505  	// poll network
  1506  	if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 {
  1507  		if _g_.m.p != 0 {
  1508  			throw("findrunnable: netpoll with p")
  1509  		}
  1510  		if _g_.m.spinning {
  1511  			throw("findrunnable: netpoll with spinning")
  1512  		}
  1513  		gp := netpoll(true) // block until new work is available
  1514  		atomicstore64(&sched.lastpoll, uint64(nanotime()))
  1515  		if gp != nil {
  1516  			lock(&sched.lock)
  1517  			_p_ = pidleget()
  1518  			unlock(&sched.lock)
  1519  			if _p_ != nil {
  1520  				acquirep(_p_)
  1521  				injectglist(gp.schedlink.ptr())
  1522  				casgstatus(gp, _Gwaiting, _Grunnable)
  1523  				if trace.enabled {
  1524  					traceGoUnpark(gp, 0)
  1525  				}
  1526  				return gp, false
  1527  			}
  1528  			injectglist(gp)
  1529  		}
  1530  	}
  1531  	stopm()
  1532  	goto top
  1533  }
  1534  
  1535  func resetspinning() {
  1536  	_g_ := getg()
  1537  
  1538  	var nmspinning uint32
  1539  	if _g_.m.spinning {
  1540  		_g_.m.spinning = false
  1541  		nmspinning = xadd(&sched.nmspinning, -1)
  1542  		if int32(nmspinning) < 0 {
  1543  			throw("findrunnable: negative nmspinning")
  1544  		}
  1545  	} else {
  1546  		nmspinning = atomicload(&sched.nmspinning)
  1547  	}
  1548  
  1549  	// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
  1550  	// so see if we need to wakeup another P here.
  1551  	if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
  1552  		wakep()
  1553  	}
  1554  }
  1555  
  1556  // Injects the list of runnable G's into the scheduler.
  1557  // Can run concurrently with GC.
  1558  func injectglist(glist *g) {
  1559  	if glist == nil {
  1560  		return
  1561  	}
  1562  	if trace.enabled {
  1563  		for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
  1564  			traceGoUnpark(gp, 0)
  1565  		}
  1566  	}
  1567  	lock(&sched.lock)
  1568  	var n int
  1569  	for n = 0; glist != nil; n++ {
  1570  		gp := glist
  1571  		glist = gp.schedlink.ptr()
  1572  		casgstatus(gp, _Gwaiting, _Grunnable)
  1573  		globrunqput(gp)
  1574  	}
  1575  	unlock(&sched.lock)
  1576  	for ; n != 0 && sched.npidle != 0; n-- {
  1577  		startm(nil, false)
  1578  	}
  1579  }
  1580  
  1581  // One round of scheduler: find a runnable goroutine and execute it.
  1582  // Never returns.
  1583  func schedule() {
  1584  	_g_ := getg()
  1585  
  1586  	if _g_.m.locks != 0 {
  1587  		throw("schedule: holding locks")
  1588  	}
  1589  
  1590  	if _g_.m.lockedg != nil {
  1591  		stoplockedm()
  1592  		execute(_g_.m.lockedg, false) // Never returns.
  1593  	}
  1594  
  1595  top:
  1596  	if sched.gcwaiting != 0 {
  1597  		gcstopm()
  1598  		goto top
  1599  	}
  1600  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1601  		runSafePointFn()
  1602  	}
  1603  
  1604  	var gp *g
  1605  	var inheritTime bool
  1606  	if trace.enabled || trace.shutdown {
  1607  		gp = traceReader()
  1608  		if gp != nil {
  1609  			casgstatus(gp, _Gwaiting, _Grunnable)
  1610  			traceGoUnpark(gp, 0)
  1611  			resetspinning()
  1612  		}
  1613  	}
  1614  	if gp == nil && gcBlackenEnabled != 0 {
  1615  		gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
  1616  		if gp != nil {
  1617  			resetspinning()
  1618  		}
  1619  	}
  1620  	if gp == nil {
  1621  		// Check the global runnable queue once in a while to ensure fairness.
  1622  		// Otherwise two goroutines can completely occupy the local runqueue
  1623  		// by constantly respawning each other.
  1624  		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
  1625  			lock(&sched.lock)
  1626  			gp = globrunqget(_g_.m.p.ptr(), 1)
  1627  			unlock(&sched.lock)
  1628  			if gp != nil {
  1629  				resetspinning()
  1630  			}
  1631  		}
  1632  	}
  1633  	if gp == nil {
  1634  		gp, inheritTime = runqget(_g_.m.p.ptr())
  1635  		if gp != nil && _g_.m.spinning {
  1636  			throw("schedule: spinning with local work")
  1637  		}
  1638  	}
  1639  	if gp == nil {
  1640  		gp, inheritTime = findrunnable() // blocks until work is available
  1641  		resetspinning()
  1642  	}
  1643  
  1644  	if gp.lockedm != nil {
  1645  		// Hands off own p to the locked m,
  1646  		// then blocks waiting for a new p.
  1647  		startlockedm(gp)
  1648  		goto top
  1649  	}
  1650  
  1651  	execute(gp, inheritTime)
  1652  }
  1653  
  1654  // dropg removes the association between m and the current goroutine m->curg (gp for short).
  1655  // Typically a caller sets gp's status away from Grunning and then
  1656  // immediately calls dropg to finish the job. The caller is also responsible
  1657  // for arranging that gp will be restarted using ready at an
  1658  // appropriate time. After calling dropg and arranging for gp to be
  1659  // readied later, the caller can do other work but eventually should
  1660  // call schedule to restart the scheduling of goroutines on this m.
  1661  func dropg() {
  1662  	_g_ := getg()
  1663  
  1664  	if _g_.m.lockedg == nil {
  1665  		_g_.m.curg.m = nil
  1666  		_g_.m.curg = nil
  1667  	}
  1668  }
  1669  
  1670  func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
  1671  	unlock((*mutex)(lock))
  1672  	return true
  1673  }
  1674  
  1675  // park continuation on g0.
  1676  func park_m(gp *g) {
  1677  	_g_ := getg()
  1678  
  1679  	if trace.enabled {
  1680  		traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
  1681  	}
  1682  
  1683  	casgstatus(gp, _Grunning, _Gwaiting)
  1684  	dropg()
  1685  
  1686  	if _g_.m.waitunlockf != nil {
  1687  		fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
  1688  		ok := fn(gp, _g_.m.waitlock)
  1689  		_g_.m.waitunlockf = nil
  1690  		_g_.m.waitlock = nil
  1691  		if !ok {
  1692  			if trace.enabled {
  1693  				traceGoUnpark(gp, 2)
  1694  			}
  1695  			casgstatus(gp, _Gwaiting, _Grunnable)
  1696  			execute(gp, true) // Schedule it back, never returns.
  1697  		}
  1698  	}
  1699  	schedule()
  1700  }
  1701  
  1702  func goschedImpl(gp *g) {
  1703  	status := readgstatus(gp)
  1704  	if status&^_Gscan != _Grunning {
  1705  		dumpgstatus(gp)
  1706  		throw("bad g status")
  1707  	}
  1708  	casgstatus(gp, _Grunning, _Grunnable)
  1709  	dropg()
  1710  	lock(&sched.lock)
  1711  	globrunqput(gp)
  1712  	unlock(&sched.lock)
  1713  
  1714  	schedule()
  1715  }
  1716  
  1717  // Gosched continuation on g0.
  1718  func gosched_m(gp *g) {
  1719  	if trace.enabled {
  1720  		traceGoSched()
  1721  	}
  1722  	goschedImpl(gp)
  1723  }
  1724  
  1725  func gopreempt_m(gp *g) {
  1726  	if trace.enabled {
  1727  		traceGoPreempt()
  1728  	}
  1729  	goschedImpl(gp)
  1730  }
  1731  
  1732  // Finishes execution of the current goroutine.
  1733  func goexit1() {
  1734  	if raceenabled {
  1735  		racegoend()
  1736  	}
  1737  	if trace.enabled {
  1738  		traceGoEnd()
  1739  	}
  1740  	mcall(goexit0)
  1741  }
  1742  
  1743  // goexit continuation on g0.
  1744  func goexit0(gp *g) {
  1745  	_g_ := getg()
  1746  
  1747  	casgstatus(gp, _Grunning, _Gdead)
  1748  	gp.m = nil
  1749  	gp.lockedm = nil
  1750  	_g_.m.lockedg = nil
  1751  	gp.paniconfault = false
  1752  	gp._defer = nil // should be true already but just in case.
  1753  	gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
  1754  	gp.writebuf = nil
  1755  	gp.waitreason = ""
  1756  	gp.param = nil
  1757  
  1758  	dropg()
  1759  
  1760  	if _g_.m.locked&^_LockExternal != 0 {
  1761  		print("invalid m->locked = ", _g_.m.locked, "\n")
  1762  		throw("internal lockOSThread error")
  1763  	}
  1764  	_g_.m.locked = 0
  1765  	gfput(_g_.m.p.ptr(), gp)
  1766  	schedule()
  1767  }
  1768  
  1769  //go:nosplit
  1770  //go:nowritebarrier
  1771  func save(pc, sp uintptr) {
  1772  	_g_ := getg()
  1773  
  1774  	_g_.sched.pc = pc
  1775  	_g_.sched.sp = sp
  1776  	_g_.sched.lr = 0
  1777  	_g_.sched.ret = 0
  1778  	_g_.sched.ctxt = nil
  1779  	_g_.sched.g = guintptr(unsafe.Pointer(_g_))
  1780  }
  1781  
  1782  // The goroutine g is about to enter a system call.
  1783  // Record that it's not using the cpu anymore.
  1784  // This is called only from the go syscall library and cgocall,
  1785  // not from the low-level system calls used by the runtime.
  1786  //
  1787  // Entersyscall cannot split the stack: the gosave must
  1788  // make g->sched refer to the caller's stack segment, because
  1789  // entersyscall is going to return immediately after.
  1790  //
  1791  // Nothing entersyscall calls can split the stack either.
  1792  // We cannot safely move the stack during an active call to syscall,
  1793  // because we do not know which of the uintptr arguments are
  1794  // really pointers (back into the stack).
  1795  // In practice, this means that we make the fast path run through
  1796  // entersyscall doing no-split things, and the slow path has to use systemstack
  1797  // to run bigger things on the system stack.
  1798  //
  1799  // reentersyscall is the entry point used by cgo callbacks, where explicitly
  1800  // saved SP and PC are restored. This is needed when exitsyscall will be called
  1801  // from a function further up in the call stack than the parent, as g->syscallsp
  1802  // must always point to a valid stack frame. entersyscall below is the normal
  1803  // entry point for syscalls, which obtains the SP and PC from the caller.
  1804  //
  1805  // Syscall tracing:
  1806  // At the start of a syscall we emit traceGoSysCall to capture the stack trace.
  1807  // If the syscall does not block, that is it, we do not emit any other events.
  1808  // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
  1809  // when syscall returns we emit traceGoSysExit and when the goroutine starts running
  1810  // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
  1811  // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
  1812  // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
  1813  // whoever emits traceGoSysBlock increments p.syscalltick afterwards;
  1814  // and we wait for the increment before emitting traceGoSysExit.
  1815  // Note that the increment is done even if tracing is not enabled,
  1816  // because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
  1817  //
  1818  //go:nosplit
  1819  func reentersyscall(pc, sp uintptr) {
  1820  	_g_ := getg()
  1821  
  1822  	// Disable preemption because during this function g is in Gsyscall status,
  1823  	// but can have inconsistent g->sched, do not let GC observe it.
  1824  	_g_.m.locks++
  1825  
  1826  	// Entersyscall must not call any function that might split/grow the stack.
  1827  	// (See details in comment above.)
  1828  	// Catch calls that might, by replacing the stack guard with something that
  1829  	// will trip any stack check and leaving a flag to tell newstack to die.
  1830  	_g_.stackguard0 = stackPreempt
  1831  	_g_.throwsplit = true
  1832  
  1833  	// Leave SP around for GC and traceback.
  1834  	save(pc, sp)
  1835  	_g_.syscallsp = sp
  1836  	_g_.syscallpc = pc
  1837  	casgstatus(_g_, _Grunning, _Gsyscall)
  1838  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1839  		systemstack(func() {
  1840  			print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1841  			throw("entersyscall")
  1842  		})
  1843  	}
  1844  
  1845  	if trace.enabled {
  1846  		systemstack(traceGoSysCall)
  1847  		// systemstack itself clobbers g.sched.{pc,sp} and we might
  1848  		// need them later when the G is genuinely blocked in a
  1849  		// syscall
  1850  		save(pc, sp)
  1851  	}
  1852  
  1853  	if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
  1854  		systemstack(entersyscall_sysmon)
  1855  		save(pc, sp)
  1856  	}
  1857  
  1858  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1859  		// runSafePointFn may stack split if run on this stack
  1860  		systemstack(runSafePointFn)
  1861  		save(pc, sp)
  1862  	}
  1863  
  1864  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  1865  	_g_.sysblocktraced = true
  1866  	_g_.m.mcache = nil
  1867  	_g_.m.p.ptr().m = 0
  1868  	atomicstore(&_g_.m.p.ptr().status, _Psyscall)
  1869  	if sched.gcwaiting != 0 {
  1870  		systemstack(entersyscall_gcwait)
  1871  		save(pc, sp)
  1872  	}
  1873  
  1874  	// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
  1875  	// We set _StackGuard to StackPreempt so that first split stack check calls morestack.
  1876  	// Morestack detects this case and throws.
  1877  	_g_.stackguard0 = stackPreempt
  1878  	_g_.m.locks--
  1879  }
  1880  
  1881  // Standard syscall entry used by the go syscall library and normal cgo calls.
  1882  //go:nosplit
  1883  func entersyscall(dummy int32) {
  1884  	reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  1885  }
  1886  
  1887  func entersyscall_sysmon() {
  1888  	lock(&sched.lock)
  1889  	if atomicload(&sched.sysmonwait) != 0 {
  1890  		atomicstore(&sched.sysmonwait, 0)
  1891  		notewakeup(&sched.sysmonnote)
  1892  	}
  1893  	unlock(&sched.lock)
  1894  }
  1895  
  1896  func entersyscall_gcwait() {
  1897  	_g_ := getg()
  1898  	_p_ := _g_.m.p.ptr()
  1899  
  1900  	lock(&sched.lock)
  1901  	if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) {
  1902  		if trace.enabled {
  1903  			traceGoSysBlock(_p_)
  1904  			traceProcStop(_p_)
  1905  		}
  1906  		_p_.syscalltick++
  1907  		if sched.stopwait--; sched.stopwait == 0 {
  1908  			notewakeup(&sched.stopnote)
  1909  		}
  1910  	}
  1911  	unlock(&sched.lock)
  1912  }
  1913  
  1914  // The same as entersyscall(), but with a hint that the syscall is blocking.
  1915  //go:nosplit
  1916  func entersyscallblock(dummy int32) {
  1917  	_g_ := getg()
  1918  
  1919  	_g_.m.locks++ // see comment in entersyscall
  1920  	_g_.throwsplit = true
  1921  	_g_.stackguard0 = stackPreempt // see comment in entersyscall
  1922  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  1923  	_g_.sysblocktraced = true
  1924  	_g_.m.p.ptr().syscalltick++
  1925  
  1926  	// Leave SP around for GC and traceback.
  1927  	pc := getcallerpc(unsafe.Pointer(&dummy))
  1928  	sp := getcallersp(unsafe.Pointer(&dummy))
  1929  	save(pc, sp)
  1930  	_g_.syscallsp = _g_.sched.sp
  1931  	_g_.syscallpc = _g_.sched.pc
  1932  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1933  		sp1 := sp
  1934  		sp2 := _g_.sched.sp
  1935  		sp3 := _g_.syscallsp
  1936  		systemstack(func() {
  1937  			print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1938  			throw("entersyscallblock")
  1939  		})
  1940  	}
  1941  	casgstatus(_g_, _Grunning, _Gsyscall)
  1942  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1943  		systemstack(func() {
  1944  			print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1945  			throw("entersyscallblock")
  1946  		})
  1947  	}
  1948  
  1949  	systemstack(entersyscallblock_handoff)
  1950  
  1951  	// Resave for traceback during blocked call.
  1952  	save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  1953  
  1954  	_g_.m.locks--
  1955  }
  1956  
  1957  func entersyscallblock_handoff() {
  1958  	if trace.enabled {
  1959  		traceGoSysCall()
  1960  		traceGoSysBlock(getg().m.p.ptr())
  1961  	}
  1962  	handoffp(releasep())
  1963  }
  1964  
  1965  // The goroutine g exited its system call.
  1966  // Arrange for it to run on a cpu again.
  1967  // This is called only from the go syscall library, not
  1968  // from the low-level system calls used by the
  1969  //go:nosplit
  1970  func exitsyscall(dummy int32) {
  1971  	_g_ := getg()
  1972  
  1973  	_g_.m.locks++ // see comment in entersyscall
  1974  	if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
  1975  		throw("exitsyscall: syscall frame is no longer valid")
  1976  	}
  1977  
  1978  	_g_.waitsince = 0
  1979  	oldp := _g_.m.p.ptr()
  1980  	if exitsyscallfast() {
  1981  		if _g_.m.mcache == nil {
  1982  			throw("lost mcache")
  1983  		}
  1984  		if trace.enabled {
  1985  			if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  1986  				systemstack(traceGoStart)
  1987  			}
  1988  		}
  1989  		// There's a cpu for us, so we can run.
  1990  		_g_.m.p.ptr().syscalltick++
  1991  		// We need to cas the status and scan before resuming...
  1992  		casgstatus(_g_, _Gsyscall, _Grunning)
  1993  
  1994  		// Garbage collector isn't running (since we are),
  1995  		// so okay to clear syscallsp.
  1996  		_g_.syscallsp = 0
  1997  		_g_.m.locks--
  1998  		if _g_.preempt {
  1999  			// restore the preemption request in case we've cleared it in newstack
  2000  			_g_.stackguard0 = stackPreempt
  2001  		} else {
  2002  			// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
  2003  			_g_.stackguard0 = _g_.stack.lo + _StackGuard
  2004  		}
  2005  		_g_.throwsplit = false
  2006  		return
  2007  	}
  2008  
  2009  	_g_.sysexitticks = 0
  2010  	_g_.sysexitseq = 0
  2011  	if trace.enabled {
  2012  		// Wait till traceGoSysBlock event is emitted.
  2013  		// This ensures consistency of the trace (the goroutine is started after it is blocked).
  2014  		for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
  2015  			osyield()
  2016  		}
  2017  		// We can't trace syscall exit right now because we don't have a P.
  2018  		// Tracing code can invoke write barriers that cannot run without a P.
  2019  		// So instead we remember the syscall exit time and emit the event
  2020  		// in execute when we have a P.
  2021  		_g_.sysexitseq, _g_.sysexitticks = tracestamp()
  2022  	}
  2023  
  2024  	_g_.m.locks--
  2025  
  2026  	// Call the scheduler.
  2027  	mcall(exitsyscall0)
  2028  
  2029  	if _g_.m.mcache == nil {
  2030  		throw("lost mcache")
  2031  	}
  2032  
  2033  	// Scheduler returned, so we're allowed to run now.
  2034  	// Delete the syscallsp information that we left for
  2035  	// the garbage collector during the system call.
  2036  	// Must wait until now because until gosched returns
  2037  	// we don't know for sure that the garbage collector
  2038  	// is not running.
  2039  	_g_.syscallsp = 0
  2040  	_g_.m.p.ptr().syscalltick++
  2041  	_g_.throwsplit = false
  2042  }
  2043  
  2044  //go:nosplit
  2045  func exitsyscallfast() bool {
  2046  	_g_ := getg()
  2047  
  2048  	// Freezetheworld sets stopwait but does not retake P's.
  2049  	if sched.stopwait == freezeStopWait {
  2050  		_g_.m.mcache = nil
  2051  		_g_.m.p = 0
  2052  		return false
  2053  	}
  2054  
  2055  	// Try to re-acquire the last P.
  2056  	if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
  2057  		// There's a cpu for us, so we can run.
  2058  		_g_.m.mcache = _g_.m.p.ptr().mcache
  2059  		_g_.m.p.ptr().m.set(_g_.m)
  2060  		if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  2061  			if trace.enabled {
  2062  				// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
  2063  				// traceGoSysBlock for this syscall was already emitted,
  2064  				// but here we effectively retake the p from the new syscall running on the same p.
  2065  				systemstack(func() {
  2066  					// Denote blocking of the new syscall.
  2067  					traceGoSysBlock(_g_.m.p.ptr())
  2068  					// Denote completion of the current syscall.
  2069  					traceGoSysExit(tracestamp())
  2070  				})
  2071  			}
  2072  			_g_.m.p.ptr().syscalltick++
  2073  		}
  2074  		return true
  2075  	}
  2076  
  2077  	// Try to get any other idle P.
  2078  	oldp := _g_.m.p.ptr()
  2079  	_g_.m.mcache = nil
  2080  	_g_.m.p = 0
  2081  	if sched.pidle != 0 {
  2082  		var ok bool
  2083  		systemstack(func() {
  2084  			ok = exitsyscallfast_pidle()
  2085  			if ok && trace.enabled {
  2086  				if oldp != nil {
  2087  					// Wait till traceGoSysBlock event is emitted.
  2088  					// This ensures consistency of the trace (the goroutine is started after it is blocked).
  2089  					for oldp.syscalltick == _g_.m.syscalltick {
  2090  						osyield()
  2091  					}
  2092  				}
  2093  				traceGoSysExit(tracestamp())
  2094  			}
  2095  		})
  2096  		if ok {
  2097  			return true
  2098  		}
  2099  	}
  2100  	return false
  2101  }
  2102  
  2103  func exitsyscallfast_pidle() bool {
  2104  	lock(&sched.lock)
  2105  	_p_ := pidleget()
  2106  	if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
  2107  		atomicstore(&sched.sysmonwait, 0)
  2108  		notewakeup(&sched.sysmonnote)
  2109  	}
  2110  	unlock(&sched.lock)
  2111  	if _p_ != nil {
  2112  		acquirep(_p_)
  2113  		return true
  2114  	}
  2115  	return false
  2116  }
  2117  
  2118  // exitsyscall slow path on g0.
  2119  // Failed to acquire P, enqueue gp as runnable.
  2120  func exitsyscall0(gp *g) {
  2121  	_g_ := getg()
  2122  
  2123  	casgstatus(gp, _Gsyscall, _Grunnable)
  2124  	dropg()
  2125  	lock(&sched.lock)
  2126  	_p_ := pidleget()
  2127  	if _p_ == nil {
  2128  		globrunqput(gp)
  2129  	} else if atomicload(&sched.sysmonwait) != 0 {
  2130  		atomicstore(&sched.sysmonwait, 0)
  2131  		notewakeup(&sched.sysmonnote)
  2132  	}
  2133  	unlock(&sched.lock)
  2134  	if _p_ != nil {
  2135  		acquirep(_p_)
  2136  		execute(gp, false) // Never returns.
  2137  	}
  2138  	if _g_.m.lockedg != nil {
  2139  		// Wait until another thread schedules gp and so m again.
  2140  		stoplockedm()
  2141  		execute(gp, false) // Never returns.
  2142  	}
  2143  	stopm()
  2144  	schedule() // Never returns.
  2145  }
  2146  
  2147  func beforefork() {
  2148  	gp := getg().m.curg
  2149  
  2150  	// Fork can hang if preempted with signals frequently enough (see issue 5517).
  2151  	// Ensure that we stay on the same M where we disable profiling.
  2152  	gp.m.locks++
  2153  	if gp.m.profilehz != 0 {
  2154  		resetcpuprofiler(0)
  2155  	}
  2156  
  2157  	// This function is called before fork in syscall package.
  2158  	// Code between fork and exec must not allocate memory nor even try to grow stack.
  2159  	// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
  2160  	// runtime_AfterFork will undo this in parent process, but not in child.
  2161  	gp.stackguard0 = stackFork
  2162  }
  2163  
  2164  // Called from syscall package before fork.
  2165  //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
  2166  //go:nosplit
  2167  func syscall_runtime_BeforeFork() {
  2168  	systemstack(beforefork)
  2169  }
  2170  
  2171  func afterfork() {
  2172  	gp := getg().m.curg
  2173  
  2174  	// See the comment in beforefork.
  2175  	gp.stackguard0 = gp.stack.lo + _StackGuard
  2176  
  2177  	hz := sched.profilehz
  2178  	if hz != 0 {
  2179  		resetcpuprofiler(hz)
  2180  	}
  2181  	gp.m.locks--
  2182  }
  2183  
  2184  // Called from syscall package after fork in parent.
  2185  //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
  2186  //go:nosplit
  2187  func syscall_runtime_AfterFork() {
  2188  	systemstack(afterfork)
  2189  }
  2190  
  2191  // Allocate a new g, with a stack big enough for stacksize bytes.
  2192  func malg(stacksize int32) *g {
  2193  	newg := new(g)
  2194  	if stacksize >= 0 {
  2195  		stacksize = round2(_StackSystem + stacksize)
  2196  		systemstack(func() {
  2197  			newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
  2198  		})
  2199  		newg.stackguard0 = newg.stack.lo + _StackGuard
  2200  		newg.stackguard1 = ^uintptr(0)
  2201  		newg.stackAlloc = uintptr(stacksize)
  2202  	}
  2203  	return newg
  2204  }
  2205  
  2206  // Create a new g running fn with siz bytes of arguments.
  2207  // Put it on the queue of g's waiting to run.
  2208  // The compiler turns a go statement into a call to this.
  2209  // Cannot split the stack because it assumes that the arguments
  2210  // are available sequentially after &fn; they would not be
  2211  // copied if a stack split occurred.
  2212  //go:nosplit
  2213  func newproc(siz int32, fn *funcval) {
  2214  	argp := add(unsafe.Pointer(&fn), ptrSize)
  2215  	pc := getcallerpc(unsafe.Pointer(&siz))
  2216  	systemstack(func() {
  2217  		newproc1(fn, (*uint8)(argp), siz, 0, pc)
  2218  	})
  2219  }
  2220  
  2221  // Create a new g running fn with narg bytes of arguments starting
  2222  // at argp and returning nret bytes of results.  callerpc is the
  2223  // address of the go statement that created this.  The new g is put
  2224  // on the queue of g's waiting to run.
  2225  func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
  2226  	_g_ := getg()
  2227  
  2228  	if fn == nil {
  2229  		_g_.m.throwing = -1 // do not dump full stacks
  2230  		throw("go of nil func value")
  2231  	}
  2232  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
  2233  	siz := narg + nret
  2234  	siz = (siz + 7) &^ 7
  2235  
  2236  	// We could allocate a larger initial stack if necessary.
  2237  	// Not worth it: this is almost always an error.
  2238  	// 4*sizeof(uintreg): extra space added below
  2239  	// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
  2240  	if siz >= _StackMin-4*regSize-regSize {
  2241  		throw("newproc: function arguments too large for new goroutine")
  2242  	}
  2243  
  2244  	_p_ := _g_.m.p.ptr()
  2245  	newg := gfget(_p_)
  2246  	if newg == nil {
  2247  		newg = malg(_StackMin)
  2248  		casgstatus(newg, _Gidle, _Gdead)
  2249  		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
  2250  	}
  2251  	if newg.stack.hi == 0 {
  2252  		throw("newproc1: newg missing stack")
  2253  	}
  2254  
  2255  	if readgstatus(newg) != _Gdead {
  2256  		throw("newproc1: new g is not Gdead")
  2257  	}
  2258  
  2259  	totalSize := 4*regSize + uintptr(siz) // extra space in case of reads slightly beyond frame
  2260  	if hasLinkRegister {
  2261  		totalSize += ptrSize
  2262  	}
  2263  	totalSize += -totalSize & (spAlign - 1) // align to spAlign
  2264  	sp := newg.stack.hi - totalSize
  2265  	spArg := sp
  2266  	if hasLinkRegister {
  2267  		// caller's LR
  2268  		*(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
  2269  		spArg += ptrSize
  2270  	}
  2271  	memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
  2272  
  2273  	memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
  2274  	newg.sched.sp = sp
  2275  	newg.stktopsp = sp
  2276  	newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
  2277  	newg.sched.g = guintptr(unsafe.Pointer(newg))
  2278  	gostartcallfn(&newg.sched, fn)
  2279  	newg.gopc = callerpc
  2280  	newg.startpc = fn.fn
  2281  	casgstatus(newg, _Gdead, _Grunnable)
  2282  
  2283  	if _p_.goidcache == _p_.goidcacheend {
  2284  		// Sched.goidgen is the last allocated id,
  2285  		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
  2286  		// At startup sched.goidgen=0, so main goroutine receives goid=1.
  2287  		_p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
  2288  		_p_.goidcache -= _GoidCacheBatch - 1
  2289  		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
  2290  	}
  2291  	newg.goid = int64(_p_.goidcache)
  2292  	_p_.goidcache++
  2293  	if raceenabled {
  2294  		newg.racectx = racegostart(callerpc)
  2295  	}
  2296  	if trace.enabled {
  2297  		traceGoCreate(newg, newg.startpc)
  2298  	}
  2299  	runqput(_p_, newg, true)
  2300  
  2301  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
  2302  		wakep()
  2303  	}
  2304  	_g_.m.locks--
  2305  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
  2306  		_g_.stackguard0 = stackPreempt
  2307  	}
  2308  	return newg
  2309  }
  2310  
  2311  // Put on gfree list.
  2312  // If local list is too long, transfer a batch to the global list.
  2313  func gfput(_p_ *p, gp *g) {
  2314  	if readgstatus(gp) != _Gdead {
  2315  		throw("gfput: bad status (not Gdead)")
  2316  	}
  2317  
  2318  	stksize := gp.stackAlloc
  2319  
  2320  	if stksize != _FixedStack {
  2321  		// non-standard stack size - free it.
  2322  		stackfree(gp.stack, gp.stackAlloc)
  2323  		gp.stack.lo = 0
  2324  		gp.stack.hi = 0
  2325  		gp.stackguard0 = 0
  2326  		gp.stkbar = nil
  2327  		gp.stkbarPos = 0
  2328  	} else {
  2329  		// Reset stack barriers.
  2330  		gp.stkbar = gp.stkbar[:0]
  2331  		gp.stkbarPos = 0
  2332  	}
  2333  
  2334  	gp.schedlink.set(_p_.gfree)
  2335  	_p_.gfree = gp
  2336  	_p_.gfreecnt++
  2337  	if _p_.gfreecnt >= 64 {
  2338  		lock(&sched.gflock)
  2339  		for _p_.gfreecnt >= 32 {
  2340  			_p_.gfreecnt--
  2341  			gp = _p_.gfree
  2342  			_p_.gfree = gp.schedlink.ptr()
  2343  			gp.schedlink.set(sched.gfree)
  2344  			sched.gfree = gp
  2345  			sched.ngfree++
  2346  		}
  2347  		unlock(&sched.gflock)
  2348  	}
  2349  }
  2350  
  2351  // Get from gfree list.
  2352  // If local list is empty, grab a batch from global list.
  2353  func gfget(_p_ *p) *g {
  2354  retry:
  2355  	gp := _p_.gfree
  2356  	if gp == nil && sched.gfree != nil {
  2357  		lock(&sched.gflock)
  2358  		for _p_.gfreecnt < 32 && sched.gfree != nil {
  2359  			_p_.gfreecnt++
  2360  			gp = sched.gfree
  2361  			sched.gfree = gp.schedlink.ptr()
  2362  			sched.ngfree--
  2363  			gp.schedlink.set(_p_.gfree)
  2364  			_p_.gfree = gp
  2365  		}
  2366  		unlock(&sched.gflock)
  2367  		goto retry
  2368  	}
  2369  	if gp != nil {
  2370  		_p_.gfree = gp.schedlink.ptr()
  2371  		_p_.gfreecnt--
  2372  		if gp.stack.lo == 0 {
  2373  			// Stack was deallocated in gfput.  Allocate a new one.
  2374  			systemstack(func() {
  2375  				gp.stack, gp.stkbar = stackalloc(_FixedStack)
  2376  			})
  2377  			gp.stackguard0 = gp.stack.lo + _StackGuard
  2378  			gp.stackAlloc = _FixedStack
  2379  		} else {
  2380  			if raceenabled {
  2381  				racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
  2382  			}
  2383  		}
  2384  	}
  2385  	return gp
  2386  }
  2387  
  2388  // Purge all cached G's from gfree list to the global list.
  2389  func gfpurge(_p_ *p) {
  2390  	lock(&sched.gflock)
  2391  	for _p_.gfreecnt != 0 {
  2392  		_p_.gfreecnt--
  2393  		gp := _p_.gfree
  2394  		_p_.gfree = gp.schedlink.ptr()
  2395  		gp.schedlink.set(sched.gfree)
  2396  		sched.gfree = gp
  2397  		sched.ngfree++
  2398  	}
  2399  	unlock(&sched.gflock)
  2400  }
  2401  
  2402  // Breakpoint executes a breakpoint trap.
  2403  func Breakpoint() {
  2404  	breakpoint()
  2405  }
  2406  
  2407  // dolockOSThread is called by LockOSThread and lockOSThread below
  2408  // after they modify m.locked. Do not allow preemption during this call,
  2409  // or else the m might be different in this function than in the caller.
  2410  //go:nosplit
  2411  func dolockOSThread() {
  2412  	_g_ := getg()
  2413  	_g_.m.lockedg = _g_
  2414  	_g_.lockedm = _g_.m
  2415  }
  2416  
  2417  //go:nosplit
  2418  
  2419  // LockOSThread wires the calling goroutine to its current operating system thread.
  2420  // Until the calling goroutine exits or calls UnlockOSThread, it will always
  2421  // execute in that thread, and no other goroutine can.
  2422  func LockOSThread() {
  2423  	getg().m.locked |= _LockExternal
  2424  	dolockOSThread()
  2425  }
  2426  
  2427  //go:nosplit
  2428  func lockOSThread() {
  2429  	getg().m.locked += _LockInternal
  2430  	dolockOSThread()
  2431  }
  2432  
  2433  // dounlockOSThread is called by UnlockOSThread and unlockOSThread below
  2434  // after they update m->locked. Do not allow preemption during this call,
  2435  // or else the m might be in different in this function than in the caller.
  2436  //go:nosplit
  2437  func dounlockOSThread() {
  2438  	_g_ := getg()
  2439  	if _g_.m.locked != 0 {
  2440  		return
  2441  	}
  2442  	_g_.m.lockedg = nil
  2443  	_g_.lockedm = nil
  2444  }
  2445  
  2446  //go:nosplit
  2447  
  2448  // UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
  2449  // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
  2450  func UnlockOSThread() {
  2451  	getg().m.locked &^= _LockExternal
  2452  	dounlockOSThread()
  2453  }
  2454  
  2455  //go:nosplit
  2456  func unlockOSThread() {
  2457  	_g_ := getg()
  2458  	if _g_.m.locked < _LockInternal {
  2459  		systemstack(badunlockosthread)
  2460  	}
  2461  	_g_.m.locked -= _LockInternal
  2462  	dounlockOSThread()
  2463  }
  2464  
  2465  func badunlockosthread() {
  2466  	throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
  2467  }
  2468  
  2469  func gcount() int32 {
  2470  	n := int32(allglen) - sched.ngfree
  2471  	for i := 0; ; i++ {
  2472  		_p_ := allp[i]
  2473  		if _p_ == nil {
  2474  			break
  2475  		}
  2476  		n -= _p_.gfreecnt
  2477  	}
  2478  
  2479  	// All these variables can be changed concurrently, so the result can be inconsistent.
  2480  	// But at least the current goroutine is running.
  2481  	if n < 1 {
  2482  		n = 1
  2483  	}
  2484  	return n
  2485  }
  2486  
  2487  func mcount() int32 {
  2488  	return sched.mcount
  2489  }
  2490  
  2491  var prof struct {
  2492  	lock uint32
  2493  	hz   int32
  2494  }
  2495  
  2496  func _System()       { _System() }
  2497  func _ExternalCode() { _ExternalCode() }
  2498  func _GC()           { _GC() }
  2499  
  2500  // Called if we receive a SIGPROF signal.
  2501  func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
  2502  	if prof.hz == 0 {
  2503  		return
  2504  	}
  2505  
  2506  	// Profiling runs concurrently with GC, so it must not allocate.
  2507  	mp.mallocing++
  2508  
  2509  	// Coordinate with stack barrier insertion in scanstack.
  2510  	for !cas(&gp.stackLock, 0, 1) {
  2511  		osyield()
  2512  	}
  2513  
  2514  	// Define that a "user g" is a user-created goroutine, and a "system g"
  2515  	// is one that is m->g0 or m->gsignal.
  2516  	//
  2517  	// We might be interrupted for profiling halfway through a
  2518  	// goroutine switch. The switch involves updating three (or four) values:
  2519  	// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
  2520  	// because once it gets updated the new g is running.
  2521  	//
  2522  	// When switching from a user g to a system g, LR is not considered live,
  2523  	// so the update only affects g, SP, and PC. Since PC must be last, there
  2524  	// the possible partial transitions in ordinary execution are (1) g alone is updated,
  2525  	// (2) both g and SP are updated, and (3) SP alone is updated.
  2526  	// If SP or g alone is updated, we can detect the partial transition by checking
  2527  	// whether the SP is within g's stack bounds. (We could also require that SP
  2528  	// be changed only after g, but the stack bounds check is needed by other
  2529  	// cases, so there is no need to impose an additional requirement.)
  2530  	//
  2531  	// There is one exceptional transition to a system g, not in ordinary execution.
  2532  	// When a signal arrives, the operating system starts the signal handler running
  2533  	// with an updated PC and SP. The g is updated last, at the beginning of the
  2534  	// handler. There are two reasons this is okay. First, until g is updated the
  2535  	// g and SP do not match, so the stack bounds check detects the partial transition.
  2536  	// Second, signal handlers currently run with signals disabled, so a profiling
  2537  	// signal cannot arrive during the handler.
  2538  	//
  2539  	// When switching from a system g to a user g, there are three possibilities.
  2540  	//
  2541  	// First, it may be that the g switch has no PC update, because the SP
  2542  	// either corresponds to a user g throughout (as in asmcgocall)
  2543  	// or because it has been arranged to look like a user g frame
  2544  	// (as in cgocallback_gofunc). In this case, since the entire
  2545  	// transition is a g+SP update, a partial transition updating just one of
  2546  	// those will be detected by the stack bounds check.
  2547  	//
  2548  	// Second, when returning from a signal handler, the PC and SP updates
  2549  	// are performed by the operating system in an atomic update, so the g
  2550  	// update must be done before them. The stack bounds check detects
  2551  	// the partial transition here, and (again) signal handlers run with signals
  2552  	// disabled, so a profiling signal cannot arrive then anyway.
  2553  	//
  2554  	// Third, the common case: it may be that the switch updates g, SP, and PC
  2555  	// separately. If the PC is within any of the functions that does this,
  2556  	// we don't ask for a traceback. C.F. the function setsSP for more about this.
  2557  	//
  2558  	// There is another apparently viable approach, recorded here in case
  2559  	// the "PC within setsSP function" check turns out not to be usable.
  2560  	// It would be possible to delay the update of either g or SP until immediately
  2561  	// before the PC update instruction. Then, because of the stack bounds check,
  2562  	// the only problematic interrupt point is just before that PC update instruction,
  2563  	// and the sigprof handler can detect that instruction and simulate stepping past
  2564  	// it in order to reach a consistent state. On ARM, the update of g must be made
  2565  	// in two places (in R10 and also in a TLS slot), so the delayed update would
  2566  	// need to be the SP update. The sigprof handler must read the instruction at
  2567  	// the current PC and if it was the known instruction (for example, JMP BX or
  2568  	// MOV R2, PC), use that other register in place of the PC value.
  2569  	// The biggest drawback to this solution is that it requires that we can tell
  2570  	// whether it's safe to read from the memory pointed at by PC.
  2571  	// In a correct program, we can test PC == nil and otherwise read,
  2572  	// but if a profiling signal happens at the instant that a program executes
  2573  	// a bad jump (before the program manages to handle the resulting fault)
  2574  	// the profiling handler could fault trying to read nonexistent memory.
  2575  	//
  2576  	// To recap, there are no constraints on the assembly being used for the
  2577  	// transition. We simply require that g and SP match and that the PC is not
  2578  	// in gogo.
  2579  	traceback := true
  2580  	if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
  2581  		traceback = false
  2582  	}
  2583  	var stk [maxCPUProfStack]uintptr
  2584  	n := 0
  2585  	if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
  2586  		// Cgo, we can't unwind and symbolize arbitrary C code,
  2587  		// so instead collect Go stack that leads to the cgo call.
  2588  		// This is especially important on windows, since all syscalls are cgo calls.
  2589  		n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
  2590  	} else if traceback {
  2591  		n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
  2592  	}
  2593  	if !traceback || n <= 0 {
  2594  		// Normal traceback is impossible or has failed.
  2595  		// See if it falls into several common cases.
  2596  		n = 0
  2597  		if GOOS == "windows" && n == 0 && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
  2598  			// Libcall, i.e. runtime syscall on windows.
  2599  			// Collect Go stack that leads to the call.
  2600  			n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
  2601  		}
  2602  		if n == 0 {
  2603  			// If all of the above has failed, account it against abstract "System" or "GC".
  2604  			n = 2
  2605  			// "ExternalCode" is better than "etext".
  2606  			if pc > firstmoduledata.etext {
  2607  				pc = funcPC(_ExternalCode) + _PCQuantum
  2608  			}
  2609  			stk[0] = pc
  2610  			if mp.preemptoff != "" || mp.helpgc != 0 {
  2611  				stk[1] = funcPC(_GC) + _PCQuantum
  2612  			} else {
  2613  				stk[1] = funcPC(_System) + _PCQuantum
  2614  			}
  2615  		}
  2616  	}
  2617  	atomicstore(&gp.stackLock, 0)
  2618  
  2619  	if prof.hz != 0 {
  2620  		// Simple cas-lock to coordinate with setcpuprofilerate.
  2621  		for !cas(&prof.lock, 0, 1) {
  2622  			osyield()
  2623  		}
  2624  		if prof.hz != 0 {
  2625  			cpuprof.add(stk[:n])
  2626  		}
  2627  		atomicstore(&prof.lock, 0)
  2628  	}
  2629  	mp.mallocing--
  2630  }
  2631  
  2632  // Reports whether a function will set the SP
  2633  // to an absolute value. Important that
  2634  // we don't traceback when these are at the bottom
  2635  // of the stack since we can't be sure that we will
  2636  // find the caller.
  2637  //
  2638  // If the function is not on the bottom of the stack
  2639  // we assume that it will have set it up so that traceback will be consistent,
  2640  // either by being a traceback terminating function
  2641  // or putting one on the stack at the right offset.
  2642  func setsSP(pc uintptr) bool {
  2643  	f := findfunc(pc)
  2644  	if f == nil {
  2645  		// couldn't find the function for this PC,
  2646  		// so assume the worst and stop traceback
  2647  		return true
  2648  	}
  2649  	switch f.entry {
  2650  	case gogoPC, systemstackPC, mcallPC, morestackPC:
  2651  		return true
  2652  	}
  2653  	return false
  2654  }
  2655  
  2656  // Arrange to call fn with a traceback hz times a second.
  2657  func setcpuprofilerate_m(hz int32) {
  2658  	// Force sane arguments.
  2659  	if hz < 0 {
  2660  		hz = 0
  2661  	}
  2662  
  2663  	// Disable preemption, otherwise we can be rescheduled to another thread
  2664  	// that has profiling enabled.
  2665  	_g_ := getg()
  2666  	_g_.m.locks++
  2667  
  2668  	// Stop profiler on this thread so that it is safe to lock prof.
  2669  	// if a profiling signal came in while we had prof locked,
  2670  	// it would deadlock.
  2671  	resetcpuprofiler(0)
  2672  
  2673  	for !cas(&prof.lock, 0, 1) {
  2674  		osyield()
  2675  	}
  2676  	prof.hz = hz
  2677  	atomicstore(&prof.lock, 0)
  2678  
  2679  	lock(&sched.lock)
  2680  	sched.profilehz = hz
  2681  	unlock(&sched.lock)
  2682  
  2683  	if hz != 0 {
  2684  		resetcpuprofiler(hz)
  2685  	}
  2686  
  2687  	_g_.m.locks--
  2688  }
  2689  
  2690  // Change number of processors.  The world is stopped, sched is locked.
  2691  // gcworkbufs are not being modified by either the GC or
  2692  // the write barrier code.
  2693  // Returns list of Ps with local work, they need to be scheduled by the caller.
  2694  func procresize(nprocs int32) *p {
  2695  	old := gomaxprocs
  2696  	if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
  2697  		throw("procresize: invalid arg")
  2698  	}
  2699  	if trace.enabled {
  2700  		traceGomaxprocs(nprocs)
  2701  	}
  2702  
  2703  	// update statistics
  2704  	now := nanotime()
  2705  	if sched.procresizetime != 0 {
  2706  		sched.totaltime += int64(old) * (now - sched.procresizetime)
  2707  	}
  2708  	sched.procresizetime = now
  2709  
  2710  	// initialize new P's
  2711  	for i := int32(0); i < nprocs; i++ {
  2712  		pp := allp[i]
  2713  		if pp == nil {
  2714  			pp = new(p)
  2715  			pp.id = i
  2716  			pp.status = _Pgcstop
  2717  			pp.sudogcache = pp.sudogbuf[:0]
  2718  			for i := range pp.deferpool {
  2719  				pp.deferpool[i] = pp.deferpoolbuf[i][:0]
  2720  			}
  2721  			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
  2722  		}
  2723  		if pp.mcache == nil {
  2724  			if old == 0 && i == 0 {
  2725  				if getg().m.mcache == nil {
  2726  					throw("missing mcache?")
  2727  				}
  2728  				pp.mcache = getg().m.mcache // bootstrap
  2729  			} else {
  2730  				pp.mcache = allocmcache()
  2731  			}
  2732  		}
  2733  	}
  2734  
  2735  	// free unused P's
  2736  	for i := nprocs; i < old; i++ {
  2737  		p := allp[i]
  2738  		if trace.enabled {
  2739  			if p == getg().m.p.ptr() {
  2740  				// moving to p[0], pretend that we were descheduled
  2741  				// and then scheduled again to keep the trace sane.
  2742  				traceGoSched()
  2743  				traceProcStop(p)
  2744  			}
  2745  		}
  2746  		// move all runnable goroutines to the global queue
  2747  		for p.runqhead != p.runqtail {
  2748  			// pop from tail of local queue
  2749  			p.runqtail--
  2750  			gp := p.runq[p.runqtail%uint32(len(p.runq))]
  2751  			// push onto head of global queue
  2752  			globrunqputhead(gp)
  2753  		}
  2754  		if p.runnext != 0 {
  2755  			globrunqputhead(p.runnext.ptr())
  2756  			p.runnext = 0
  2757  		}
  2758  		// if there's a background worker, make it runnable and put
  2759  		// it on the global queue so it can clean itself up
  2760  		if p.gcBgMarkWorker != nil {
  2761  			casgstatus(p.gcBgMarkWorker, _Gwaiting, _Grunnable)
  2762  			if trace.enabled {
  2763  				traceGoUnpark(p.gcBgMarkWorker, 0)
  2764  			}
  2765  			globrunqput(p.gcBgMarkWorker)
  2766  			p.gcBgMarkWorker = nil
  2767  		}
  2768  		for i := range p.sudogbuf {
  2769  			p.sudogbuf[i] = nil
  2770  		}
  2771  		p.sudogcache = p.sudogbuf[:0]
  2772  		for i := range p.deferpool {
  2773  			for j := range p.deferpoolbuf[i] {
  2774  				p.deferpoolbuf[i][j] = nil
  2775  			}
  2776  			p.deferpool[i] = p.deferpoolbuf[i][:0]
  2777  		}
  2778  		freemcache(p.mcache)
  2779  		p.mcache = nil
  2780  		gfpurge(p)
  2781  		traceProcFree(p)
  2782  		p.status = _Pdead
  2783  		// can't free P itself because it can be referenced by an M in syscall
  2784  	}
  2785  
  2786  	_g_ := getg()
  2787  	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
  2788  		// continue to use the current P
  2789  		_g_.m.p.ptr().status = _Prunning
  2790  	} else {
  2791  		// release the current P and acquire allp[0]
  2792  		if _g_.m.p != 0 {
  2793  			_g_.m.p.ptr().m = 0
  2794  		}
  2795  		_g_.m.p = 0
  2796  		_g_.m.mcache = nil
  2797  		p := allp[0]
  2798  		p.m = 0
  2799  		p.status = _Pidle
  2800  		acquirep(p)
  2801  		if trace.enabled {
  2802  			traceGoStart()
  2803  		}
  2804  	}
  2805  	var runnablePs *p
  2806  	for i := nprocs - 1; i >= 0; i-- {
  2807  		p := allp[i]
  2808  		if _g_.m.p.ptr() == p {
  2809  			continue
  2810  		}
  2811  		p.status = _Pidle
  2812  		if runqempty(p) {
  2813  			pidleput(p)
  2814  		} else {
  2815  			p.m.set(mget())
  2816  			p.link.set(runnablePs)
  2817  			runnablePs = p
  2818  		}
  2819  	}
  2820  	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
  2821  	atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
  2822  	return runnablePs
  2823  }
  2824  
  2825  // Associate p and the current m.
  2826  func acquirep(_p_ *p) {
  2827  	acquirep1(_p_)
  2828  
  2829  	// have p; write barriers now allowed
  2830  	_g_ := getg()
  2831  	_g_.m.mcache = _p_.mcache
  2832  
  2833  	if trace.enabled {
  2834  		traceProcStart()
  2835  	}
  2836  }
  2837  
  2838  // May run during STW, so write barriers are not allowed.
  2839  //go:nowritebarrier
  2840  func acquirep1(_p_ *p) {
  2841  	_g_ := getg()
  2842  
  2843  	if _g_.m.p != 0 || _g_.m.mcache != nil {
  2844  		throw("acquirep: already in go")
  2845  	}
  2846  	if _p_.m != 0 || _p_.status != _Pidle {
  2847  		id := int32(0)
  2848  		if _p_.m != 0 {
  2849  			id = _p_.m.ptr().id
  2850  		}
  2851  		print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
  2852  		throw("acquirep: invalid p state")
  2853  	}
  2854  	_g_.m.p.set(_p_)
  2855  	_p_.m.set(_g_.m)
  2856  	_p_.status = _Prunning
  2857  }
  2858  
  2859  // Disassociate p and the current m.
  2860  func releasep() *p {
  2861  	_g_ := getg()
  2862  
  2863  	if _g_.m.p == 0 || _g_.m.mcache == nil {
  2864  		throw("releasep: invalid arg")
  2865  	}
  2866  	_p_ := _g_.m.p.ptr()
  2867  	if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
  2868  		print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
  2869  		throw("releasep: invalid p state")
  2870  	}
  2871  	if trace.enabled {
  2872  		traceProcStop(_g_.m.p.ptr())
  2873  	}
  2874  	_g_.m.p = 0
  2875  	_g_.m.mcache = nil
  2876  	_p_.m = 0
  2877  	_p_.status = _Pidle
  2878  	return _p_
  2879  }
  2880  
  2881  func incidlelocked(v int32) {
  2882  	lock(&sched.lock)
  2883  	sched.nmidlelocked += v
  2884  	if v > 0 {
  2885  		checkdead()
  2886  	}
  2887  	unlock(&sched.lock)
  2888  }
  2889  
  2890  // Check for deadlock situation.
  2891  // The check is based on number of running M's, if 0 -> deadlock.
  2892  func checkdead() {
  2893  	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
  2894  	// there are no running goroutines.  The calling program is
  2895  	// assumed to be running.
  2896  	if islibrary || isarchive {
  2897  		return
  2898  	}
  2899  
  2900  	// If we are dying because of a signal caught on an already idle thread,
  2901  	// freezetheworld will cause all running threads to block.
  2902  	// And runtime will essentially enter into deadlock state,
  2903  	// except that there is a thread that will call exit soon.
  2904  	if panicking > 0 {
  2905  		return
  2906  	}
  2907  
  2908  	// -1 for sysmon
  2909  	run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
  2910  	if run > 0 {
  2911  		return
  2912  	}
  2913  	if run < 0 {
  2914  		print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
  2915  		throw("checkdead: inconsistent counts")
  2916  	}
  2917  
  2918  	grunning := 0
  2919  	lock(&allglock)
  2920  	for i := 0; i < len(allgs); i++ {
  2921  		gp := allgs[i]
  2922  		if isSystemGoroutine(gp) {
  2923  			continue
  2924  		}
  2925  		s := readgstatus(gp)
  2926  		switch s &^ _Gscan {
  2927  		case _Gwaiting:
  2928  			grunning++
  2929  		case _Grunnable,
  2930  			_Grunning,
  2931  			_Gsyscall:
  2932  			unlock(&allglock)
  2933  			print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
  2934  			throw("checkdead: runnable g")
  2935  		}
  2936  	}
  2937  	unlock(&allglock)
  2938  	if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
  2939  		throw("no goroutines (main called runtime.Goexit) - deadlock!")
  2940  	}
  2941  
  2942  	// Maybe jump time forward for playground.
  2943  	gp := timejump()
  2944  	if gp != nil {
  2945  		casgstatus(gp, _Gwaiting, _Grunnable)
  2946  		globrunqput(gp)
  2947  		_p_ := pidleget()
  2948  		if _p_ == nil {
  2949  			throw("checkdead: no p for timer")
  2950  		}
  2951  		mp := mget()
  2952  		if mp == nil {
  2953  			newm(nil, _p_)
  2954  		} else {
  2955  			mp.nextp.set(_p_)
  2956  			notewakeup(&mp.park)
  2957  		}
  2958  		return
  2959  	}
  2960  
  2961  	getg().m.throwing = -1 // do not dump full stacks
  2962  	throw("all goroutines are asleep - deadlock!")
  2963  }
  2964  
  2965  // forcegcperiod is the maximum time in nanoseconds between garbage
  2966  // collections. If we go this long without a garbage collection, one
  2967  // is forced to run.
  2968  //
  2969  // This is a variable for testing purposes. It normally doesn't change.
  2970  var forcegcperiod int64 = 2 * 60 * 1e9
  2971  
  2972  func sysmon() {
  2973  	// If a heap span goes unused for 5 minutes after a garbage collection,
  2974  	// we hand it back to the operating system.
  2975  	scavengelimit := int64(5 * 60 * 1e9)
  2976  
  2977  	if debug.scavenge > 0 {
  2978  		// Scavenge-a-lot for testing.
  2979  		forcegcperiod = 10 * 1e6
  2980  		scavengelimit = 20 * 1e6
  2981  	}
  2982  
  2983  	lastscavenge := nanotime()
  2984  	nscavenge := 0
  2985  
  2986  	lasttrace := int64(0)
  2987  	idle := 0 // how many cycles in succession we had not wokeup somebody
  2988  	delay := uint32(0)
  2989  	for {
  2990  		if idle == 0 { // start with 20us sleep...
  2991  			delay = 20
  2992  		} else if idle > 50 { // start doubling the sleep after 1ms...
  2993  			delay *= 2
  2994  		}
  2995  		if delay > 10*1000 { // up to 10ms
  2996  			delay = 10 * 1000
  2997  		}
  2998  		usleep(delay)
  2999  		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
  3000  			lock(&sched.lock)
  3001  			if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
  3002  				atomicstore(&sched.sysmonwait, 1)
  3003  				unlock(&sched.lock)
  3004  				// Make wake-up period small enough
  3005  				// for the sampling to be correct.
  3006  				maxsleep := forcegcperiod / 2
  3007  				if scavengelimit < forcegcperiod {
  3008  					maxsleep = scavengelimit / 2
  3009  				}
  3010  				notetsleep(&sched.sysmonnote, maxsleep)
  3011  				lock(&sched.lock)
  3012  				atomicstore(&sched.sysmonwait, 0)
  3013  				noteclear(&sched.sysmonnote)
  3014  				idle = 0
  3015  				delay = 20
  3016  			}
  3017  			unlock(&sched.lock)
  3018  		}
  3019  		// poll network if not polled for more than 10ms
  3020  		lastpoll := int64(atomicload64(&sched.lastpoll))
  3021  		now := nanotime()
  3022  		unixnow := unixnanotime()
  3023  		if lastpoll != 0 && lastpoll+10*1000*1000 < now {
  3024  			cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
  3025  			gp := netpoll(false) // non-blocking - returns list of goroutines
  3026  			if gp != nil {
  3027  				// Need to decrement number of idle locked M's
  3028  				// (pretending that one more is running) before injectglist.
  3029  				// Otherwise it can lead to the following situation:
  3030  				// injectglist grabs all P's but before it starts M's to run the P's,
  3031  				// another M returns from syscall, finishes running its G,
  3032  				// observes that there is no work to do and no other running M's
  3033  				// and reports deadlock.
  3034  				incidlelocked(-1)
  3035  				injectglist(gp)
  3036  				incidlelocked(1)
  3037  			}
  3038  		}
  3039  		// retake P's blocked in syscalls
  3040  		// and preempt long running G's
  3041  		if retake(now) != 0 {
  3042  			idle = 0
  3043  		} else {
  3044  			idle++
  3045  		}
  3046  		// check if we need to force a GC
  3047  		lastgc := int64(atomicload64(&memstats.last_gc))
  3048  		if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 && atomicloaduint(&bggc.working) == 0 {
  3049  			lock(&forcegc.lock)
  3050  			forcegc.idle = 0
  3051  			forcegc.g.schedlink = 0
  3052  			injectglist(forcegc.g)
  3053  			unlock(&forcegc.lock)
  3054  		}
  3055  		// scavenge heap once in a while
  3056  		if lastscavenge+scavengelimit/2 < now {
  3057  			mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
  3058  			lastscavenge = now
  3059  			nscavenge++
  3060  		}
  3061  		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
  3062  			lasttrace = now
  3063  			schedtrace(debug.scheddetail > 0)
  3064  		}
  3065  	}
  3066  }
  3067  
  3068  var pdesc [_MaxGomaxprocs]struct {
  3069  	schedtick   uint32
  3070  	schedwhen   int64
  3071  	syscalltick uint32
  3072  	syscallwhen int64
  3073  }
  3074  
  3075  // forcePreemptNS is the time slice given to a G before it is
  3076  // preempted.
  3077  const forcePreemptNS = 10 * 1000 * 1000 // 10ms
  3078  
  3079  func retake(now int64) uint32 {
  3080  	n := 0
  3081  	for i := int32(0); i < gomaxprocs; i++ {
  3082  		_p_ := allp[i]
  3083  		if _p_ == nil {
  3084  			continue
  3085  		}
  3086  		pd := &pdesc[i]
  3087  		s := _p_.status
  3088  		if s == _Psyscall {
  3089  			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
  3090  			t := int64(_p_.syscalltick)
  3091  			if int64(pd.syscalltick) != t {
  3092  				pd.syscalltick = uint32(t)
  3093  				pd.syscallwhen = now
  3094  				continue
  3095  			}
  3096  			// On the one hand we don't want to retake Ps if there is no other work to do,
  3097  			// but on the other hand we want to retake them eventually
  3098  			// because they can prevent the sysmon thread from deep sleep.
  3099  			if runqempty(_p_) && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
  3100  				continue
  3101  			}
  3102  			// Need to decrement number of idle locked M's
  3103  			// (pretending that one more is running) before the CAS.
  3104  			// Otherwise the M from which we retake can exit the syscall,
  3105  			// increment nmidle and report deadlock.
  3106  			incidlelocked(-1)
  3107  			if cas(&_p_.status, s, _Pidle) {
  3108  				if trace.enabled {
  3109  					traceGoSysBlock(_p_)
  3110  					traceProcStop(_p_)
  3111  				}
  3112  				n++
  3113  				_p_.syscalltick++
  3114  				handoffp(_p_)
  3115  			}
  3116  			incidlelocked(1)
  3117  		} else if s == _Prunning {
  3118  			// Preempt G if it's running for too long.
  3119  			t := int64(_p_.schedtick)
  3120  			if int64(pd.schedtick) != t {
  3121  				pd.schedtick = uint32(t)
  3122  				pd.schedwhen = now
  3123  				continue
  3124  			}
  3125  			if pd.schedwhen+forcePreemptNS > now {
  3126  				continue
  3127  			}
  3128  			preemptone(_p_)
  3129  		}
  3130  	}
  3131  	return uint32(n)
  3132  }
  3133  
  3134  // Tell all goroutines that they have been preempted and they should stop.
  3135  // This function is purely best-effort.  It can fail to inform a goroutine if a
  3136  // processor just started running it.
  3137  // No locks need to be held.
  3138  // Returns true if preemption request was issued to at least one goroutine.
  3139  func preemptall() bool {
  3140  	res := false
  3141  	for i := int32(0); i < gomaxprocs; i++ {
  3142  		_p_ := allp[i]
  3143  		if _p_ == nil || _p_.status != _Prunning {
  3144  			continue
  3145  		}
  3146  		if preemptone(_p_) {
  3147  			res = true
  3148  		}
  3149  	}
  3150  	return res
  3151  }
  3152  
  3153  // Tell the goroutine running on processor P to stop.
  3154  // This function is purely best-effort.  It can incorrectly fail to inform the
  3155  // goroutine.  It can send inform the wrong goroutine.  Even if it informs the
  3156  // correct goroutine, that goroutine might ignore the request if it is
  3157  // simultaneously executing newstack.
  3158  // No lock needs to be held.
  3159  // Returns true if preemption request was issued.
  3160  // The actual preemption will happen at some point in the future
  3161  // and will be indicated by the gp->status no longer being
  3162  // Grunning
  3163  func preemptone(_p_ *p) bool {
  3164  	mp := _p_.m.ptr()
  3165  	if mp == nil || mp == getg().m {
  3166  		return false
  3167  	}
  3168  	gp := mp.curg
  3169  	if gp == nil || gp == mp.g0 {
  3170  		return false
  3171  	}
  3172  
  3173  	gp.preempt = true
  3174  
  3175  	// Every call in a go routine checks for stack overflow by
  3176  	// comparing the current stack pointer to gp->stackguard0.
  3177  	// Setting gp->stackguard0 to StackPreempt folds
  3178  	// preemption into the normal stack overflow check.
  3179  	gp.stackguard0 = stackPreempt
  3180  	return true
  3181  }
  3182  
  3183  var starttime int64
  3184  
  3185  func schedtrace(detailed bool) {
  3186  	now := nanotime()
  3187  	if starttime == 0 {
  3188  		starttime = now
  3189  	}
  3190  
  3191  	lock(&sched.lock)
  3192  	print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
  3193  	if detailed {
  3194  		print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
  3195  	}
  3196  	// We must be careful while reading data from P's, M's and G's.
  3197  	// Even if we hold schedlock, most data can be changed concurrently.
  3198  	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
  3199  	for i := int32(0); i < gomaxprocs; i++ {
  3200  		_p_ := allp[i]
  3201  		if _p_ == nil {
  3202  			continue
  3203  		}
  3204  		mp := _p_.m.ptr()
  3205  		h := atomicload(&_p_.runqhead)
  3206  		t := atomicload(&_p_.runqtail)
  3207  		if detailed {
  3208  			id := int32(-1)
  3209  			if mp != nil {
  3210  				id = mp.id
  3211  			}
  3212  			print("  P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
  3213  		} else {
  3214  			// In non-detailed mode format lengths of per-P run queues as:
  3215  			// [len1 len2 len3 len4]
  3216  			print(" ")
  3217  			if i == 0 {
  3218  				print("[")
  3219  			}
  3220  			print(t - h)
  3221  			if i == gomaxprocs-1 {
  3222  				print("]\n")
  3223  			}
  3224  		}
  3225  	}
  3226  
  3227  	if !detailed {
  3228  		unlock(&sched.lock)
  3229  		return
  3230  	}
  3231  
  3232  	for mp := allm; mp != nil; mp = mp.alllink {
  3233  		_p_ := mp.p.ptr()
  3234  		gp := mp.curg
  3235  		lockedg := mp.lockedg
  3236  		id1 := int32(-1)
  3237  		if _p_ != nil {
  3238  			id1 = _p_.id
  3239  		}
  3240  		id2 := int64(-1)
  3241  		if gp != nil {
  3242  			id2 = gp.goid
  3243  		}
  3244  		id3 := int64(-1)
  3245  		if lockedg != nil {
  3246  			id3 = lockedg.goid
  3247  		}
  3248  		print("  M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
  3249  	}
  3250  
  3251  	lock(&allglock)
  3252  	for gi := 0; gi < len(allgs); gi++ {
  3253  		gp := allgs[gi]
  3254  		mp := gp.m
  3255  		lockedm := gp.lockedm
  3256  		id1 := int32(-1)
  3257  		if mp != nil {
  3258  			id1 = mp.id
  3259  		}
  3260  		id2 := int32(-1)
  3261  		if lockedm != nil {
  3262  			id2 = lockedm.id
  3263  		}
  3264  		print("  G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
  3265  	}
  3266  	unlock(&allglock)
  3267  	unlock(&sched.lock)
  3268  }
  3269  
  3270  // Put mp on midle list.
  3271  // Sched must be locked.
  3272  // May run during STW, so write barriers are not allowed.
  3273  //go:nowritebarrier
  3274  func mput(mp *m) {
  3275  	mp.schedlink = sched.midle
  3276  	sched.midle.set(mp)
  3277  	sched.nmidle++
  3278  	checkdead()
  3279  }
  3280  
  3281  // Try to get an m from midle list.
  3282  // Sched must be locked.
  3283  // May run during STW, so write barriers are not allowed.
  3284  //go:nowritebarrier
  3285  func mget() *m {
  3286  	mp := sched.midle.ptr()
  3287  	if mp != nil {
  3288  		sched.midle = mp.schedlink
  3289  		sched.nmidle--
  3290  	}
  3291  	return mp
  3292  }
  3293  
  3294  // Put gp on the global runnable queue.
  3295  // Sched must be locked.
  3296  // May run during STW, so write barriers are not allowed.
  3297  //go:nowritebarrier
  3298  func globrunqput(gp *g) {
  3299  	gp.schedlink = 0
  3300  	if sched.runqtail != 0 {
  3301  		sched.runqtail.ptr().schedlink.set(gp)
  3302  	} else {
  3303  		sched.runqhead.set(gp)
  3304  	}
  3305  	sched.runqtail.set(gp)
  3306  	sched.runqsize++
  3307  }
  3308  
  3309  // Put gp at the head of the global runnable queue.
  3310  // Sched must be locked.
  3311  // May run during STW, so write barriers are not allowed.
  3312  //go:nowritebarrier
  3313  func globrunqputhead(gp *g) {
  3314  	gp.schedlink = sched.runqhead
  3315  	sched.runqhead.set(gp)
  3316  	if sched.runqtail == 0 {
  3317  		sched.runqtail.set(gp)
  3318  	}
  3319  	sched.runqsize++
  3320  }
  3321  
  3322  // Put a batch of runnable goroutines on the global runnable queue.
  3323  // Sched must be locked.
  3324  func globrunqputbatch(ghead *g, gtail *g, n int32) {
  3325  	gtail.schedlink = 0
  3326  	if sched.runqtail != 0 {
  3327  		sched.runqtail.ptr().schedlink.set(ghead)
  3328  	} else {
  3329  		sched.runqhead.set(ghead)
  3330  	}
  3331  	sched.runqtail.set(gtail)
  3332  	sched.runqsize += n
  3333  }
  3334  
  3335  // Try get a batch of G's from the global runnable queue.
  3336  // Sched must be locked.
  3337  func globrunqget(_p_ *p, max int32) *g {
  3338  	if sched.runqsize == 0 {
  3339  		return nil
  3340  	}
  3341  
  3342  	n := sched.runqsize/gomaxprocs + 1
  3343  	if n > sched.runqsize {
  3344  		n = sched.runqsize
  3345  	}
  3346  	if max > 0 && n > max {
  3347  		n = max
  3348  	}
  3349  	if n > int32(len(_p_.runq))/2 {
  3350  		n = int32(len(_p_.runq)) / 2
  3351  	}
  3352  
  3353  	sched.runqsize -= n
  3354  	if sched.runqsize == 0 {
  3355  		sched.runqtail = 0
  3356  	}
  3357  
  3358  	gp := sched.runqhead.ptr()
  3359  	sched.runqhead = gp.schedlink
  3360  	n--
  3361  	for ; n > 0; n-- {
  3362  		gp1 := sched.runqhead.ptr()
  3363  		sched.runqhead = gp1.schedlink
  3364  		runqput(_p_, gp1, false)
  3365  	}
  3366  	return gp
  3367  }
  3368  
  3369  // Put p to on _Pidle list.
  3370  // Sched must be locked.
  3371  // May run during STW, so write barriers are not allowed.
  3372  //go:nowritebarrier
  3373  func pidleput(_p_ *p) {
  3374  	if !runqempty(_p_) {
  3375  		throw("pidleput: P has non-empty run queue")
  3376  	}
  3377  	_p_.link = sched.pidle
  3378  	sched.pidle.set(_p_)
  3379  	xadd(&sched.npidle, 1) // TODO: fast atomic
  3380  }
  3381  
  3382  // Try get a p from _Pidle list.
  3383  // Sched must be locked.
  3384  // May run during STW, so write barriers are not allowed.
  3385  //go:nowritebarrier
  3386  func pidleget() *p {
  3387  	_p_ := sched.pidle.ptr()
  3388  	if _p_ != nil {
  3389  		sched.pidle = _p_.link
  3390  		xadd(&sched.npidle, -1) // TODO: fast atomic
  3391  	}
  3392  	return _p_
  3393  }
  3394  
  3395  // runqempty returns true if _p_ has no Gs on its local run queue.
  3396  // Note that this test is generally racy.
  3397  func runqempty(_p_ *p) bool {
  3398  	return _p_.runqhead == _p_.runqtail && _p_.runnext == 0
  3399  }
  3400  
  3401  // To shake out latent assumptions about scheduling order,
  3402  // we introduce some randomness into scheduling decisions
  3403  // when running with the race detector.
  3404  // The need for this was made obvious by changing the
  3405  // (deterministic) scheduling order in Go 1.5 and breaking
  3406  // many poorly-written tests.
  3407  // With the randomness here, as long as the tests pass
  3408  // consistently with -race, they shouldn't have latent scheduling
  3409  // assumptions.
  3410  const randomizeScheduler = raceenabled
  3411  
  3412  // runqput tries to put g on the local runnable queue.
  3413  // If next if false, runqput adds g to the tail of the runnable queue.
  3414  // If next is true, runqput puts g in the _p_.runnext slot.
  3415  // If the run queue is full, runnext puts g on the global queue.
  3416  // Executed only by the owner P.
  3417  func runqput(_p_ *p, gp *g, next bool) {
  3418  	if randomizeScheduler && next && fastrand1()%2 == 0 {
  3419  		next = false
  3420  	}
  3421  
  3422  	if next {
  3423  	retryNext:
  3424  		oldnext := _p_.runnext
  3425  		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
  3426  			goto retryNext
  3427  		}
  3428  		if oldnext == 0 {
  3429  			return
  3430  		}
  3431  		// Kick the old runnext out to the regular run queue.
  3432  		gp = oldnext.ptr()
  3433  	}
  3434  
  3435  retry:
  3436  	h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
  3437  	t := _p_.runqtail
  3438  	if t-h < uint32(len(_p_.runq)) {
  3439  		_p_.runq[t%uint32(len(_p_.runq))] = gp
  3440  		atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
  3441  		return
  3442  	}
  3443  	if runqputslow(_p_, gp, h, t) {
  3444  		return
  3445  	}
  3446  	// the queue is not full, now the put above must suceed
  3447  	goto retry
  3448  }
  3449  
  3450  // Put g and a batch of work from local runnable queue on global queue.
  3451  // Executed only by the owner P.
  3452  func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
  3453  	var batch [len(_p_.runq)/2 + 1]*g
  3454  
  3455  	// First, grab a batch from local queue.
  3456  	n := t - h
  3457  	n = n / 2
  3458  	if n != uint32(len(_p_.runq)/2) {
  3459  		throw("runqputslow: queue is not full")
  3460  	}
  3461  	for i := uint32(0); i < n; i++ {
  3462  		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
  3463  	}
  3464  	if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  3465  		return false
  3466  	}
  3467  	batch[n] = gp
  3468  
  3469  	if randomizeScheduler {
  3470  		for i := uint32(1); i <= n; i++ {
  3471  			j := fastrand1() % (i + 1)
  3472  			batch[i], batch[j] = batch[j], batch[i]
  3473  		}
  3474  	}
  3475  
  3476  	// Link the goroutines.
  3477  	for i := uint32(0); i < n; i++ {
  3478  		batch[i].schedlink.set(batch[i+1])
  3479  	}
  3480  
  3481  	// Now put the batch on global queue.
  3482  	lock(&sched.lock)
  3483  	globrunqputbatch(batch[0], batch[n], int32(n+1))
  3484  	unlock(&sched.lock)
  3485  	return true
  3486  }
  3487  
  3488  // Get g from local runnable queue.
  3489  // If inheritTime is true, gp should inherit the remaining time in the
  3490  // current time slice. Otherwise, it should start a new time slice.
  3491  // Executed only by the owner P.
  3492  func runqget(_p_ *p) (gp *g, inheritTime bool) {
  3493  	// If there's a runnext, it's the next G to run.
  3494  	for {
  3495  		next := _p_.runnext
  3496  		if next == 0 {
  3497  			break
  3498  		}
  3499  		if _p_.runnext.cas(next, 0) {
  3500  			return next.ptr(), true
  3501  		}
  3502  	}
  3503  
  3504  	for {
  3505  		h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
  3506  		t := _p_.runqtail
  3507  		if t == h {
  3508  			return nil, false
  3509  		}
  3510  		gp := _p_.runq[h%uint32(len(_p_.runq))]
  3511  		if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
  3512  			return gp, false
  3513  		}
  3514  	}
  3515  }
  3516  
  3517  // Grabs a batch of goroutines from _p_'s runnable queue into batch.
  3518  // Batch is a ring buffer starting at batchHead.
  3519  // Returns number of grabbed goroutines.
  3520  // Can be executed by any P.
  3521  func runqgrab(_p_ *p, batch *[256]*g, batchHead uint32, stealRunNextG bool) uint32 {
  3522  	for {
  3523  		h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
  3524  		t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
  3525  		n := t - h
  3526  		n = n - n/2
  3527  		if n == 0 {
  3528  			if stealRunNextG {
  3529  				// Try to steal from _p_.runnext.
  3530  				if next := _p_.runnext; next != 0 {
  3531  					// Sleep to ensure that _p_ isn't about to run the g we
  3532  					// are about to steal.
  3533  					// The important use case here is when the g running on _p_
  3534  					// ready()s another g and then almost immediately blocks.
  3535  					// Instead of stealing runnext in this window, back off
  3536  					// to give _p_ a chance to schedule runnext. This will avoid
  3537  					// thrashing gs between different Ps.
  3538  					usleep(100)
  3539  					if !_p_.runnext.cas(next, 0) {
  3540  						continue
  3541  					}
  3542  					batch[batchHead%uint32(len(batch))] = next.ptr()
  3543  					return 1
  3544  				}
  3545  			}
  3546  			return 0
  3547  		}
  3548  		if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
  3549  			continue
  3550  		}
  3551  		for i := uint32(0); i < n; i++ {
  3552  			g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
  3553  			batch[(batchHead+i)%uint32(len(batch))] = g
  3554  		}
  3555  		if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  3556  			return n
  3557  		}
  3558  	}
  3559  }
  3560  
  3561  // Steal half of elements from local runnable queue of p2
  3562  // and put onto local runnable queue of p.
  3563  // Returns one of the stolen elements (or nil if failed).
  3564  func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
  3565  	t := _p_.runqtail
  3566  	n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
  3567  	if n == 0 {
  3568  		return nil
  3569  	}
  3570  	n--
  3571  	gp := _p_.runq[(t+n)%uint32(len(_p_.runq))]
  3572  	if n == 0 {
  3573  		return gp
  3574  	}
  3575  	h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
  3576  	if t-h+n >= uint32(len(_p_.runq)) {
  3577  		throw("runqsteal: runq overflow")
  3578  	}
  3579  	atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
  3580  	return gp
  3581  }
  3582  
  3583  func testSchedLocalQueue() {
  3584  	_p_ := new(p)
  3585  	gs := make([]g, len(_p_.runq))
  3586  	for i := 0; i < len(_p_.runq); i++ {
  3587  		if g, _ := runqget(_p_); g != nil {
  3588  			throw("runq is not empty initially")
  3589  		}
  3590  		for j := 0; j < i; j++ {
  3591  			runqput(_p_, &gs[i], false)
  3592  		}
  3593  		for j := 0; j < i; j++ {
  3594  			if g, _ := runqget(_p_); g != &gs[i] {
  3595  				print("bad element at iter ", i, "/", j, "\n")
  3596  				throw("bad element")
  3597  			}
  3598  		}
  3599  		if g, _ := runqget(_p_); g != nil {
  3600  			throw("runq is not empty afterwards")
  3601  		}
  3602  	}
  3603  }
  3604  
  3605  func testSchedLocalQueueSteal() {
  3606  	p1 := new(p)
  3607  	p2 := new(p)
  3608  	gs := make([]g, len(p1.runq))
  3609  	for i := 0; i < len(p1.runq); i++ {
  3610  		for j := 0; j < i; j++ {
  3611  			gs[j].sig = 0
  3612  			runqput(p1, &gs[j], false)
  3613  		}
  3614  		gp := runqsteal(p2, p1, true)
  3615  		s := 0
  3616  		if gp != nil {
  3617  			s++
  3618  			gp.sig++
  3619  		}
  3620  		for {
  3621  			gp, _ = runqget(p2)
  3622  			if gp == nil {
  3623  				break
  3624  			}
  3625  			s++
  3626  			gp.sig++
  3627  		}
  3628  		for {
  3629  			gp, _ = runqget(p1)
  3630  			if gp == nil {
  3631  				break
  3632  			}
  3633  			gp.sig++
  3634  		}
  3635  		for j := 0; j < i; j++ {
  3636  			if gs[j].sig != 1 {
  3637  				print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
  3638  				throw("bad element")
  3639  			}
  3640  		}
  3641  		if s != i/2 && s != i/2+1 {
  3642  			print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
  3643  			throw("bad steal")
  3644  		}
  3645  	}
  3646  }
  3647  
  3648  func setMaxThreads(in int) (out int) {
  3649  	lock(&sched.lock)
  3650  	out = int(sched.maxmcount)
  3651  	sched.maxmcount = int32(in)
  3652  	checkmcount()
  3653  	unlock(&sched.lock)
  3654  	return
  3655  }
  3656  
  3657  func haveexperiment(name string) bool {
  3658  	x := goexperiment
  3659  	for x != "" {
  3660  		xname := ""
  3661  		i := index(x, ",")
  3662  		if i < 0 {
  3663  			xname, x = x, ""
  3664  		} else {
  3665  			xname, x = x[:i], x[i+1:]
  3666  		}
  3667  		if xname == name {
  3668  			return true
  3669  		}
  3670  	}
  3671  	return false
  3672  }
  3673  
  3674  //go:nosplit
  3675  func procPin() int {
  3676  	_g_ := getg()
  3677  	mp := _g_.m
  3678  
  3679  	mp.locks++
  3680  	return int(mp.p.ptr().id)
  3681  }
  3682  
  3683  //go:nosplit
  3684  func procUnpin() {
  3685  	_g_ := getg()
  3686  	_g_.m.locks--
  3687  }
  3688  
  3689  //go:linkname sync_runtime_procPin sync.runtime_procPin
  3690  //go:nosplit
  3691  func sync_runtime_procPin() int {
  3692  	return procPin()
  3693  }
  3694  
  3695  //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
  3696  //go:nosplit
  3697  func sync_runtime_procUnpin() {
  3698  	procUnpin()
  3699  }
  3700  
  3701  //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
  3702  //go:nosplit
  3703  func sync_atomic_runtime_procPin() int {
  3704  	return procPin()
  3705  }
  3706  
  3707  //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
  3708  //go:nosplit
  3709  func sync_atomic_runtime_procUnpin() {
  3710  	procUnpin()
  3711  }
  3712  
  3713  // Active spinning for sync.Mutex.
  3714  //go:linkname sync_runtime_canSpin sync.runtime_canSpin
  3715  //go:nosplit
  3716  func sync_runtime_canSpin(i int) bool {
  3717  	// sync.Mutex is cooperative, so we are conservative with spinning.
  3718  	// Spin only few times and only if running on a multicore machine and
  3719  	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
  3720  	// As opposed to runtime mutex we don't do passive spinning here,
  3721  	// because there can be work on global runq on on other Ps.
  3722  	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
  3723  		return false
  3724  	}
  3725  	if p := getg().m.p.ptr(); !runqempty(p) {
  3726  		return false
  3727  	}
  3728  	return true
  3729  }
  3730  
  3731  //go:linkname sync_runtime_doSpin sync.runtime_doSpin
  3732  //go:nosplit
  3733  func sync_runtime_doSpin() {
  3734  	procyield(active_spin_cnt)
  3735  }