github.com/phillinzzz/newBsc@v1.1.6/p2p/rlpx/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package rlpx implements the RLPx transport protocol. 18 package rlpx 19 20 import ( 21 "bytes" 22 "crypto/aes" 23 "crypto/cipher" 24 "crypto/ecdsa" 25 "crypto/elliptic" 26 "crypto/hmac" 27 "crypto/rand" 28 "encoding/binary" 29 "errors" 30 "fmt" 31 "hash" 32 "io" 33 mrand "math/rand" 34 "net" 35 "time" 36 37 "github.com/VictoriaMetrics/fastcache" 38 "github.com/golang/snappy" 39 "github.com/oxtoacart/bpool" 40 "golang.org/x/crypto/sha3" 41 42 "github.com/phillinzzz/newBsc/crypto" 43 "github.com/phillinzzz/newBsc/crypto/ecies" 44 "github.com/phillinzzz/newBsc/rlp" 45 ) 46 47 var snappyCache *fastcache.Cache 48 49 func init() { 50 snappyCache = fastcache.New(50 * 1024 * 1024) 51 } 52 53 // Conn is an RLPx network connection. It wraps a low-level network connection. The 54 // underlying connection should not be used for other activity when it is wrapped by Conn. 55 // 56 // Before sending messages, a handshake must be performed by calling the Handshake method. 57 // This type is not generally safe for concurrent use, but reading and writing of messages 58 // may happen concurrently after the handshake. 59 type Conn struct { 60 dialDest *ecdsa.PublicKey 61 conn net.Conn 62 handshake *handshakeState 63 snappy bool 64 } 65 66 type handshakeState struct { 67 enc cipher.Stream 68 dec cipher.Stream 69 70 macCipher cipher.Block 71 egressMAC hash.Hash 72 ingressMAC hash.Hash 73 } 74 75 // NewConn wraps the given network connection. If dialDest is non-nil, the connection 76 // behaves as the initiator during the handshake. 77 func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { 78 return &Conn{ 79 dialDest: dialDest, 80 conn: conn, 81 } 82 } 83 84 // SetSnappy enables or disables snappy compression of messages. This is usually called 85 // after the devp2p Hello message exchange when the negotiated version indicates that 86 // compression is available on both ends of the connection. 87 func (c *Conn) SetSnappy(snappy bool) { 88 c.snappy = snappy 89 } 90 91 // SetReadDeadline sets the deadline for all future read operations. 92 func (c *Conn) SetReadDeadline(time time.Time) error { 93 return c.conn.SetReadDeadline(time) 94 } 95 96 // SetWriteDeadline sets the deadline for all future write operations. 97 func (c *Conn) SetWriteDeadline(time time.Time) error { 98 return c.conn.SetWriteDeadline(time) 99 } 100 101 // SetDeadline sets the deadline for all future read and write operations. 102 func (c *Conn) SetDeadline(time time.Time) error { 103 return c.conn.SetDeadline(time) 104 } 105 106 // Read reads a message from the connection. 107 func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) { 108 if c.handshake == nil { 109 panic("can't ReadMsg before handshake") 110 } 111 112 frame, err := c.handshake.readFrame(c.conn) 113 if err != nil { 114 return 0, nil, 0, err 115 } 116 code, data, err = rlp.SplitUint64(frame) 117 if err != nil { 118 return 0, nil, 0, fmt.Errorf("invalid message code: %v", err) 119 } 120 wireSize = len(data) 121 122 // If snappy is enabled, verify and decompress message. 123 if c.snappy { 124 var actualSize int 125 actualSize, err = snappy.DecodedLen(data) 126 if err != nil { 127 return code, nil, 0, err 128 } 129 if actualSize > maxUint24 { 130 return code, nil, 0, errPlainMessageTooLarge 131 } 132 data, err = snappy.Decode(nil, data) 133 } 134 return code, data, wireSize, err 135 } 136 137 func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) { 138 // read the header 139 headbuf := make([]byte, 32) 140 if _, err := io.ReadFull(conn, headbuf); err != nil { 141 return nil, err 142 } 143 144 // verify header mac 145 shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16]) 146 if !hmac.Equal(shouldMAC, headbuf[16:]) { 147 return nil, errors.New("bad header MAC") 148 } 149 h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 150 fsize := readInt24(headbuf) 151 // ignore protocol type for now 152 153 // read the frame content 154 var rsize = fsize // frame size rounded up to 16 byte boundary 155 if padding := fsize % 16; padding > 0 { 156 rsize += 16 - padding 157 } 158 framebuf := make([]byte, rsize) 159 if _, err := io.ReadFull(conn, framebuf); err != nil { 160 return nil, err 161 } 162 163 // read and validate frame MAC. we can re-use headbuf for that. 164 h.ingressMAC.Write(framebuf) 165 fmacseed := h.ingressMAC.Sum(nil) 166 if _, err := io.ReadFull(conn, headbuf[:16]); err != nil { 167 return nil, err 168 } 169 shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed) 170 if !hmac.Equal(shouldMAC, headbuf[:16]) { 171 return nil, errors.New("bad frame MAC") 172 } 173 174 // decrypt frame content 175 h.dec.XORKeyStream(framebuf, framebuf) 176 return framebuf[:fsize], nil 177 } 178 179 // Write writes a message to the connection. 180 // 181 // Write returns the written size of the message data. This may be less than or equal to 182 // len(data) depending on whether snappy compression is enabled. 183 func (c *Conn) Write(code uint64, data []byte) (uint32, error) { 184 if c.handshake == nil { 185 panic("can't WriteMsg before handshake") 186 } 187 if len(data) > maxUint24 { 188 return 0, errPlainMessageTooLarge 189 } 190 if c.snappy { 191 if encodedResult, ok := snappyCache.HasGet(nil, data); ok { 192 data = encodedResult 193 } else { 194 encodedData := snappy.Encode(nil, data) 195 snappyCache.Set(data, encodedData) 196 197 data = encodedData 198 } 199 } 200 201 wireSize := uint32(len(data)) 202 err := c.handshake.writeFrame(c.conn, code, data) 203 return wireSize, err 204 } 205 206 func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error { 207 ptype, _ := rlp.EncodeToBytes(code) 208 209 // write header 210 headbuf := make([]byte, 32) 211 fsize := len(ptype) + len(data) 212 if fsize > maxUint24 { 213 return errPlainMessageTooLarge 214 } 215 putInt24(uint32(fsize), headbuf) 216 copy(headbuf[3:], zeroHeader) 217 h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 218 219 // write header MAC 220 copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16])) 221 if _, err := conn.Write(headbuf); err != nil { 222 return err 223 } 224 225 // write encrypted frame, updating the egress MAC hash with 226 // the data written to conn. 227 tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)} 228 if _, err := tee.Write(ptype); err != nil { 229 return err 230 } 231 if _, err := tee.Write(data); err != nil { 232 return err 233 } 234 if padding := fsize % 16; padding > 0 { 235 if _, err := tee.Write(zero16[:16-padding]); err != nil { 236 return err 237 } 238 } 239 240 // write frame MAC. egress MAC hash is up to date because 241 // frame content was written to it as well. 242 fmacseed := h.egressMAC.Sum(nil) 243 mac := updateMAC(h.egressMAC, h.macCipher, fmacseed) 244 _, err := conn.Write(mac) 245 return err 246 } 247 248 func readInt24(b []byte) uint32 { 249 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 250 } 251 252 func putInt24(v uint32, b []byte) { 253 b[0] = byte(v >> 16) 254 b[1] = byte(v >> 8) 255 b[2] = byte(v) 256 } 257 258 const BpoolMaxSize = 4 259 260 var bytepool = bpool.NewBytePool(BpoolMaxSize, aes.BlockSize) 261 262 // updateMAC reseeds the given hash with encrypted seed. 263 // it returns the first 16 bytes of the hash sum after seeding. 264 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 265 aesbuf := bytepool.Get() 266 block.Encrypt(aesbuf, mac.Sum(nil)) 267 for i := range aesbuf { 268 aesbuf[i] ^= seed[i] 269 } 270 mac.Write(aesbuf) 271 bytepool.Put(aesbuf) 272 return mac.Sum(nil)[:16] 273 } 274 275 // Handshake performs the handshake. This must be called before any data is written 276 // or read from the connection. 277 func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { 278 var ( 279 sec Secrets 280 err error 281 ) 282 if c.dialDest != nil { 283 sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest) 284 } else { 285 sec, err = receiverEncHandshake(c.conn, prv) 286 } 287 if err != nil { 288 return nil, err 289 } 290 c.InitWithSecrets(sec) 291 return sec.remote, err 292 } 293 294 // InitWithSecrets injects connection secrets as if a handshake had 295 // been performed. This cannot be called after the handshake. 296 func (c *Conn) InitWithSecrets(sec Secrets) { 297 if c.handshake != nil { 298 panic("can't handshake twice") 299 } 300 macc, err := aes.NewCipher(sec.MAC) 301 if err != nil { 302 panic("invalid MAC secret: " + err.Error()) 303 } 304 encc, err := aes.NewCipher(sec.AES) 305 if err != nil { 306 panic("invalid AES secret: " + err.Error()) 307 } 308 // we use an all-zeroes IV for AES because the key used 309 // for encryption is ephemeral. 310 iv := make([]byte, encc.BlockSize()) 311 c.handshake = &handshakeState{ 312 enc: cipher.NewCTR(encc, iv), 313 dec: cipher.NewCTR(encc, iv), 314 macCipher: macc, 315 egressMAC: sec.EgressMAC, 316 ingressMAC: sec.IngressMAC, 317 } 318 } 319 320 // Close closes the underlying network connection. 321 func (c *Conn) Close() error { 322 return c.conn.Close() 323 } 324 325 // Constants for the handshake. 326 const ( 327 maxUint24 = int(^uint32(0) >> 8) 328 329 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 330 sigLen = crypto.SignatureLength // elliptic S256 331 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 332 shaLen = 32 // hash length (for nonce etc) 333 334 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 335 authRespLen = pubLen + shaLen + 1 336 337 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 338 339 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 340 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 341 ) 342 343 var ( 344 // this is used in place of actual frame header data. 345 // TODO: replace this when Msg contains the protocol type code. 346 zeroHeader = []byte{0xC2, 0x80, 0x80} 347 // sixteen zero bytes 348 zero16 = make([]byte, 16) 349 350 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 351 // the allowed 24 bits (i.e. length >= 16MB). 352 errPlainMessageTooLarge = errors.New("message length >= 16MB") 353 ) 354 355 // Secrets represents the connection secrets which are negotiated during the handshake. 356 type Secrets struct { 357 AES, MAC []byte 358 EgressMAC, IngressMAC hash.Hash 359 remote *ecdsa.PublicKey 360 } 361 362 // encHandshake contains the state of the encryption handshake. 363 type encHandshake struct { 364 initiator bool 365 remote *ecies.PublicKey // remote-pubk 366 initNonce, respNonce []byte // nonce 367 randomPrivKey *ecies.PrivateKey // ecdhe-random 368 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 369 } 370 371 // RLPx v4 handshake auth (defined in EIP-8). 372 type authMsgV4 struct { 373 gotPlain bool // whether read packet had plain format. 374 375 Signature [sigLen]byte 376 InitiatorPubkey [pubLen]byte 377 Nonce [shaLen]byte 378 Version uint 379 380 // Ignore additional fields (forward-compatibility) 381 Rest []rlp.RawValue `rlp:"tail"` 382 } 383 384 // RLPx v4 handshake response (defined in EIP-8). 385 type authRespV4 struct { 386 RandomPubkey [pubLen]byte 387 Nonce [shaLen]byte 388 Version uint 389 390 // Ignore additional fields (forward-compatibility) 391 Rest []rlp.RawValue `rlp:"tail"` 392 } 393 394 // receiverEncHandshake negotiates a session token on conn. 395 // it should be called on the listening side of the connection. 396 // 397 // prv is the local client's private key. 398 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { 399 authMsg := new(authMsgV4) 400 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 401 if err != nil { 402 return s, err 403 } 404 h := new(encHandshake) 405 if err := h.handleAuthMsg(authMsg, prv); err != nil { 406 return s, err 407 } 408 409 authRespMsg, err := h.makeAuthResp() 410 if err != nil { 411 return s, err 412 } 413 var authRespPacket []byte 414 if authMsg.gotPlain { 415 authRespPacket, err = authRespMsg.sealPlain(h) 416 } else { 417 authRespPacket, err = sealEIP8(authRespMsg, h) 418 } 419 if err != nil { 420 return s, err 421 } 422 if _, err = conn.Write(authRespPacket); err != nil { 423 return s, err 424 } 425 return h.secrets(authPacket, authRespPacket) 426 } 427 428 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 429 // Import the remote identity. 430 rpub, err := importPublicKey(msg.InitiatorPubkey[:]) 431 if err != nil { 432 return err 433 } 434 h.initNonce = msg.Nonce[:] 435 h.remote = rpub 436 437 // Generate random keypair for ECDH. 438 // If a private key is already set, use it instead of generating one (for testing). 439 if h.randomPrivKey == nil { 440 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 441 if err != nil { 442 return err 443 } 444 } 445 446 // Check the signature. 447 token, err := h.staticSharedSecret(prv) 448 if err != nil { 449 return err 450 } 451 signedMsg := xor(token, h.initNonce) 452 remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) 453 if err != nil { 454 return err 455 } 456 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 457 return nil 458 } 459 460 // secrets is called after the handshake is completed. 461 // It extracts the connection secrets from the handshake values. 462 func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) { 463 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 464 if err != nil { 465 return Secrets{}, err 466 } 467 468 // derive base secrets from ephemeral key agreement 469 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 470 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 471 s := Secrets{ 472 remote: h.remote.ExportECDSA(), 473 AES: aesSecret, 474 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 475 } 476 477 // setup sha3 instances for the MACs 478 mac1 := sha3.NewLegacyKeccak256() 479 mac1.Write(xor(s.MAC, h.respNonce)) 480 mac1.Write(auth) 481 mac2 := sha3.NewLegacyKeccak256() 482 mac2.Write(xor(s.MAC, h.initNonce)) 483 mac2.Write(authResp) 484 if h.initiator { 485 s.EgressMAC, s.IngressMAC = mac1, mac2 486 } else { 487 s.EgressMAC, s.IngressMAC = mac2, mac1 488 } 489 490 return s, nil 491 } 492 493 // staticSharedSecret returns the static shared secret, the result 494 // of key agreement between the local and remote static node key. 495 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 496 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 497 } 498 499 // initiatorEncHandshake negotiates a session token on conn. 500 // it should be called on the dialing side of the connection. 501 // 502 // prv is the local client's private key. 503 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { 504 h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} 505 authMsg, err := h.makeAuthMsg(prv) 506 if err != nil { 507 return s, err 508 } 509 authPacket, err := sealEIP8(authMsg, h) 510 if err != nil { 511 return s, err 512 } 513 514 if _, err = conn.Write(authPacket); err != nil { 515 return s, err 516 } 517 518 authRespMsg := new(authRespV4) 519 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 520 if err != nil { 521 return s, err 522 } 523 if err := h.handleAuthResp(authRespMsg); err != nil { 524 return s, err 525 } 526 return h.secrets(authPacket, authRespPacket) 527 } 528 529 // makeAuthMsg creates the initiator handshake message. 530 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 531 // Generate random initiator nonce. 532 h.initNonce = make([]byte, shaLen) 533 _, err := rand.Read(h.initNonce) 534 if err != nil { 535 return nil, err 536 } 537 // Generate random keypair to for ECDH. 538 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 539 if err != nil { 540 return nil, err 541 } 542 543 // Sign known message: static-shared-secret ^ nonce 544 token, err := h.staticSharedSecret(prv) 545 if err != nil { 546 return nil, err 547 } 548 signed := xor(token, h.initNonce) 549 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 550 if err != nil { 551 return nil, err 552 } 553 554 msg := new(authMsgV4) 555 copy(msg.Signature[:], signature) 556 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 557 copy(msg.Nonce[:], h.initNonce) 558 msg.Version = 4 559 return msg, nil 560 } 561 562 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 563 h.respNonce = msg.Nonce[:] 564 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 565 return err 566 } 567 568 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 569 // Generate random nonce. 570 h.respNonce = make([]byte, shaLen) 571 if _, err = rand.Read(h.respNonce); err != nil { 572 return nil, err 573 } 574 575 msg = new(authRespV4) 576 copy(msg.Nonce[:], h.respNonce) 577 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 578 msg.Version = 4 579 return msg, nil 580 } 581 582 func (msg *authMsgV4) decodePlain(input []byte) { 583 n := copy(msg.Signature[:], input) 584 n += shaLen // skip sha3(initiator-ephemeral-pubk) 585 n += copy(msg.InitiatorPubkey[:], input[n:]) 586 copy(msg.Nonce[:], input[n:]) 587 msg.Version = 4 588 msg.gotPlain = true 589 } 590 591 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 592 buf := make([]byte, authRespLen) 593 n := copy(buf, msg.RandomPubkey[:]) 594 copy(buf[n:], msg.Nonce[:]) 595 return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) 596 } 597 598 func (msg *authRespV4) decodePlain(input []byte) { 599 n := copy(msg.RandomPubkey[:], input) 600 copy(msg.Nonce[:], input[n:]) 601 msg.Version = 4 602 } 603 604 var padSpace = make([]byte, 300) 605 606 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 607 buf := new(bytes.Buffer) 608 if err := rlp.Encode(buf, msg); err != nil { 609 return nil, err 610 } 611 // pad with random amount of data. the amount needs to be at least 100 bytes to make 612 // the message distinguishable from pre-EIP-8 handshakes. 613 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 614 buf.Write(pad) 615 prefix := make([]byte, 2) 616 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 617 618 enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) 619 return append(prefix, enc...), err 620 } 621 622 type plainDecoder interface { 623 decodePlain([]byte) 624 } 625 626 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 627 buf := make([]byte, plainSize) 628 if _, err := io.ReadFull(r, buf); err != nil { 629 return buf, err 630 } 631 // Attempt decoding pre-EIP-8 "plain" format. 632 key := ecies.ImportECDSA(prv) 633 if dec, err := key.Decrypt(buf, nil, nil); err == nil { 634 msg.decodePlain(dec) 635 return buf, nil 636 } 637 // Could be EIP-8 format, try that. 638 prefix := buf[:2] 639 size := binary.BigEndian.Uint16(prefix) 640 if size < uint16(plainSize) { 641 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 642 } 643 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 644 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 645 return buf, err 646 } 647 dec, err := key.Decrypt(buf[2:], nil, prefix) 648 if err != nil { 649 return buf, err 650 } 651 // Can't use rlp.DecodeBytes here because it rejects 652 // trailing data (forward-compatibility). 653 s := rlp.NewStream(bytes.NewReader(dec), 0) 654 return buf, s.Decode(msg) 655 } 656 657 // importPublicKey unmarshals 512 bit public keys. 658 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 659 var pubKey65 []byte 660 switch len(pubKey) { 661 case 64: 662 // add 'uncompressed key' flag 663 pubKey65 = append([]byte{0x04}, pubKey...) 664 case 65: 665 pubKey65 = pubKey 666 default: 667 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 668 } 669 // TODO: fewer pointless conversions 670 pub, err := crypto.UnmarshalPubkey(pubKey65) 671 if err != nil { 672 return nil, err 673 } 674 return ecies.ImportECDSAPublic(pub), nil 675 } 676 677 func exportPubkey(pub *ecies.PublicKey) []byte { 678 if pub == nil { 679 panic("nil pubkey") 680 } 681 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 682 } 683 684 func xor(one, other []byte) (xor []byte) { 685 xor = make([]byte, len(one)) 686 for i := 0; i < len(one); i++ { 687 xor[i] = one[i] ^ other[i] 688 } 689 return xor 690 }