github.com/pgavlin/text@v0.0.0-20240419000839-8438d0a47805/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package text
     9  
    10  import (
    11  	"reflect"
    12  	"unicode"
    13  	"unsafe"
    14  
    15  	"github.com/pgavlin/text/internal/bytealg"
    16  	"github.com/pgavlin/text/utf8"
    17  )
    18  
    19  type String interface {
    20  	~string | ~[]byte
    21  }
    22  
    23  func Empty[S String]() S {
    24  	var s S
    25  	return s
    26  }
    27  
    28  func IsEmpty[S String](s S) bool {
    29  	return len(s) == 0
    30  }
    31  
    32  func ToRunes[S String](s S) []rune {
    33  	return []rune(bytealg.AsString(s))
    34  }
    35  
    36  func ToString[S String](r []rune) S {
    37  	s := string(r)
    38  	if isString[S]() {
    39  		return S(s)
    40  	}
    41  	return S(unsafe.Slice(unsafe.StringData(s), len(s)))
    42  }
    43  
    44  func isString[S String]() bool {
    45  	var s S
    46  	return reflect.TypeOf(s).Kind() == reflect.String
    47  }
    48  
    49  const maxInt = int(^uint(0) >> 1)
    50  
    51  // explode splits s into a slice of UTF-8 strings,
    52  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    53  // Invalid UTF-8 bytes are sliced individually.
    54  func explode[S String](s S, n int) []S {
    55  	l := utf8.RuneCount(s)
    56  	if n < 0 || n > l {
    57  		n = l
    58  	}
    59  	a := make([]S, n)
    60  	for i := 0; i < n-1; i++ {
    61  		_, size := utf8.DecodeRune(s)
    62  		a[i] = s[:size]
    63  		s = s[size:]
    64  	}
    65  	if n > 0 {
    66  		a[n-1] = s
    67  	}
    68  	return a
    69  }
    70  
    71  // Count counts the number of non-overlapping instances of substr in s.
    72  // If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
    73  func Count[S1, S2 String](s S1, substr S2) int {
    74  	// special case
    75  	if len(substr) == 0 {
    76  		return utf8.RuneCount(s) + 1
    77  	}
    78  	if len(substr) == 1 {
    79  		return bytealg.CountString(s, substr[0])
    80  	}
    81  	n := 0
    82  	for {
    83  		i := Index(s, substr)
    84  		if i == -1 {
    85  			return n
    86  		}
    87  		n++
    88  		s = s[i+len(substr):]
    89  	}
    90  }
    91  
    92  // Contains reports whether substr is within s.
    93  func Contains[S1, S2 String](s S1, substr S2) bool {
    94  	return Index(s, substr) >= 0
    95  }
    96  
    97  // ContainsAny reports whether any Unicode code points in chars are within s.
    98  func ContainsAny[S1, S2 String](s S1, chars S2) bool {
    99  	return IndexAny(s, chars) >= 0
   100  }
   101  
   102  // ContainsRune reports whether the Unicode code point r is within s.
   103  func ContainsRune[S String](s S, r rune) bool {
   104  	return IndexRune(s, r) >= 0
   105  }
   106  
   107  // ContainsFunc reports whether any Unicode code points r within s satisfy f(r).
   108  func ContainsFunc[S String](s S, f func(rune) bool) bool {
   109  	return IndexFunc(s, f) >= 0
   110  }
   111  
   112  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
   113  func LastIndex[S1, S2 String](s S1, substr S2) int {
   114  	n := len(substr)
   115  	switch {
   116  	case n == 0:
   117  		return len(s)
   118  	case n == 1:
   119  		return LastIndexByte(s, substr[0])
   120  	case n == len(s):
   121  		if Equal(substr, s) {
   122  			return 0
   123  		}
   124  		return -1
   125  	case n > len(s):
   126  		return -1
   127  	}
   128  	// Rabin-Karp search from the end of the string
   129  	hashss, pow := bytealg.HashStrRev(substr)
   130  	last := len(s) - n
   131  	var h uint32
   132  	for i := len(s) - 1; i >= last; i-- {
   133  		h = h*bytealg.PrimeRK + uint32(s[i])
   134  	}
   135  	if h == hashss && Equal(s[last:], substr) {
   136  		return last
   137  	}
   138  	for i := last - 1; i >= 0; i-- {
   139  		h *= bytealg.PrimeRK
   140  		h += uint32(s[i])
   141  		h -= pow * uint32(s[i+n])
   142  		if h == hashss && Equal(s[i:i+n], substr) {
   143  			return i
   144  		}
   145  	}
   146  	return -1
   147  }
   148  
   149  // IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
   150  func IndexByte[S String](s S, c byte) int {
   151  	return bytealg.IndexByteString(s, c)
   152  }
   153  
   154  // IndexRune returns the index of the first instance of the Unicode code point
   155  // r, or -1 if rune is not present in s.
   156  // If r is utf8.RuneError, it returns the first instance of any
   157  // invalid UTF-8 byte sequence.
   158  func IndexRune[S String](s S, r rune) int {
   159  	switch {
   160  	case 0 <= r && r < utf8.RuneSelf:
   161  		return IndexByte(s, byte(r))
   162  	case r == utf8.RuneError:
   163  		for i, r := range bytealg.AsString(s) {
   164  			if r == utf8.RuneError {
   165  				return i
   166  			}
   167  		}
   168  		return -1
   169  	case !utf8.ValidRune(r):
   170  		return -1
   171  	default:
   172  		return Index(s, string(r))
   173  	}
   174  }
   175  
   176  // IndexAny returns the index of the first instance of any Unicode code point
   177  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   178  func IndexAny[S1, S2 String](s S1, chars S2) int {
   179  	if IsEmpty(chars) {
   180  		// Avoid scanning all of s.
   181  		return -1
   182  	}
   183  	if len(chars) == 1 {
   184  		// Avoid scanning all of s.
   185  		r := rune(chars[0])
   186  		if r >= utf8.RuneSelf {
   187  			r = utf8.RuneError
   188  		}
   189  		return IndexRune(s, r)
   190  	}
   191  	if len(s) > 8 {
   192  		if as, isASCII := makeASCIISet(chars); isASCII {
   193  			for i := 0; i < len(s); i++ {
   194  				if as.contains(s[i]) {
   195  					return i
   196  				}
   197  			}
   198  			return -1
   199  		}
   200  	}
   201  	for i, c := range bytealg.AsString(s) {
   202  		if IndexRune(chars, c) >= 0 {
   203  			return i
   204  		}
   205  	}
   206  	return -1
   207  }
   208  
   209  // LastIndexAny returns the index of the last instance of any Unicode code
   210  // point from chars in s, or -1 if no Unicode code point from chars is
   211  // present in s.
   212  func LastIndexAny[S1, S2 String](s S1, chars S2) int {
   213  	if IsEmpty(chars) {
   214  		// Avoid scanning all of s.
   215  		return -1
   216  	}
   217  	if len(s) == 1 {
   218  		rc := rune(s[0])
   219  		if rc >= utf8.RuneSelf {
   220  			rc = utf8.RuneError
   221  		}
   222  		if IndexRune(chars, rc) >= 0 {
   223  			return 0
   224  		}
   225  		return -1
   226  	}
   227  	if len(s) > 8 {
   228  		if as, isASCII := makeASCIISet(chars); isASCII {
   229  			for i := len(s) - 1; i >= 0; i-- {
   230  				if as.contains(s[i]) {
   231  					return i
   232  				}
   233  			}
   234  			return -1
   235  		}
   236  	}
   237  	if len(chars) == 1 {
   238  		rc := rune(chars[0])
   239  		if rc >= utf8.RuneSelf {
   240  			rc = utf8.RuneError
   241  		}
   242  		for i := len(s); i > 0; {
   243  			r, size := utf8.DecodeLastRune(s[:i])
   244  			i -= size
   245  			if rc == r {
   246  				return i
   247  			}
   248  		}
   249  		return -1
   250  	}
   251  	for i := len(s); i > 0; {
   252  		r, size := utf8.DecodeLastRune(s[:i])
   253  		i -= size
   254  		if IndexRune(chars, r) >= 0 {
   255  			return i
   256  		}
   257  	}
   258  	return -1
   259  }
   260  
   261  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   262  func LastIndexByte[S String](s S, c byte) int {
   263  	for i := len(s) - 1; i >= 0; i-- {
   264  		if s[i] == c {
   265  			return i
   266  		}
   267  	}
   268  	return -1
   269  }
   270  
   271  // Generic split: splits after each instance of sep,
   272  // including sepSave bytes of sep in the subarrays.
   273  func genSplit[S1, S2 String](s S1, sep S2, sepSave, n int) []S1 {
   274  	if n == 0 {
   275  		return nil
   276  	}
   277  	if IsEmpty(sep) {
   278  		return explode(s, n)
   279  	}
   280  	if n < 0 {
   281  		n = Count(s, sep) + 1
   282  	}
   283  
   284  	if n > len(s)+1 {
   285  		n = len(s) + 1
   286  	}
   287  	a := make([]S1, n)
   288  	n--
   289  	i := 0
   290  	for i < n {
   291  		m := Index(s, sep)
   292  		if m < 0 {
   293  			break
   294  		}
   295  		a[i] = s[:m+sepSave]
   296  		s = s[m+len(sep):]
   297  		i++
   298  	}
   299  	a[i] = s
   300  	return a[:i+1]
   301  }
   302  
   303  // SplitN slices s into substrings separated by sep and returns a slice of
   304  // the substrings between those separators.
   305  //
   306  // The count determines the number of substrings to return:
   307  //
   308  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
   309  //	n == 0: the result is nil (zero substrings)
   310  //	n < 0: all substrings
   311  //
   312  // Edge cases for s and sep (for example, empty strings) are handled
   313  // as described in the documentation for Split.
   314  //
   315  // To split around the first instance of a separator, see Cut.
   316  func SplitN[S1, S2 String](s S1, sep S2, n int) []S1 { return genSplit(s, sep, 0, n) }
   317  
   318  // SplitAfterN slices s into substrings after each instance of sep and
   319  // returns a slice of those substrings.
   320  //
   321  // The count determines the number of substrings to return:
   322  //
   323  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
   324  //	n == 0: the result is nil (zero substrings)
   325  //	n < 0: all substrings
   326  //
   327  // Edge cases for s and sep (for example, empty strings) are handled
   328  // as described in the documentation for SplitAfter.
   329  func SplitAfterN[S1, S2 String](s S1, sep S2, n int) []S1 {
   330  	return genSplit(s, sep, len(sep), n)
   331  }
   332  
   333  // Split slices s into all substrings separated by sep and returns a slice of
   334  // the substrings between those separators.
   335  //
   336  // If s does not contain sep and sep is not empty, Split returns a
   337  // slice of length 1 whose only element is s.
   338  //
   339  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   340  // and sep are empty, Split returns an empty slice.
   341  //
   342  // It is equivalent to SplitN with a count of -1.
   343  //
   344  // To split around the first instance of a separator, see Cut.
   345  func Split[S1, S2 String](s S1, sep S2) []S1 { return genSplit(s, sep, 0, -1) }
   346  
   347  // SplitAfter slices s into all substrings after each instance of sep and
   348  // returns a slice of those substrings.
   349  //
   350  // If s does not contain sep and sep is not empty, SplitAfter returns
   351  // a slice of length 1 whose only element is s.
   352  //
   353  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   354  // both s and sep are empty, SplitAfter returns an empty slice.
   355  //
   356  // It is equivalent to SplitAfterN with a count of -1.
   357  func SplitAfter[S1, S2 String](s S1, sep S2) []S1 {
   358  	return genSplit(s, sep, len(sep), -1)
   359  }
   360  
   361  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   362  
   363  // Fields splits the string s around each instance of one or more consecutive white space
   364  // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
   365  // empty slice if s contains only white space.
   366  func Fields[S String](s S) []S {
   367  	// First count the fields.
   368  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   369  	n := 0
   370  	wasSpace := 1
   371  	// setBits is used to track which bits are set in the bytes of s.
   372  	setBits := uint8(0)
   373  	for i := 0; i < len(s); i++ {
   374  		r := s[i]
   375  		setBits |= r
   376  		isSpace := int(asciiSpace[r])
   377  		n += wasSpace & ^isSpace
   378  		wasSpace = isSpace
   379  	}
   380  
   381  	if setBits >= utf8.RuneSelf {
   382  		// Some runes in the input string are not ASCII.
   383  		return FieldsFunc(s, unicode.IsSpace)
   384  	}
   385  	// ASCII fast path
   386  	a := make([]S, n)
   387  	na := 0
   388  	fieldStart := 0
   389  	i := 0
   390  	// Skip spaces in the front of the input.
   391  	for i < len(s) && asciiSpace[s[i]] != 0 {
   392  		i++
   393  	}
   394  	fieldStart = i
   395  	for i < len(s) {
   396  		if asciiSpace[s[i]] == 0 {
   397  			i++
   398  			continue
   399  		}
   400  		a[na] = s[fieldStart:i]
   401  		na++
   402  		i++
   403  		// Skip spaces in between fields.
   404  		for i < len(s) && asciiSpace[s[i]] != 0 {
   405  			i++
   406  		}
   407  		fieldStart = i
   408  	}
   409  	if fieldStart < len(s) { // Last field might end at EOF.
   410  		a[na] = s[fieldStart:]
   411  	}
   412  	return a
   413  }
   414  
   415  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   416  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   417  // string is empty, an empty slice is returned.
   418  //
   419  // FieldsFunc makes no guarantees about the order in which it calls f(c)
   420  // and assumes that f always returns the same value for a given c.
   421  func FieldsFunc[S String](s S, f func(rune) bool) []S {
   422  	// A span is used to record a slice of s of the form s[start:end].
   423  	// The start index is inclusive and the end index is exclusive.
   424  	type span struct {
   425  		start int
   426  		end   int
   427  	}
   428  	spans := make([]span, 0, 32)
   429  
   430  	// Find the field start and end indices.
   431  	// Doing this in a separate pass (rather than slicing the string s
   432  	// and collecting the result substrings right away) is significantly
   433  	// more efficient, possibly due to cache effects.
   434  	start := -1 // valid span start if >= 0
   435  	for end, rune := range bytealg.AsString(s) {
   436  		if f(rune) {
   437  			if start >= 0 {
   438  				spans = append(spans, span{start, end})
   439  				// Set start to a negative value.
   440  				// Note: using -1 here consistently and reproducibly
   441  				// slows down this code by a several percent on amd64.
   442  				start = ^start
   443  			}
   444  		} else {
   445  			if start < 0 {
   446  				start = end
   447  			}
   448  		}
   449  	}
   450  
   451  	// Last field might end at EOF.
   452  	if start >= 0 {
   453  		spans = append(spans, span{start, len(s)})
   454  	}
   455  
   456  	// Create strings from recorded field indices.
   457  	a := make([]S, len(spans))
   458  	for i, span := range spans {
   459  		a[i] = s[span.start:span.end]
   460  	}
   461  
   462  	return a
   463  }
   464  
   465  // Concat concatenates its inputs to create a single string.
   466  func Concat[S1, S2 String](a S1, b S2) S1 {
   467  	c := make([]byte, len(a)+len(b))
   468  	copy(c, a)
   469  	copy(c[len(a):], b)
   470  	return S1(c)
   471  }
   472  
   473  // Join concatenates the elements of its first argument to create a single string. The separator
   474  // string sep is placed between elements in the resulting string.
   475  func Join[S1, S2 String](elems []S1, sep S2) S1 {
   476  	switch len(elems) {
   477  	case 0:
   478  		return Empty[S1]()
   479  	case 1:
   480  		return elems[0]
   481  	}
   482  
   483  	var n int
   484  	if len(sep) > 0 {
   485  		if len(sep) >= maxInt/(len(elems)-1) {
   486  			panic("strings: Join output length overflow")
   487  		}
   488  		n += len(sep) * (len(elems) - 1)
   489  	}
   490  	for _, elem := range elems {
   491  		if len(elem) > maxInt-n {
   492  			panic("strings: Join output length overflow")
   493  		}
   494  		n += len(elem)
   495  	}
   496  
   497  	var b Builder[S1]
   498  	b.Grow(n)
   499  	b.WriteText(elems[0])
   500  	for _, s := range elems[1:] {
   501  		WriteString(&b, sep)
   502  		b.WriteText(s)
   503  	}
   504  	return b.Text()
   505  }
   506  
   507  // HasPrefix tests whether the string s begins with prefix.
   508  func HasPrefix[S1, S2 String](s S1, prefix S2) bool {
   509  	return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix)
   510  }
   511  
   512  // HasSuffix tests whether the string s ends with suffix.
   513  func HasSuffix[S1, S2 String](s S1, suffix S2) bool {
   514  	return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix)
   515  }
   516  
   517  // Map returns a copy of the string s with all its characters modified
   518  // according to the mapping function. If mapping returns a negative value, the character is
   519  // dropped from the string with no replacement.
   520  func Map[S String](mapping func(rune) rune, s S) S {
   521  	// In the worst case, the string can grow when mapped, making
   522  	// things unpleasant. But it's so rare we barge in assuming it's
   523  	// fine. It could also shrink but that falls out naturally.
   524  
   525  	// The output buffer b is initialized on demand, the first
   526  	// time a character differs.
   527  	var b Builder[S]
   528  
   529  	for i, c := range bytealg.AsString(s) {
   530  		r := mapping(c)
   531  		if r == c && c != utf8.RuneError {
   532  			continue
   533  		}
   534  
   535  		var width int
   536  		if c == utf8.RuneError {
   537  			c, width = utf8.DecodeRune(s[i:])
   538  			if width != 1 && r == c {
   539  				continue
   540  			}
   541  		} else {
   542  			width = utf8.RuneLen(c)
   543  		}
   544  
   545  		b.Grow(len(s) + utf8.UTFMax)
   546  		b.WriteText(s[:i])
   547  		if r >= 0 {
   548  			b.WriteRune(r)
   549  		}
   550  
   551  		s = s[i+width:]
   552  		break
   553  	}
   554  
   555  	// Fast path for unchanged input
   556  	if b.Cap() == 0 { // didn't call b.Grow above
   557  		return s
   558  	}
   559  
   560  	for _, c := range bytealg.AsString(s) {
   561  		r := mapping(c)
   562  
   563  		if r >= 0 {
   564  			// common case
   565  			// Due to inlining, it is more performant to determine if WriteByte should be
   566  			// invoked rather than always call WriteRune
   567  			if r < utf8.RuneSelf {
   568  				b.WriteByte(byte(r))
   569  			} else {
   570  				// r is not a ASCII rune.
   571  				b.WriteRune(r)
   572  			}
   573  		}
   574  	}
   575  
   576  	return b.Text()
   577  }
   578  
   579  // Repeat returns a new string consisting of count copies of the string s.
   580  //
   581  // It panics if count is negative or if the result of (len(s) * count)
   582  // overflows.
   583  func Repeat[S String](s S, count int) S {
   584  	switch count {
   585  	case 0:
   586  		return Empty[S]()
   587  	case 1:
   588  		return s
   589  	}
   590  
   591  	// Since we cannot return an error on overflow,
   592  	// we should panic if the repeat will generate an overflow.
   593  	// See golang.org/issue/16237.
   594  	if count < 0 {
   595  		panic("strings: negative Repeat count")
   596  	}
   597  	if len(s) >= maxInt/count {
   598  		panic("strings: Repeat output length overflow")
   599  	}
   600  	n := len(s) * count
   601  
   602  	if IsEmpty(s) {
   603  		return Empty[S]()
   604  	}
   605  
   606  	// Past a certain chunk size it is counterproductive to use
   607  	// larger chunks as the source of the write, as when the source
   608  	// is too large we are basically just thrashing the CPU D-cache.
   609  	// So if the result length is larger than an empirically-found
   610  	// limit (8KB), we stop growing the source string once the limit
   611  	// is reached and keep reusing the same source string - that
   612  	// should therefore be always resident in the L1 cache - until we
   613  	// have completed the construction of the result.
   614  	// This yields significant speedups (up to +100%) in cases where
   615  	// the result length is large (roughly, over L2 cache size).
   616  	const chunkLimit = 8 * 1024
   617  	chunkMax := n
   618  	if n > chunkLimit {
   619  		chunkMax = chunkLimit / len(s) * len(s)
   620  		if chunkMax == 0 {
   621  			chunkMax = len(s)
   622  		}
   623  	}
   624  
   625  	var b Builder[S]
   626  	b.Grow(n)
   627  	b.WriteText(s)
   628  	for b.Len() < n {
   629  		chunk := n - b.Len()
   630  		if chunk > b.Len() {
   631  			chunk = b.Len()
   632  		}
   633  		if chunk > chunkMax {
   634  			chunk = chunkMax
   635  		}
   636  		b.WriteText(b.Text()[:chunk])
   637  	}
   638  	return b.Text()
   639  }
   640  
   641  // ToUpper returns s with all Unicode letters mapped to their upper case.
   642  func ToUpper[S String](s S) S {
   643  	isASCII, hasLower := true, false
   644  	for i := 0; i < len(s); i++ {
   645  		c := s[i]
   646  		if c >= utf8.RuneSelf {
   647  			isASCII = false
   648  			break
   649  		}
   650  		hasLower = hasLower || ('a' <= c && c <= 'z')
   651  	}
   652  
   653  	if isASCII { // optimize for ASCII-only strings.
   654  		if !hasLower {
   655  			return s
   656  		}
   657  		var (
   658  			b   Builder[S]
   659  			pos int
   660  		)
   661  		b.Grow(len(s))
   662  		for i := 0; i < len(s); i++ {
   663  			c := s[i]
   664  			if 'a' <= c && c <= 'z' {
   665  				c -= 'a' - 'A'
   666  				if pos < i {
   667  					b.WriteText(s[pos:i])
   668  				}
   669  				b.WriteByte(c)
   670  				pos = i + 1
   671  			}
   672  		}
   673  		if pos < len(s) {
   674  			b.WriteText(s[pos:])
   675  		}
   676  		return b.Text()
   677  	}
   678  	return Map(unicode.ToUpper, s)
   679  }
   680  
   681  // ToLower returns s with all Unicode letters mapped to their lower case.
   682  func ToLower[S String](s S) S {
   683  	isASCII, hasUpper := true, false
   684  	for i := 0; i < len(s); i++ {
   685  		c := s[i]
   686  		if c >= utf8.RuneSelf {
   687  			isASCII = false
   688  			break
   689  		}
   690  		hasUpper = hasUpper || ('A' <= c && c <= 'Z')
   691  	}
   692  
   693  	if isASCII { // optimize for ASCII-only strings.
   694  		if !hasUpper {
   695  			return s
   696  		}
   697  		var (
   698  			b   Builder[S]
   699  			pos int
   700  		)
   701  		b.Grow(len(s))
   702  		for i := 0; i < len(s); i++ {
   703  			c := s[i]
   704  			if 'A' <= c && c <= 'Z' {
   705  				c += 'a' - 'A'
   706  				if pos < i {
   707  					b.WriteText(s[pos:i])
   708  				}
   709  				b.WriteByte(c)
   710  				pos = i + 1
   711  			}
   712  		}
   713  		if pos < len(s) {
   714  			b.WriteText(s[pos:])
   715  		}
   716  		return b.Text()
   717  	}
   718  	return Map(unicode.ToLower, s)
   719  }
   720  
   721  // ToTitle returns a copy of the string s with all Unicode letters mapped to
   722  // their Unicode title case.
   723  func ToTitle[S String](s S) S { return Map(unicode.ToTitle, s) }
   724  
   725  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   726  // upper case using the case mapping specified by c.
   727  func ToUpperSpecial[S String](c unicode.SpecialCase, s S) S {
   728  	return Map(c.ToUpper, s)
   729  }
   730  
   731  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   732  // lower case using the case mapping specified by c.
   733  func ToLowerSpecial[S String](c unicode.SpecialCase, s S) S {
   734  	return Map(c.ToLower, s)
   735  }
   736  
   737  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   738  // Unicode title case, giving priority to the special casing rules.
   739  func ToTitleSpecial[S String](c unicode.SpecialCase, s S) S {
   740  	return Map(c.ToTitle, s)
   741  }
   742  
   743  // ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
   744  // replaced by the replacement string, which may be empty.
   745  func ToValidUTF8[S1, S2 String](s S1, replacement S2) S1 {
   746  	var b Builder[S1]
   747  
   748  	for i, c := range bytealg.AsString(s) {
   749  		if c != utf8.RuneError {
   750  			continue
   751  		}
   752  
   753  		_, wid := utf8.DecodeRune(s[i:])
   754  		if wid == 1 {
   755  			b.Grow(len(s) + len(replacement))
   756  			b.WriteText(s[:i])
   757  			s = s[i:]
   758  			break
   759  		}
   760  	}
   761  
   762  	// Fast path for unchanged input
   763  	if b.Cap() == 0 { // didn't call b.Grow above
   764  		return s
   765  	}
   766  
   767  	invalid := false // previous byte was from an invalid UTF-8 sequence
   768  	for i := 0; i < len(s); {
   769  		c := s[i]
   770  		if c < utf8.RuneSelf {
   771  			i++
   772  			invalid = false
   773  			b.WriteByte(c)
   774  			continue
   775  		}
   776  		_, wid := utf8.DecodeRune(s[i:])
   777  		if wid == 1 {
   778  			i++
   779  			if !invalid {
   780  				invalid = true
   781  				WriteString(&b, replacement)
   782  			}
   783  			continue
   784  		}
   785  		invalid = false
   786  		b.WriteText(s[i : i+wid])
   787  		i += wid
   788  	}
   789  
   790  	return b.Text()
   791  }
   792  
   793  // isSeparator reports whether the rune could mark a word boundary.
   794  // TODO: update when package unicode captures more of the properties.
   795  func isSeparator(r rune) bool {
   796  	// ASCII alphanumerics and underscore are not separators
   797  	if r <= 0x7F {
   798  		switch {
   799  		case '0' <= r && r <= '9':
   800  			return false
   801  		case 'a' <= r && r <= 'z':
   802  			return false
   803  		case 'A' <= r && r <= 'Z':
   804  			return false
   805  		case r == '_':
   806  			return false
   807  		}
   808  		return true
   809  	}
   810  	// Letters and digits are not separators
   811  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   812  		return false
   813  	}
   814  	// Otherwise, all we can do for now is treat spaces as separators.
   815  	return unicode.IsSpace(r)
   816  }
   817  
   818  // Title returns a copy of the string s with all Unicode letters that begin words
   819  // mapped to their Unicode title case.
   820  //
   821  // Deprecated: The rule Title uses for word boundaries does not handle Unicode
   822  // punctuation properly. Use golang.org/x/text/cases instead.
   823  func Title[S String](s S) S {
   824  	// Use a closure here to remember state.
   825  	// Hackish but effective. Depends on Map scanning in order and calling
   826  	// the closure once per rune.
   827  	prev := ' '
   828  	return Map(
   829  		func(r rune) rune {
   830  			if isSeparator(prev) {
   831  				prev = r
   832  				return unicode.ToTitle(r)
   833  			}
   834  			prev = r
   835  			return r
   836  		},
   837  		s)
   838  }
   839  
   840  // TrimLeftFunc returns a slice of the string s with all leading
   841  // Unicode code points c satisfying f(c) removed.
   842  func TrimLeftFunc[S String](s S, f func(rune) bool) S {
   843  	i := indexFunc(s, f, false)
   844  	if i == -1 {
   845  		return Empty[S]()
   846  	}
   847  	return s[i:]
   848  }
   849  
   850  // TrimRightFunc returns a slice of the string s with all trailing
   851  // Unicode code points c satisfying f(c) removed.
   852  func TrimRightFunc[S String](s S, f func(rune) bool) S {
   853  	i := lastIndexFunc(s, f, false)
   854  	if i >= 0 && s[i] >= utf8.RuneSelf {
   855  		_, wid := utf8.DecodeRune(s[i:])
   856  		i += wid
   857  	} else {
   858  		i++
   859  	}
   860  	return s[0:i]
   861  }
   862  
   863  // TrimFunc returns a slice of the string s with all leading
   864  // and trailing Unicode code points c satisfying f(c) removed.
   865  func TrimFunc[S String](s S, f func(rune) bool) S {
   866  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   867  }
   868  
   869  // IndexFunc returns the index into s of the first Unicode
   870  // code point satisfying f(c), or -1 if none do.
   871  func IndexFunc[S String](s S, f func(rune) bool) int {
   872  	return indexFunc(s, f, true)
   873  }
   874  
   875  // LastIndexFunc returns the index into s of the last
   876  // Unicode code point satisfying f(c), or -1 if none do.
   877  func LastIndexFunc[S String](s S, f func(rune) bool) int {
   878  	return lastIndexFunc(s, f, true)
   879  }
   880  
   881  // indexFunc is the same as IndexFunc except that if
   882  // truth==false, the sense of the predicate function is
   883  // inverted.
   884  func indexFunc[S String](s S, f func(rune) bool, truth bool) int {
   885  	for i, r := range bytealg.AsString(s) {
   886  		if f(r) == truth {
   887  			return i
   888  		}
   889  	}
   890  	return -1
   891  }
   892  
   893  // lastIndexFunc is the same as LastIndexFunc except that if
   894  // truth==false, the sense of the predicate function is
   895  // inverted.
   896  func lastIndexFunc[S String](s S, f func(rune) bool, truth bool) int {
   897  	for i := len(s); i > 0; {
   898  		r, size := utf8.DecodeLastRune(s[0:i])
   899  		i -= size
   900  		if f(r) == truth {
   901  			return i
   902  		}
   903  	}
   904  	return -1
   905  }
   906  
   907  // asciiSet is a 32-byte value, where each bit represents the presence of a
   908  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   909  // starting with the least-significant bit of the lowest word to the
   910  // most-significant bit of the highest word, map to the full range of all
   911  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   912  // ensuring that any non-ASCII character will be reported as not in the set.
   913  // This allocates a total of 32 bytes even though the upper half
   914  // is unused to avoid bounds checks in asciiSet.contains.
   915  type asciiSet [8]uint32
   916  
   917  // makeASCIISet creates a set of ASCII characters and reports whether all
   918  // characters in chars are ASCII.
   919  func makeASCIISet[S String](chars S) (as asciiSet, ok bool) {
   920  	for i := 0; i < len(chars); i++ {
   921  		c := chars[i]
   922  		if c >= utf8.RuneSelf {
   923  			return as, false
   924  		}
   925  		as[c/32] |= 1 << (c % 32)
   926  	}
   927  	return as, true
   928  }
   929  
   930  // contains reports whether c is inside the set.
   931  func (as *asciiSet) contains(c byte) bool {
   932  	return (as[c/32] & (1 << (c % 32))) != 0
   933  }
   934  
   935  // Trim returns a slice of the string s with all leading and
   936  // trailing Unicode code points contained in cutset removed.
   937  func Trim[S1, S2 String](s S1, cutset S2) S1 {
   938  	if IsEmpty(s) || IsEmpty(cutset) {
   939  		return s
   940  	}
   941  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   942  		return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
   943  	}
   944  	if as, ok := makeASCIISet(cutset); ok {
   945  		return trimLeftASCII(trimRightASCII(s, &as), &as)
   946  	}
   947  	return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
   948  }
   949  
   950  // TrimLeft returns a slice of the string s with all leading
   951  // Unicode code points contained in cutset removed.
   952  //
   953  // To remove a prefix, use TrimPrefix instead.
   954  func TrimLeft[S1, S2 String](s S1, cutset S2) S1 {
   955  	if IsEmpty(s) || IsEmpty(cutset) {
   956  		return s
   957  	}
   958  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   959  		return trimLeftByte(s, cutset[0])
   960  	}
   961  	if as, ok := makeASCIISet(cutset); ok {
   962  		return trimLeftASCII(s, &as)
   963  	}
   964  	return trimLeftUnicode(s, cutset)
   965  }
   966  
   967  func trimLeftByte[S String](s S, c byte) S {
   968  	for len(s) > 0 && s[0] == c {
   969  		s = s[1:]
   970  	}
   971  	return s
   972  }
   973  
   974  func trimLeftASCII[S String](s S, as *asciiSet) S {
   975  	for len(s) > 0 {
   976  		if !as.contains(s[0]) {
   977  			break
   978  		}
   979  		s = s[1:]
   980  	}
   981  	return s
   982  }
   983  
   984  func trimLeftUnicode[S1, S2 String](s S1, cutset S2) S1 {
   985  	for len(s) > 0 {
   986  		r, n := rune(s[0]), 1
   987  		if r >= utf8.RuneSelf {
   988  			r, n = utf8.DecodeRune(s)
   989  		}
   990  		if !ContainsRune(cutset, r) {
   991  			break
   992  		}
   993  		s = s[n:]
   994  	}
   995  	return s
   996  }
   997  
   998  // TrimRight returns a slice of the string s, with all trailing
   999  // Unicode code points contained in cutset removed.
  1000  //
  1001  // To remove a suffix, use TrimSuffix instead.
  1002  func TrimRight[S1, S2 String](s S1, cutset S2) S1 {
  1003  	if IsEmpty(s) || IsEmpty(cutset) {
  1004  		return s
  1005  	}
  1006  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
  1007  		return trimRightByte(s, cutset[0])
  1008  	}
  1009  	if as, ok := makeASCIISet(cutset); ok {
  1010  		return trimRightASCII(s, &as)
  1011  	}
  1012  	return trimRightUnicode(s, cutset)
  1013  }
  1014  
  1015  func trimRightByte[S String](s S, c byte) S {
  1016  	for len(s) > 0 && s[len(s)-1] == c {
  1017  		s = s[:len(s)-1]
  1018  	}
  1019  	return s
  1020  }
  1021  
  1022  func trimRightASCII[S String](s S, as *asciiSet) S {
  1023  	for len(s) > 0 {
  1024  		if !as.contains(s[len(s)-1]) {
  1025  			break
  1026  		}
  1027  		s = s[:len(s)-1]
  1028  	}
  1029  	return s
  1030  }
  1031  
  1032  func trimRightUnicode[S1, S2 String](s S1, cutset S2) S1 {
  1033  	for len(s) > 0 {
  1034  		r, n := rune(s[len(s)-1]), 1
  1035  		if r >= utf8.RuneSelf {
  1036  			r, n = utf8.DecodeLastRune(s)
  1037  		}
  1038  		if !ContainsRune(cutset, r) {
  1039  			break
  1040  		}
  1041  		s = s[:len(s)-n]
  1042  	}
  1043  	return s
  1044  }
  1045  
  1046  // TrimSpace returns a slice of the string s, with all leading
  1047  // and trailing white space removed, as defined by Unicode.
  1048  func TrimSpace[S String](s S) S {
  1049  	// Fast path for ASCII: look for the first ASCII non-space byte
  1050  	start := 0
  1051  	for ; start < len(s); start++ {
  1052  		c := s[start]
  1053  		if c >= utf8.RuneSelf {
  1054  			// If we run into a non-ASCII byte, fall back to the
  1055  			// slower unicode-aware method on the remaining bytes
  1056  			return TrimFunc(s[start:], unicode.IsSpace)
  1057  		}
  1058  		if asciiSpace[c] == 0 {
  1059  			break
  1060  		}
  1061  	}
  1062  
  1063  	// Now look for the first ASCII non-space byte from the end
  1064  	stop := len(s)
  1065  	for ; stop > start; stop-- {
  1066  		c := s[stop-1]
  1067  		if c >= utf8.RuneSelf {
  1068  			// start has been already trimmed above, should trim end only
  1069  			return TrimRightFunc(s[start:stop], unicode.IsSpace)
  1070  		}
  1071  		if asciiSpace[c] == 0 {
  1072  			break
  1073  		}
  1074  	}
  1075  
  1076  	// At this point s[start:stop] starts and ends with an ASCII
  1077  	// non-space bytes, so we're done. Non-ASCII cases have already
  1078  	// been handled above.
  1079  	return s[start:stop]
  1080  }
  1081  
  1082  // TrimPrefix returns s without the provided leading prefix string.
  1083  // If s doesn't start with prefix, s is returned unchanged.
  1084  func TrimPrefix[S1, S2 String](s S1, prefix S2) S1 {
  1085  	if HasPrefix(s, prefix) {
  1086  		return s[len(prefix):]
  1087  	}
  1088  	return s
  1089  }
  1090  
  1091  // TrimSuffix returns s without the provided trailing suffix string.
  1092  // If s doesn't end with suffix, s is returned unchanged.
  1093  func TrimSuffix[S1, S2 String](s S1, suffix S2) S1 {
  1094  	if HasSuffix(s, suffix) {
  1095  		return s[:len(s)-len(suffix)]
  1096  	}
  1097  	return s
  1098  }
  1099  
  1100  // Replace returns a copy of the string s with the first n
  1101  // non-overlapping instances of old replaced by new.
  1102  // If old is empty, it matches at the beginning of the string
  1103  // and after each UTF-8 sequence, yielding up to k+1 replacements
  1104  // for a k-rune string.
  1105  // If n < 0, there is no limit on the number of replacements.
  1106  func Replace[S1, S2, S3 String](s S1, old S2, new S3, n int) S1 {
  1107  	if Equal(old, new) || n == 0 {
  1108  		return s // avoid allocation
  1109  	}
  1110  
  1111  	// Compute number of replacements.
  1112  	if m := Count(s, old); m == 0 {
  1113  		return s // avoid allocation
  1114  	} else if n < 0 || m < n {
  1115  		n = m
  1116  	}
  1117  
  1118  	// Apply replacements to buffer.
  1119  	var b Builder[S1]
  1120  	b.Grow(len(s) + n*(len(new)-len(old)))
  1121  	start := 0
  1122  	for i := 0; i < n; i++ {
  1123  		j := start
  1124  		if len(old) == 0 {
  1125  			if i > 0 {
  1126  				_, wid := utf8.DecodeRune(s[start:])
  1127  				j += wid
  1128  			}
  1129  		} else {
  1130  			j += Index(s[start:], old)
  1131  		}
  1132  		b.WriteText(s[start:j])
  1133  		WriteString(&b, new)
  1134  		start = j + len(old)
  1135  	}
  1136  	b.WriteText(s[start:])
  1137  	return b.Text()
  1138  }
  1139  
  1140  // ReplaceAll returns a copy of the string s with all
  1141  // non-overlapping instances of old replaced by new.
  1142  // If old is empty, it matches at the beginning of the string
  1143  // and after each UTF-8 sequence, yielding up to k+1 replacements
  1144  // for a k-rune string.
  1145  func ReplaceAll[S1, S2, S3 String](s S1, old S2, new S3) S1 {
  1146  	return Replace(s, old, new, -1)
  1147  }
  1148  
  1149  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
  1150  // are equal under simple Unicode case-folding, which is a more general
  1151  // form of case-insensitivity.
  1152  func EqualFold[S1, S2 String](s S1, t S2) bool {
  1153  	// ASCII fast path
  1154  	i := 0
  1155  	for ; i < len(s) && i < len(t); i++ {
  1156  		sr := s[i]
  1157  		tr := t[i]
  1158  		if sr|tr >= utf8.RuneSelf {
  1159  			goto hasUnicode
  1160  		}
  1161  
  1162  		// Easy case.
  1163  		if tr == sr {
  1164  			continue
  1165  		}
  1166  
  1167  		// Make sr < tr to simplify what follows.
  1168  		if tr < sr {
  1169  			tr, sr = sr, tr
  1170  		}
  1171  		// ASCII only, sr/tr must be upper/lower case
  1172  		if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
  1173  			continue
  1174  		}
  1175  		return false
  1176  	}
  1177  	// Check if we've exhausted both strings.
  1178  	return len(s) == len(t)
  1179  
  1180  hasUnicode:
  1181  	s = s[i:]
  1182  	t = t[i:]
  1183  	for _, sr := range bytealg.AsString(s) {
  1184  		// If t is exhausted the strings are not equal.
  1185  		if len(t) == 0 {
  1186  			return false
  1187  		}
  1188  
  1189  		// Extract first rune from second string.
  1190  		var tr rune
  1191  		if t[0] < utf8.RuneSelf {
  1192  			tr, t = rune(t[0]), t[1:]
  1193  		} else {
  1194  			r, size := utf8.DecodeRune(t)
  1195  			tr, t = r, t[size:]
  1196  		}
  1197  
  1198  		// If they match, keep going; if not, return false.
  1199  
  1200  		// Easy case.
  1201  		if tr == sr {
  1202  			continue
  1203  		}
  1204  
  1205  		// Make sr < tr to simplify what follows.
  1206  		if tr < sr {
  1207  			tr, sr = sr, tr
  1208  		}
  1209  		// Fast check for ASCII.
  1210  		if tr < utf8.RuneSelf {
  1211  			// ASCII only, sr/tr must be upper/lower case
  1212  			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
  1213  				continue
  1214  			}
  1215  			return false
  1216  		}
  1217  
  1218  		// General case. SimpleFold(x) returns the next equivalent rune > x
  1219  		// or wraps around to smaller values.
  1220  		r := unicode.SimpleFold(sr)
  1221  		for r != sr && r < tr {
  1222  			r = unicode.SimpleFold(r)
  1223  		}
  1224  		if r == tr {
  1225  			continue
  1226  		}
  1227  		return false
  1228  	}
  1229  
  1230  	// First string is empty, so check if the second one is also empty.
  1231  	return len(t) == 0
  1232  }
  1233  
  1234  // Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
  1235  func Index[S1, S2 String](s S1, substr S2) int {
  1236  	n := len(substr)
  1237  	switch {
  1238  	case n == 0:
  1239  		return 0
  1240  	case n == 1:
  1241  		return IndexByte(s, substr[0])
  1242  	case n == len(s):
  1243  		if Equal(substr, s) {
  1244  			return 0
  1245  		}
  1246  		return -1
  1247  	case n > len(s):
  1248  		return -1
  1249  	case n <= bytealg.MaxLen:
  1250  		// Use brute force when s and substr both are small
  1251  		if len(s) <= bytealg.MaxBruteForce {
  1252  			return bytealg.IndexString(s, substr)
  1253  		}
  1254  		c0 := substr[0]
  1255  		c1 := substr[1]
  1256  		i := 0
  1257  		t := len(s) - n + 1
  1258  		fails := 0
  1259  		for i < t {
  1260  			if s[i] != c0 {
  1261  				// IndexByte is faster than bytealg.IndexString, so use it as long as
  1262  				// we're not getting lots of false positives.
  1263  				o := IndexByte(s[i+1:t], c0)
  1264  				if o < 0 {
  1265  					return -1
  1266  				}
  1267  				i += o + 1
  1268  			}
  1269  			if s[i+1] == c1 && Equal(s[i:i+n], substr) {
  1270  				return i
  1271  			}
  1272  			fails++
  1273  			i++
  1274  			// Switch to bytealg.IndexString when IndexByte produces too many false positives.
  1275  			if fails > bytealg.Cutover(i) {
  1276  				r := bytealg.IndexString(s[i:], substr)
  1277  				if r >= 0 {
  1278  					return r + i
  1279  				}
  1280  				return -1
  1281  			}
  1282  		}
  1283  		return -1
  1284  	}
  1285  	c0 := substr[0]
  1286  	c1 := substr[1]
  1287  	i := 0
  1288  	t := len(s) - n + 1
  1289  	fails := 0
  1290  	for i < t {
  1291  		if s[i] != c0 {
  1292  			o := IndexByte(s[i+1:t], c0)
  1293  			if o < 0 {
  1294  				return -1
  1295  			}
  1296  			i += o + 1
  1297  		}
  1298  		if s[i+1] == c1 && Equal(s[i:i+n], substr) {
  1299  			return i
  1300  		}
  1301  		i++
  1302  		fails++
  1303  		if fails >= 4+i>>4 && i < t {
  1304  			// See comment in ../bytes/bytes.go.
  1305  			j := bytealg.IndexRabinKarp(s[i:], substr)
  1306  			if j < 0 {
  1307  				return -1
  1308  			}
  1309  			return i + j
  1310  		}
  1311  	}
  1312  	return -1
  1313  }
  1314  
  1315  // Cut slices s around the first instance of sep,
  1316  // returning the text before and after sep.
  1317  // The found result reports whether sep appears in s.
  1318  // If sep does not appear in s, cut returns s, "", false.
  1319  func Cut[S1, S2 String](s S1, sep S2) (before, after S1, found bool) {
  1320  	if i := Index(s, sep); i >= 0 {
  1321  		return s[:i], s[i+len(sep):], true
  1322  	}
  1323  	return s, Empty[S1](), false
  1324  }
  1325  
  1326  // CutPrefix returns s without the provided leading prefix string
  1327  // and reports whether it found the prefix.
  1328  // If s doesn't start with prefix, CutPrefix returns s, false.
  1329  // If prefix is the empty string, CutPrefix returns s, true.
  1330  func CutPrefix[S1, S2 String](s S1, prefix S2) (after S1, found bool) {
  1331  	if !HasPrefix(s, prefix) {
  1332  		return s, false
  1333  	}
  1334  	return s[len(prefix):], true
  1335  }
  1336  
  1337  // CutSuffix returns s without the provided ending suffix string
  1338  // and reports whether it found the suffix.
  1339  // If s doesn't end with suffix, CutSuffix returns s, false.
  1340  // If suffix is the empty string, CutSuffix returns s, true.
  1341  func CutSuffix[S1, S2 String](s S1, suffix S2) (before S1, found bool) {
  1342  	if !HasSuffix(s, suffix) {
  1343  		return s, false
  1344  	}
  1345  	return s[:len(s)-len(suffix)], true
  1346  }