github.com/phillinzzz/newBsc@v1.1.6/tests/fuzzers/stacktrie/trie_fuzzer.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package stacktrie
    18  
    19  import (
    20  	"bytes"
    21  	"encoding/binary"
    22  	"errors"
    23  	"fmt"
    24  	"hash"
    25  	"io"
    26  	"sort"
    27  
    28  	"github.com/phillinzzz/newBsc/common"
    29  	"github.com/phillinzzz/newBsc/ethdb"
    30  	"github.com/phillinzzz/newBsc/trie"
    31  	"golang.org/x/crypto/sha3"
    32  )
    33  
    34  type fuzzer struct {
    35  	input     io.Reader
    36  	exhausted bool
    37  	debugging bool
    38  }
    39  
    40  func (f *fuzzer) read(size int) []byte {
    41  	out := make([]byte, size)
    42  	if _, err := f.input.Read(out); err != nil {
    43  		f.exhausted = true
    44  	}
    45  	return out
    46  }
    47  
    48  func (f *fuzzer) readSlice(min, max int) []byte {
    49  	var a uint16
    50  	binary.Read(f.input, binary.LittleEndian, &a)
    51  	size := min + int(a)%(max-min)
    52  	out := make([]byte, size)
    53  	if _, err := f.input.Read(out); err != nil {
    54  		f.exhausted = true
    55  	}
    56  	return out
    57  }
    58  
    59  // spongeDb is a dummy db backend which accumulates writes in a sponge
    60  type spongeDb struct {
    61  	sponge hash.Hash
    62  	debug  bool
    63  }
    64  
    65  func (s *spongeDb) Has(key []byte) (bool, error)             { panic("implement me") }
    66  func (s *spongeDb) Get(key []byte) ([]byte, error)           { return nil, errors.New("no such elem") }
    67  func (s *spongeDb) Delete(key []byte) error                  { panic("implement me") }
    68  func (s *spongeDb) NewBatch() ethdb.Batch                    { return &spongeBatch{s} }
    69  func (s *spongeDb) Stat(property string) (string, error)     { panic("implement me") }
    70  func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") }
    71  func (s *spongeDb) Close() error                             { return nil }
    72  
    73  func (s *spongeDb) Put(key []byte, value []byte) error {
    74  	if s.debug {
    75  		fmt.Printf("db.Put %x : %x\n", key, value)
    76  	}
    77  	s.sponge.Write(key)
    78  	s.sponge.Write(value)
    79  	return nil
    80  }
    81  func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") }
    82  
    83  // spongeBatch is a dummy batch which immediately writes to the underlying spongedb
    84  type spongeBatch struct {
    85  	db *spongeDb
    86  }
    87  
    88  func (b *spongeBatch) Put(key, value []byte) error {
    89  	b.db.Put(key, value)
    90  	return nil
    91  }
    92  func (b *spongeBatch) Delete(key []byte) error             { panic("implement me") }
    93  func (b *spongeBatch) ValueSize() int                      { return 100 }
    94  func (b *spongeBatch) Write() error                        { return nil }
    95  func (b *spongeBatch) Reset()                              {}
    96  func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil }
    97  
    98  type kv struct {
    99  	k, v []byte
   100  }
   101  type kvs []kv
   102  
   103  func (k kvs) Len() int {
   104  	return len(k)
   105  }
   106  
   107  func (k kvs) Less(i, j int) bool {
   108  	return bytes.Compare(k[i].k, k[j].k) < 0
   109  }
   110  
   111  func (k kvs) Swap(i, j int) {
   112  	k[j], k[i] = k[i], k[j]
   113  }
   114  
   115  // The function must return
   116  // 1 if the fuzzer should increase priority of the
   117  //    given input during subsequent fuzzing (for example, the input is lexically
   118  //    correct and was parsed successfully);
   119  // -1 if the input must not be added to corpus even if gives new coverage; and
   120  // 0  otherwise
   121  // other values are reserved for future use.
   122  func Fuzz(data []byte) int {
   123  	f := fuzzer{
   124  		input:     bytes.NewReader(data),
   125  		exhausted: false,
   126  	}
   127  	return f.fuzz()
   128  }
   129  
   130  func Debug(data []byte) int {
   131  	f := fuzzer{
   132  		input:     bytes.NewReader(data),
   133  		exhausted: false,
   134  		debugging: true,
   135  	}
   136  	return f.fuzz()
   137  }
   138  
   139  func (f *fuzzer) fuzz() int {
   140  
   141  	// This spongeDb is used to check the sequence of disk-db-writes
   142  	var (
   143  		spongeA     = &spongeDb{sponge: sha3.NewLegacyKeccak256()}
   144  		dbA         = trie.NewDatabase(spongeA)
   145  		trieA, _    = trie.New(common.Hash{}, dbA)
   146  		spongeB     = &spongeDb{sponge: sha3.NewLegacyKeccak256()}
   147  		trieB       = trie.NewStackTrie(spongeB)
   148  		vals        kvs
   149  		useful      bool
   150  		maxElements = 10000
   151  		// operate on unique keys only
   152  		keys = make(map[string]struct{})
   153  	)
   154  	// Fill the trie with elements
   155  	for i := 0; !f.exhausted && i < maxElements; i++ {
   156  		k := f.read(32)
   157  		v := f.readSlice(1, 500)
   158  		if f.exhausted {
   159  			// If it was exhausted while reading, the value may be all zeroes,
   160  			// thus 'deletion' which is not supported on stacktrie
   161  			break
   162  		}
   163  		if _, present := keys[string(k)]; present {
   164  			// This key is a duplicate, ignore it
   165  			continue
   166  		}
   167  		keys[string(k)] = struct{}{}
   168  		vals = append(vals, kv{k: k, v: v})
   169  		trieA.Update(k, v)
   170  		useful = true
   171  	}
   172  	if !useful {
   173  		return 0
   174  	}
   175  	// Flush trie -> database
   176  	rootA, err := trieA.Commit(nil)
   177  	if err != nil {
   178  		panic(err)
   179  	}
   180  	// Flush memdb -> disk (sponge)
   181  	dbA.Commit(rootA, false, nil)
   182  
   183  	// Stacktrie requires sorted insertion
   184  	sort.Sort(vals)
   185  	for _, kv := range vals {
   186  		if f.debugging {
   187  			fmt.Printf("{\"0x%x\" , \"0x%x\"} // stacktrie.Update\n", kv.k, kv.v)
   188  		}
   189  		trieB.Update(kv.k, kv.v)
   190  	}
   191  	rootB := trieB.Hash()
   192  	if _, err := trieB.Commit(); err != nil {
   193  		panic(err)
   194  	}
   195  	if rootA != rootB {
   196  		panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootB))
   197  	}
   198  	sumA := spongeA.sponge.Sum(nil)
   199  	sumB := spongeB.sponge.Sum(nil)
   200  	if !bytes.Equal(sumA, sumB) {
   201  		panic(fmt.Sprintf("sequence differ: (trie) %x != %x (stacktrie)", sumA, sumB))
   202  	}
   203  	return 1
   204  }