github.com/phillinzzz/newBsc@v1.1.6/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/phillinzzz/newBsc/common" 26 "github.com/phillinzzz/newBsc/common/math" 27 "github.com/phillinzzz/newBsc/crypto" 28 "github.com/phillinzzz/newBsc/crypto/blake2b" 29 "github.com/phillinzzz/newBsc/crypto/bls12381" 30 "github.com/phillinzzz/newBsc/crypto/bn256" 31 "github.com/phillinzzz/newBsc/params" 32 33 //lint:ignore SA1019 Needed for precompile 34 "golang.org/x/crypto/ripemd160" 35 ) 36 37 // PrecompiledContract is the basic interface for native Go contracts. The implementation 38 // requires a deterministic gas count based on the input size of the Run method of the 39 // contract. 40 type PrecompiledContract interface { 41 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 42 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 43 } 44 45 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 46 // contracts used in the Frontier and Homestead releases. 47 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 48 common.BytesToAddress([]byte{1}): &ecrecover{}, 49 common.BytesToAddress([]byte{2}): &sha256hash{}, 50 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 51 common.BytesToAddress([]byte{4}): &dataCopy{}, 52 } 53 54 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 55 // contracts used in the Byzantium release. 56 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 57 common.BytesToAddress([]byte{1}): &ecrecover{}, 58 common.BytesToAddress([]byte{2}): &sha256hash{}, 59 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 60 common.BytesToAddress([]byte{4}): &dataCopy{}, 61 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 62 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 63 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 64 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 65 } 66 67 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 68 // contracts used in the Istanbul release. 69 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 70 common.BytesToAddress([]byte{1}): &ecrecover{}, 71 common.BytesToAddress([]byte{2}): &sha256hash{}, 72 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 73 common.BytesToAddress([]byte{4}): &dataCopy{}, 74 common.BytesToAddress([]byte{5}): &bigModExp{}, 75 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 76 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 77 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 78 common.BytesToAddress([]byte{9}): &blake2F{}, 79 80 common.BytesToAddress([]byte{100}): &tmHeaderValidate{}, 81 common.BytesToAddress([]byte{101}): &iavlMerkleProofValidate{}, 82 } 83 84 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 85 // contracts used in the Berlin release. 86 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 87 common.BytesToAddress([]byte{1}): &ecrecover{}, 88 common.BytesToAddress([]byte{2}): &sha256hash{}, 89 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 90 common.BytesToAddress([]byte{4}): &dataCopy{}, 91 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 92 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 93 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 94 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 95 common.BytesToAddress([]byte{9}): &blake2F{}, 96 } 97 98 // PrecompiledContractsBLS contains the set of pre-compiled Ethereum 99 // contracts specified in EIP-2537. These are exported for testing purposes. 100 var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{ 101 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 102 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 103 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 104 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 105 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 106 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 107 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 108 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 109 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 110 } 111 112 var ( 113 PrecompiledAddressesBerlin []common.Address 114 PrecompiledAddressesIstanbul []common.Address 115 PrecompiledAddressesByzantium []common.Address 116 PrecompiledAddressesHomestead []common.Address 117 ) 118 119 func init() { 120 for k := range PrecompiledContractsHomestead { 121 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 122 } 123 for k := range PrecompiledContractsByzantium { 124 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 125 } 126 for k := range PrecompiledContractsIstanbul { 127 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 128 } 129 for k := range PrecompiledContractsBerlin { 130 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 131 } 132 } 133 134 // ActivePrecompiles returns the precompiles enabled with the current configuration. 135 func ActivePrecompiles(rules params.Rules) []common.Address { 136 switch { 137 case rules.IsBerlin: 138 return PrecompiledAddressesBerlin 139 case rules.IsIstanbul: 140 return PrecompiledAddressesIstanbul 141 case rules.IsByzantium: 142 return PrecompiledAddressesByzantium 143 default: 144 return PrecompiledAddressesHomestead 145 } 146 } 147 148 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 149 // It returns 150 // - the returned bytes, 151 // - the _remaining_ gas, 152 // - any error that occurred 153 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 154 gasCost := p.RequiredGas(input) 155 if suppliedGas < gasCost { 156 return nil, 0, ErrOutOfGas 157 } 158 suppliedGas -= gasCost 159 output, err := p.Run(input) 160 return output, suppliedGas, err 161 } 162 163 // ECRECOVER implemented as a native contract. 164 type ecrecover struct{} 165 166 func (c *ecrecover) RequiredGas(input []byte) uint64 { 167 return params.EcrecoverGas 168 } 169 170 func (c *ecrecover) Run(input []byte) ([]byte, error) { 171 const ecRecoverInputLength = 128 172 173 input = common.RightPadBytes(input, ecRecoverInputLength) 174 // "input" is (hash, v, r, s), each 32 bytes 175 // but for ecrecover we want (r, s, v) 176 177 r := new(big.Int).SetBytes(input[64:96]) 178 s := new(big.Int).SetBytes(input[96:128]) 179 v := input[63] - 27 180 181 // tighter sig s values input homestead only apply to tx sigs 182 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 183 return nil, nil 184 } 185 // We must make sure not to modify the 'input', so placing the 'v' along with 186 // the signature needs to be done on a new allocation 187 sig := make([]byte, 65) 188 copy(sig, input[64:128]) 189 sig[64] = v 190 // v needs to be at the end for libsecp256k1 191 pubKey, err := crypto.Ecrecover(input[:32], sig) 192 // make sure the public key is a valid one 193 if err != nil { 194 return nil, nil 195 } 196 197 // the first byte of pubkey is bitcoin heritage 198 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 199 } 200 201 // SHA256 implemented as a native contract. 202 type sha256hash struct{} 203 204 // RequiredGas returns the gas required to execute the pre-compiled contract. 205 // 206 // This method does not require any overflow checking as the input size gas costs 207 // required for anything significant is so high it's impossible to pay for. 208 func (c *sha256hash) RequiredGas(input []byte) uint64 { 209 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 210 } 211 func (c *sha256hash) Run(input []byte) ([]byte, error) { 212 h := sha256.Sum256(input) 213 return h[:], nil 214 } 215 216 // RIPEMD160 implemented as a native contract. 217 type ripemd160hash struct{} 218 219 // RequiredGas returns the gas required to execute the pre-compiled contract. 220 // 221 // This method does not require any overflow checking as the input size gas costs 222 // required for anything significant is so high it's impossible to pay for. 223 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 224 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 225 } 226 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 227 ripemd := ripemd160.New() 228 ripemd.Write(input) 229 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 230 } 231 232 // data copy implemented as a native contract. 233 type dataCopy struct{} 234 235 // RequiredGas returns the gas required to execute the pre-compiled contract. 236 // 237 // This method does not require any overflow checking as the input size gas costs 238 // required for anything significant is so high it's impossible to pay for. 239 func (c *dataCopy) RequiredGas(input []byte) uint64 { 240 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 241 } 242 func (c *dataCopy) Run(in []byte) ([]byte, error) { 243 return in, nil 244 } 245 246 // bigModExp implements a native big integer exponential modular operation. 247 type bigModExp struct { 248 eip2565 bool 249 } 250 251 var ( 252 big0 = big.NewInt(0) 253 big1 = big.NewInt(1) 254 big3 = big.NewInt(3) 255 big4 = big.NewInt(4) 256 big7 = big.NewInt(7) 257 big8 = big.NewInt(8) 258 big16 = big.NewInt(16) 259 big20 = big.NewInt(20) 260 big32 = big.NewInt(32) 261 big64 = big.NewInt(64) 262 big96 = big.NewInt(96) 263 big480 = big.NewInt(480) 264 big1024 = big.NewInt(1024) 265 big3072 = big.NewInt(3072) 266 big199680 = big.NewInt(199680) 267 ) 268 269 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 270 // 271 // def mult_complexity(x): 272 // if x <= 64: return x ** 2 273 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 274 // else: return x ** 2 // 16 + 480 * x - 199680 275 // 276 // where is x is max(length_of_MODULUS, length_of_BASE) 277 func modexpMultComplexity(x *big.Int) *big.Int { 278 switch { 279 case x.Cmp(big64) <= 0: 280 x.Mul(x, x) // x ** 2 281 case x.Cmp(big1024) <= 0: 282 // (x ** 2 // 4 ) + ( 96 * x - 3072) 283 x = new(big.Int).Add( 284 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 285 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 286 ) 287 default: 288 // (x ** 2 // 16) + (480 * x - 199680) 289 x = new(big.Int).Add( 290 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 291 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 292 ) 293 } 294 return x 295 } 296 297 // RequiredGas returns the gas required to execute the pre-compiled contract. 298 func (c *bigModExp) RequiredGas(input []byte) uint64 { 299 var ( 300 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 301 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 302 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 303 ) 304 if len(input) > 96 { 305 input = input[96:] 306 } else { 307 input = input[:0] 308 } 309 // Retrieve the head 32 bytes of exp for the adjusted exponent length 310 var expHead *big.Int 311 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 312 expHead = new(big.Int) 313 } else { 314 if expLen.Cmp(big32) > 0 { 315 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 316 } else { 317 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 318 } 319 } 320 // Calculate the adjusted exponent length 321 var msb int 322 if bitlen := expHead.BitLen(); bitlen > 0 { 323 msb = bitlen - 1 324 } 325 adjExpLen := new(big.Int) 326 if expLen.Cmp(big32) > 0 { 327 adjExpLen.Sub(expLen, big32) 328 adjExpLen.Mul(big8, adjExpLen) 329 } 330 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 331 // Calculate the gas cost of the operation 332 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 333 if c.eip2565 { 334 // EIP-2565 has three changes 335 // 1. Different multComplexity (inlined here) 336 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 337 // 338 // def mult_complexity(x): 339 // ceiling(x/8)^2 340 // 341 //where is x is max(length_of_MODULUS, length_of_BASE) 342 gas = gas.Add(gas, big7) 343 gas = gas.Div(gas, big8) 344 gas.Mul(gas, gas) 345 346 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 347 // 2. Different divisor (`GQUADDIVISOR`) (3) 348 gas.Div(gas, big3) 349 if gas.BitLen() > 64 { 350 return math.MaxUint64 351 } 352 // 3. Minimum price of 200 gas 353 if gas.Uint64() < 200 { 354 return 200 355 } 356 return gas.Uint64() 357 } 358 gas = modexpMultComplexity(gas) 359 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 360 gas.Div(gas, big20) 361 362 if gas.BitLen() > 64 { 363 return math.MaxUint64 364 } 365 return gas.Uint64() 366 } 367 368 func (c *bigModExp) Run(input []byte) ([]byte, error) { 369 var ( 370 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 371 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 372 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 373 ) 374 if len(input) > 96 { 375 input = input[96:] 376 } else { 377 input = input[:0] 378 } 379 // Handle a special case when both the base and mod length is zero 380 if baseLen == 0 && modLen == 0 { 381 return []byte{}, nil 382 } 383 // Retrieve the operands and execute the exponentiation 384 var ( 385 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 386 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 387 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 388 ) 389 if mod.BitLen() == 0 { 390 // Modulo 0 is undefined, return zero 391 return common.LeftPadBytes([]byte{}, int(modLen)), nil 392 } 393 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 394 } 395 396 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 397 // returning it, or an error if the point is invalid. 398 func newCurvePoint(blob []byte) (*bn256.G1, error) { 399 p := new(bn256.G1) 400 if _, err := p.Unmarshal(blob); err != nil { 401 return nil, err 402 } 403 return p, nil 404 } 405 406 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 407 // returning it, or an error if the point is invalid. 408 func newTwistPoint(blob []byte) (*bn256.G2, error) { 409 p := new(bn256.G2) 410 if _, err := p.Unmarshal(blob); err != nil { 411 return nil, err 412 } 413 return p, nil 414 } 415 416 // runBn256Add implements the Bn256Add precompile, referenced by both 417 // Byzantium and Istanbul operations. 418 func runBn256Add(input []byte) ([]byte, error) { 419 x, err := newCurvePoint(getData(input, 0, 64)) 420 if err != nil { 421 return nil, err 422 } 423 y, err := newCurvePoint(getData(input, 64, 64)) 424 if err != nil { 425 return nil, err 426 } 427 res := new(bn256.G1) 428 res.Add(x, y) 429 return res.Marshal(), nil 430 } 431 432 // bn256Add implements a native elliptic curve point addition conforming to 433 // Istanbul consensus rules. 434 type bn256AddIstanbul struct{} 435 436 // RequiredGas returns the gas required to execute the pre-compiled contract. 437 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 438 return params.Bn256AddGasIstanbul 439 } 440 441 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 442 return runBn256Add(input) 443 } 444 445 // bn256AddByzantium implements a native elliptic curve point addition 446 // conforming to Byzantium consensus rules. 447 type bn256AddByzantium struct{} 448 449 // RequiredGas returns the gas required to execute the pre-compiled contract. 450 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 451 return params.Bn256AddGasByzantium 452 } 453 454 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 455 return runBn256Add(input) 456 } 457 458 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 459 // both Byzantium and Istanbul operations. 460 func runBn256ScalarMul(input []byte) ([]byte, error) { 461 p, err := newCurvePoint(getData(input, 0, 64)) 462 if err != nil { 463 return nil, err 464 } 465 res := new(bn256.G1) 466 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 467 return res.Marshal(), nil 468 } 469 470 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 471 // multiplication conforming to Istanbul consensus rules. 472 type bn256ScalarMulIstanbul struct{} 473 474 // RequiredGas returns the gas required to execute the pre-compiled contract. 475 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 476 return params.Bn256ScalarMulGasIstanbul 477 } 478 479 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 480 return runBn256ScalarMul(input) 481 } 482 483 // bn256ScalarMulByzantium implements a native elliptic curve scalar 484 // multiplication conforming to Byzantium consensus rules. 485 type bn256ScalarMulByzantium struct{} 486 487 // RequiredGas returns the gas required to execute the pre-compiled contract. 488 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 489 return params.Bn256ScalarMulGasByzantium 490 } 491 492 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 493 return runBn256ScalarMul(input) 494 } 495 496 var ( 497 // true32Byte is returned if the bn256 pairing check succeeds. 498 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 499 500 // false32Byte is returned if the bn256 pairing check fails. 501 false32Byte = make([]byte, 32) 502 503 // errBadPairingInput is returned if the bn256 pairing input is invalid. 504 errBadPairingInput = errors.New("bad elliptic curve pairing size") 505 ) 506 507 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 508 // Byzantium and Istanbul operations. 509 func runBn256Pairing(input []byte) ([]byte, error) { 510 // Handle some corner cases cheaply 511 if len(input)%192 > 0 { 512 return nil, errBadPairingInput 513 } 514 // Convert the input into a set of coordinates 515 var ( 516 cs []*bn256.G1 517 ts []*bn256.G2 518 ) 519 for i := 0; i < len(input); i += 192 { 520 c, err := newCurvePoint(input[i : i+64]) 521 if err != nil { 522 return nil, err 523 } 524 t, err := newTwistPoint(input[i+64 : i+192]) 525 if err != nil { 526 return nil, err 527 } 528 cs = append(cs, c) 529 ts = append(ts, t) 530 } 531 // Execute the pairing checks and return the results 532 if bn256.PairingCheck(cs, ts) { 533 return true32Byte, nil 534 } 535 return false32Byte, nil 536 } 537 538 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 539 // conforming to Istanbul consensus rules. 540 type bn256PairingIstanbul struct{} 541 542 // RequiredGas returns the gas required to execute the pre-compiled contract. 543 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 544 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 545 } 546 547 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 548 return runBn256Pairing(input) 549 } 550 551 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 552 // conforming to Byzantium consensus rules. 553 type bn256PairingByzantium struct{} 554 555 // RequiredGas returns the gas required to execute the pre-compiled contract. 556 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 557 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 558 } 559 560 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 561 return runBn256Pairing(input) 562 } 563 564 type blake2F struct{} 565 566 func (c *blake2F) RequiredGas(input []byte) uint64 { 567 // If the input is malformed, we can't calculate the gas, return 0 and let the 568 // actual call choke and fault. 569 if len(input) != blake2FInputLength { 570 return 0 571 } 572 return uint64(binary.BigEndian.Uint32(input[0:4])) 573 } 574 575 const ( 576 blake2FInputLength = 213 577 blake2FFinalBlockBytes = byte(1) 578 blake2FNonFinalBlockBytes = byte(0) 579 ) 580 581 var ( 582 errBlake2FInvalidInputLength = errors.New("invalid input length") 583 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 584 ) 585 586 func (c *blake2F) Run(input []byte) ([]byte, error) { 587 // Make sure the input is valid (correct length and final flag) 588 if len(input) != blake2FInputLength { 589 return nil, errBlake2FInvalidInputLength 590 } 591 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 592 return nil, errBlake2FInvalidFinalFlag 593 } 594 // Parse the input into the Blake2b call parameters 595 var ( 596 rounds = binary.BigEndian.Uint32(input[0:4]) 597 final = (input[212] == blake2FFinalBlockBytes) 598 599 h [8]uint64 600 m [16]uint64 601 t [2]uint64 602 ) 603 for i := 0; i < 8; i++ { 604 offset := 4 + i*8 605 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 606 } 607 for i := 0; i < 16; i++ { 608 offset := 68 + i*8 609 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 610 } 611 t[0] = binary.LittleEndian.Uint64(input[196:204]) 612 t[1] = binary.LittleEndian.Uint64(input[204:212]) 613 614 // Execute the compression function, extract and return the result 615 blake2b.F(&h, m, t, final, rounds) 616 617 output := make([]byte, 64) 618 for i := 0; i < 8; i++ { 619 offset := i * 8 620 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 621 } 622 return output, nil 623 } 624 625 var ( 626 errBLS12381InvalidInputLength = errors.New("invalid input length") 627 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 628 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 629 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 630 ) 631 632 // bls12381G1Add implements EIP-2537 G1Add precompile. 633 type bls12381G1Add struct{} 634 635 // RequiredGas returns the gas required to execute the pre-compiled contract. 636 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 637 return params.Bls12381G1AddGas 638 } 639 640 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 641 // Implements EIP-2537 G1Add precompile. 642 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 643 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 644 if len(input) != 256 { 645 return nil, errBLS12381InvalidInputLength 646 } 647 var err error 648 var p0, p1 *bls12381.PointG1 649 650 // Initialize G1 651 g := bls12381.NewG1() 652 653 // Decode G1 point p_0 654 if p0, err = g.DecodePoint(input[:128]); err != nil { 655 return nil, err 656 } 657 // Decode G1 point p_1 658 if p1, err = g.DecodePoint(input[128:]); err != nil { 659 return nil, err 660 } 661 662 // Compute r = p_0 + p_1 663 r := g.New() 664 g.Add(r, p0, p1) 665 666 // Encode the G1 point result into 128 bytes 667 return g.EncodePoint(r), nil 668 } 669 670 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 671 type bls12381G1Mul struct{} 672 673 // RequiredGas returns the gas required to execute the pre-compiled contract. 674 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 675 return params.Bls12381G1MulGas 676 } 677 678 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 679 // Implements EIP-2537 G1Mul precompile. 680 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 681 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 682 if len(input) != 160 { 683 return nil, errBLS12381InvalidInputLength 684 } 685 var err error 686 var p0 *bls12381.PointG1 687 688 // Initialize G1 689 g := bls12381.NewG1() 690 691 // Decode G1 point 692 if p0, err = g.DecodePoint(input[:128]); err != nil { 693 return nil, err 694 } 695 // Decode scalar value 696 e := new(big.Int).SetBytes(input[128:]) 697 698 // Compute r = e * p_0 699 r := g.New() 700 g.MulScalar(r, p0, e) 701 702 // Encode the G1 point into 128 bytes 703 return g.EncodePoint(r), nil 704 } 705 706 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 707 type bls12381G1MultiExp struct{} 708 709 // RequiredGas returns the gas required to execute the pre-compiled contract. 710 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 711 // Calculate G1 point, scalar value pair length 712 k := len(input) / 160 713 if k == 0 { 714 // Return 0 gas for small input length 715 return 0 716 } 717 // Lookup discount value for G1 point, scalar value pair length 718 var discount uint64 719 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 720 discount = params.Bls12381MultiExpDiscountTable[k-1] 721 } else { 722 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 723 } 724 // Calculate gas and return the result 725 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 726 } 727 728 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 729 // Implements EIP-2537 G1MultiExp precompile. 730 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 731 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 732 k := len(input) / 160 733 if len(input) == 0 || len(input)%160 != 0 { 734 return nil, errBLS12381InvalidInputLength 735 } 736 var err error 737 points := make([]*bls12381.PointG1, k) 738 scalars := make([]*big.Int, k) 739 740 // Initialize G1 741 g := bls12381.NewG1() 742 743 // Decode point scalar pairs 744 for i := 0; i < k; i++ { 745 off := 160 * i 746 t0, t1, t2 := off, off+128, off+160 747 // Decode G1 point 748 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 749 return nil, err 750 } 751 // Decode scalar value 752 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 753 } 754 755 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 756 r := g.New() 757 g.MultiExp(r, points, scalars) 758 759 // Encode the G1 point to 128 bytes 760 return g.EncodePoint(r), nil 761 } 762 763 // bls12381G2Add implements EIP-2537 G2Add precompile. 764 type bls12381G2Add struct{} 765 766 // RequiredGas returns the gas required to execute the pre-compiled contract. 767 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 768 return params.Bls12381G2AddGas 769 } 770 771 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 772 // Implements EIP-2537 G2Add precompile. 773 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 774 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 775 if len(input) != 512 { 776 return nil, errBLS12381InvalidInputLength 777 } 778 var err error 779 var p0, p1 *bls12381.PointG2 780 781 // Initialize G2 782 g := bls12381.NewG2() 783 r := g.New() 784 785 // Decode G2 point p_0 786 if p0, err = g.DecodePoint(input[:256]); err != nil { 787 return nil, err 788 } 789 // Decode G2 point p_1 790 if p1, err = g.DecodePoint(input[256:]); err != nil { 791 return nil, err 792 } 793 794 // Compute r = p_0 + p_1 795 g.Add(r, p0, p1) 796 797 // Encode the G2 point into 256 bytes 798 return g.EncodePoint(r), nil 799 } 800 801 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 802 type bls12381G2Mul struct{} 803 804 // RequiredGas returns the gas required to execute the pre-compiled contract. 805 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 806 return params.Bls12381G2MulGas 807 } 808 809 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 810 // Implements EIP-2537 G2MUL precompile logic. 811 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 812 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 813 if len(input) != 288 { 814 return nil, errBLS12381InvalidInputLength 815 } 816 var err error 817 var p0 *bls12381.PointG2 818 819 // Initialize G2 820 g := bls12381.NewG2() 821 822 // Decode G2 point 823 if p0, err = g.DecodePoint(input[:256]); err != nil { 824 return nil, err 825 } 826 // Decode scalar value 827 e := new(big.Int).SetBytes(input[256:]) 828 829 // Compute r = e * p_0 830 r := g.New() 831 g.MulScalar(r, p0, e) 832 833 // Encode the G2 point into 256 bytes 834 return g.EncodePoint(r), nil 835 } 836 837 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 838 type bls12381G2MultiExp struct{} 839 840 // RequiredGas returns the gas required to execute the pre-compiled contract. 841 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 842 // Calculate G2 point, scalar value pair length 843 k := len(input) / 288 844 if k == 0 { 845 // Return 0 gas for small input length 846 return 0 847 } 848 // Lookup discount value for G2 point, scalar value pair length 849 var discount uint64 850 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 851 discount = params.Bls12381MultiExpDiscountTable[k-1] 852 } else { 853 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 854 } 855 // Calculate gas and return the result 856 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 857 } 858 859 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 860 // Implements EIP-2537 G2MultiExp precompile logic 861 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 862 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 863 k := len(input) / 288 864 if len(input) == 0 || len(input)%288 != 0 { 865 return nil, errBLS12381InvalidInputLength 866 } 867 var err error 868 points := make([]*bls12381.PointG2, k) 869 scalars := make([]*big.Int, k) 870 871 // Initialize G2 872 g := bls12381.NewG2() 873 874 // Decode point scalar pairs 875 for i := 0; i < k; i++ { 876 off := 288 * i 877 t0, t1, t2 := off, off+256, off+288 878 // Decode G1 point 879 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 880 return nil, err 881 } 882 // Decode scalar value 883 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 884 } 885 886 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 887 r := g.New() 888 g.MultiExp(r, points, scalars) 889 890 // Encode the G2 point to 256 bytes. 891 return g.EncodePoint(r), nil 892 } 893 894 // bls12381Pairing implements EIP-2537 Pairing precompile. 895 type bls12381Pairing struct{} 896 897 // RequiredGas returns the gas required to execute the pre-compiled contract. 898 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 899 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 900 } 901 902 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 903 // Implements EIP-2537 Pairing precompile logic. 904 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 905 // > - `128` bytes of G1 point encoding 906 // > - `256` bytes of G2 point encoding 907 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 908 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 909 k := len(input) / 384 910 if len(input) == 0 || len(input)%384 != 0 { 911 return nil, errBLS12381InvalidInputLength 912 } 913 914 // Initialize BLS12-381 pairing engine 915 e := bls12381.NewPairingEngine() 916 g1, g2 := e.G1, e.G2 917 918 // Decode pairs 919 for i := 0; i < k; i++ { 920 off := 384 * i 921 t0, t1, t2 := off, off+128, off+384 922 923 // Decode G1 point 924 p1, err := g1.DecodePoint(input[t0:t1]) 925 if err != nil { 926 return nil, err 927 } 928 // Decode G2 point 929 p2, err := g2.DecodePoint(input[t1:t2]) 930 if err != nil { 931 return nil, err 932 } 933 934 // 'point is on curve' check already done, 935 // Here we need to apply subgroup checks. 936 if !g1.InCorrectSubgroup(p1) { 937 return nil, errBLS12381G1PointSubgroup 938 } 939 if !g2.InCorrectSubgroup(p2) { 940 return nil, errBLS12381G2PointSubgroup 941 } 942 943 // Update pairing engine with G1 and G2 ponits 944 e.AddPair(p1, p2) 945 } 946 // Prepare 32 byte output 947 out := make([]byte, 32) 948 949 // Compute pairing and set the result 950 if e.Check() { 951 out[31] = 1 952 } 953 return out, nil 954 } 955 956 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 957 // Removes top 16 bytes of 64 byte input. 958 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 959 if len(in) != 64 { 960 return nil, errors.New("invalid field element length") 961 } 962 // check top bytes 963 for i := 0; i < 16; i++ { 964 if in[i] != byte(0x00) { 965 return nil, errBLS12381InvalidFieldElementTopBytes 966 } 967 } 968 out := make([]byte, 48) 969 copy(out[:], in[16:]) 970 return out, nil 971 } 972 973 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 974 type bls12381MapG1 struct{} 975 976 // RequiredGas returns the gas required to execute the pre-compiled contract. 977 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 978 return params.Bls12381MapG1Gas 979 } 980 981 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 982 // Implements EIP-2537 Map_To_G1 precompile. 983 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 984 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 985 if len(input) != 64 { 986 return nil, errBLS12381InvalidInputLength 987 } 988 989 // Decode input field element 990 fe, err := decodeBLS12381FieldElement(input) 991 if err != nil { 992 return nil, err 993 } 994 995 // Initialize G1 996 g := bls12381.NewG1() 997 998 // Compute mapping 999 r, err := g.MapToCurve(fe) 1000 if err != nil { 1001 return nil, err 1002 } 1003 1004 // Encode the G1 point to 128 bytes 1005 return g.EncodePoint(r), nil 1006 } 1007 1008 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1009 type bls12381MapG2 struct{} 1010 1011 // RequiredGas returns the gas required to execute the pre-compiled contract. 1012 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1013 return params.Bls12381MapG2Gas 1014 } 1015 1016 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1017 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1018 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1019 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1020 if len(input) != 128 { 1021 return nil, errBLS12381InvalidInputLength 1022 } 1023 1024 // Decode input field element 1025 fe := make([]byte, 96) 1026 c0, err := decodeBLS12381FieldElement(input[:64]) 1027 if err != nil { 1028 return nil, err 1029 } 1030 copy(fe[48:], c0) 1031 c1, err := decodeBLS12381FieldElement(input[64:]) 1032 if err != nil { 1033 return nil, err 1034 } 1035 copy(fe[:48], c1) 1036 1037 // Initialize G2 1038 g := bls12381.NewG2() 1039 1040 // Compute mapping 1041 r, err := g.MapToCurve(fe) 1042 if err != nil { 1043 return nil, err 1044 } 1045 1046 // Encode the G2 point to 256 bytes 1047 return g.EncodePoint(r), nil 1048 }